[1]Y. Cao, W. Yu, W. Ren, G. Chen, An overview of recent progress in the study of distributed multi-agent coordination, IEEE Transactions on Industrial informatics, 9(1) (2013) 427-438.
[2]I. Shames, A.M. Teixeira, H. Sandberg, K.H. Johansson, Distributed fault detection for interconnected second-order systems, Automatica, 47(12) (2011) 2757-2764.
[3]F. Arrichiello, A. Marino, F. Pierri, A decentralized fault detection and isolation strategy for networked robots, in: Advanced Robotics (ICAR), 2013 16th International Conference on, IEEE, 2013, pp. 1-6.
[4]J. Shi, X. He, Z. Wang, D. Zhou, Distributed fault detection for a class of second-order multi-agent systems: an optimal robust observer approach, IET Control Theory & Applications, 8(12) (2014) 1032-1044.
[5]M.R. Davoodi, K. Khorasani, H.A. Talebi, H.R. Momeni, Distributed fault detection and isolation filter design for a network of heterogeneous multiagent systems, IEEE Transactions on Control Systems Technology, 22(3) (2014) 1061-1069.
[6]R.A. Carrasco, F. Núñez, A. Cipriano, Fault detection and isolation in cooperative mobile robots using multilayer architecture and dynamic observers, Robotica, 29(4) (2011) 555-562.
[7]M. Guo, D.V. Dimarogonas, K.H. Johansson, Distributed real-time fault detection and isolation for cooperative multi-agent systems, in: American Control Conference (ACC), 2012, IEEE, 2012, pp. 5270-5275.
[8]N. Léchevin, C.A. Rabbath, Robust decentralized fault detection in leader-to-follower formations of uncertain linearly parameterized systems, Journal of Guidance Control and Dynamics, 30(5) (2007) 1528.
[9]N. Meskin, K. Khorasani, Fault detection and isolation of actuator faults in spacecraft formation flight, in: Decision and Control, 2006 45th IEEE Conference on, IEEE, 2006, pp. 1159-1164.
[10]N. Meskin, K. Khorasani, Actuator fault detection and isolation for a network of unmanned vehicles, IEEE Transactions on Automatic Control, 54(4) (2009) 835-840.
[11]N. Meskin, K. Khorasani, C.A. Rabbath, Fault diagnosis in a network of unmanned aerial vehicles with imperfect communication channels, in: AIAA Guidance, Navaigation, and Control Conference, 2009, pp. 1-18.
[12]N. Meskin, K. Khorasani, Fault detection and isolation of discrete-time Markovian jump linear systems with application to a network of multi-agent systems having imperfect communication channels, Automatica, 45(9) (2009) 2032-2040
[13]N. Meskin, K. Khorasani, C.A. Rabbath, A hybrid fault detection and isolation strategy for a network of unmanned vehicles in presence of large environmental disturbances, IEEE Transactions on Control Systems Technology, 18(6) (2010) 1422-1429.
[14]E. Semsar-Kazerooni, K. Khorasani, Team consensus for a network of unmanned vehicles in presence of actuator faults, IEEE Transactions on Control Systems Technology, 18(5) (2010) 1155-1161.
[15]I. Shames, A.M. Teixeira, H. Sandberg, K.H. Johansson, Distributed fault detection and isolation with imprecise network models, in: American Control Conference (ACC), 2012, IEEE, 2012, pp. 5906-5911.
[16]A. Valdes, K. Khorasani, A pulsed plasma thruster fault detection and isolation strategy for formation flying of satellites, Applied Soft Computing, 10(3) (2010) 746-758.
[17]A. Valdes, K. Khorasani, L. Ma, Dynamic neural network-based fault detection and isolation for thrusters in formation flying of satellites, Advances in Neural Networks–ISNN 2009, (2009) 780-793.
[18]Q. Wu, M. Saif, Robust fault detection and diagnosis for a multiple satellite formation flying system using second order sliding mode and wavelet networks, in: American Control Conference, 2007. ACC’07, IEEE, 2007, pp. 426-431.
[19]Q. Shen, B. Jiang, P. Shi, J. Zhao, Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults, IEEE Transactions on Fuzzy Systems, 22(3) (2014) 494-504.
[20]X. Wang, G.-H. Yang, Cooperative adaptive fault-tolerant tracking control for a class of multi-agent systems with actuator failures and mismatched parameter uncertainties, IET Control Theory & Applications, 9(8) (2015) 1274-1284.
[21]G. Chen, Y.-D. Song, Robust fault-tolerant cooperative control of multi-agent systems: A constructive design method, Journal of the Franklin Institute, 352(10) (2015) 4045-4066.
[22]Z. Zuo, J. Zhang, Y. Wang, Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems, IEEE Transactions on Industrial Electronics, 62(6) (2015) 3923-3931.
[23]H. Yang, B. Jiang, Y. Zhang, Fault-tolerant shortest connection topology design for formation control, International Journal of Control, Automation, and Systems, 12(1) (2014) 29-36.
[24]H. Yang, M. Staroswiecki, B. Jiang, J. Liu, Fault tolerant cooperative control for a class of nonlinear multi-agent systems, Systems & control letters, 60(4) (2011) 271-277.
[25]I. Saboori, K. Khorasani, Actuator fault accommodation strategy for a team of multi-agent systems subject to switching topology, Automatica, 62 (2015) 200-207.
[26]M. Khalili, X. Zhang, Y. Cao, J.A. Muse, Distributed Adaptive Fault-Tolerant Consensus Control of Multi- Agent Systems with Actuator Faults.
[27]Z. Zuo, J. Zhang, Y. Wang, Distributed consensus of linear multi-agent systems with fault tolerant control protocols, in: Control Conference (CCC), 2014 33rd Chinese, IEEE, 2014, pp. 1656-1661.
[28]X. Liu, X. Gao, J. Han, Fault detection for high-order multi-agent systems with disturbances, in: Control and
Decision Conference (CCDC), 2015 27th Chinese, IEEE, 2015, pp. 3814-3819.
[29] I. Shames, A.M. Teixeira, H. Sandberg, K.H. Johansson, Distributed fault detection and isolation with imprecise network models, in: American Control Conference (ACC), 2012, IEEE, 2012, pp. 5906-5911.
[30] Z. Han, L. Wang, Z. Lin, R. Zheng, Formation control with size scaling via a complex Laplacian-based approach, IEEE transactions on cybernetics, 46(10) (2016) 2348-2359.
[31] B.D. Anderson, C. Yu, J.M. Hendrickx, Rigid graph control architectures for autonomous formations, IEEE Control Systems, 28(6) (2008).
[32] M. Cao, C. Yu, B.D. Anderson, Formation control using range-only measurements, Automatica, 47(4) (2011) 776-781.
[33] F. Dorfler, B. Francis, Geometric analysis of the formation problem for autonomous robots, IEEE Transactions on Automatic Control, 55(10) (2010) 2384-2379.
[34] L. Krick, M.E. Broucke, B.A. Francis, Stabilisation of infinitesimally rigid formations of multi-robot networks, International Journal of control, 82(3) (2009) 423-439.
[35] K.K. Oh, H.S. Ahn, Distance‐based undirected formations of single‐integrator and double‐integrator modeled agents in n‐dimensional space, International Journal of Robust and Nonlinear Control, 24(12) (2014) 1809-1820.
[36] J. Cortés, Global and robust formation-shape stabilization of relative sensing networks, Automatica, 45(12) (2009) 2754-2762.
[37] Z. Lin, B. Francis, M. Maggiore, Necessary and sufficient graphical conditions for formation control of unicycles, IEEE Transactions on automatic control, 50(1) (2005) 121-127.
[38] K.-K. Oh, H.-S. Ahn, Formation control of mobile agents based on distributed position estimation, IEEE Transactions on Automatic Control, 58(3) (2013) 737-742.
[39] L. Sabattini, C. Secchi, C. Fantuzzi, Arbitrarily shaped formations of mobile robots: artificial potential fields and coordinate transformation, Autonomous Robots, 30(4) (2011) 385-397.
[40] Z. Lin, L. Wang, Z. Han, M. Fu, Distributed formation control of multi-agent systems using complex Laplacian, IEEE Transactions on Automatic Control, 59(7) (2014) 1765-1777.