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A method for solving the descriptor discrete-time linear system is focused. For it is easily converted into 
a standard discrete-time linear system by the definition of a derivative state feedback. Then, a partial 
eigenvalue assignment is used to have a stable standard system and obtain the state feedback. In a partial 
eigenvalue assignment, just a part of the open loop spectrum of the standard linear systems is reassigned 
while leaving the rest of the spectrum invariant, and for reassigning, similarity transformation is used. 
Using a partial eigenvalue assignment is easier than using eigenvalue assignment. Because by a partial 
eigenvalue assignment, the size of matrices and state and input vectors are decreased and stability is 
kept, as well. The eigenvalues of two closed-loop matrices of the descriptor and standard systems are 
the inverse of each other. Therefore, the stability in PEVA for the descriptor system is kept by reassign-
ing eigenvalue in the unit circle and unchanging the remaining of eigenvalues in the standard system. 
Also, concluding remarks and an algorithm proposed to the descriptions will be obvious. At the end, 
the convergence of state and input vectors in the descriptor system to balance point (zero) are shown by 
figures in a numerical example.
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1- INTRODUCTION
Descriptor systems that are also called singular 

systems are more general and precise than a normal 
model to depict a dynamical physical. Applications 
of descriptor systems can be found in various fields 
such as artificial neuron networks, circuits systems, 
chemical processes, economics, biologic, power, 
modeling of mechanical multibody systems, etc. 
[6,10,11,20,25,28]

Some of the first fundamental works on 
eigenstructure assignment in descriptor linear 
systems were established in the 1980s by a number 
of researchers, such as Cobb (1981) [5], Armentano 
(1984) [1], Fletcher (1986) [9], Ozcaldiran and Lewis 
(1987) [21].

In recent years, there are many subjects related to 
these problems like switched descriptor systems and 
eigenvalue assignment in the state feedback control 
for uncertain systems [22,27]. Also, Karbassi et al. 
worked on non-linear state feedback controllers like 
in [19].

In the available literature on descriptor systems, 
there are two kinds of stabilization problems for 
singular systems. One consists of  designing a state 
or output feedback controller in such a way that the 
closed-loop system is regular, impulse-free, and stable 
or equivalently admissible. The other is to design a 
state or output feedback controller in order to make 
the closed-loop system regular and stable. Concerning 
the stability analysis and the stabilization problem, 
a number of approaches assuming or not assuming 
the regularity of the descriptor system have been 
proposed in the literature. Let us quote for instance 
[2,6,26] among those assuming the regularity and 
[6,26] without assuming the regularity. Furthermore, 
positivity and stability of linear descriptor systems 
have been investigated in [13,15] for systems with 
regular pencils.

Many practical applications such as the design 
of large and sparse structures, electrical networks, 
power systems, computer networks, etc., give rise to 
very large and sparse problems and the conventional 
numerical methods for EVA problem do not work 
well. Furthermore, in  most of these applications, only 
a small number of eigenvalues, which are responsible 
for instability and other undesirable phenomena, need 
to be reassigned. Clearly, a complete EVA, in case 
when only a few eigenvalues are bad, does not make 
sense. These considerations give rise to the partial 
eigenvalue assignment (PEVA) problem for the linear 

control system such that undesirable eigenvalues 
are reassigned and other eigenvalues unaltered. An 
explicit solution to the partial eigenvalue problem 
by using one of orthogonality relations between 
eigenvectors for matrix polynomial is considered in 
[23]. The conditions for the existence and uniqueness 
of the solution for the single-input problem were 
given in [24] and for multi-input were presented in 
[8].

In this paper, a method for finding the solution 
of descriptor discrete-time linear systems will be 
investigated. Our method is mixed of PEVA, EVA 
by similarity transformation and a useful method to 
convert the descriptor discrete-time linear system into 
the standard discrete-time linear system. First, the 
descriptor discrete-time linear system (1) is converted 
into the standard discrete-time linear system (6) by 
the definition of the derivative state feedback (2) 
that is calculated by the PEVA method (section 3). 
The solution of standard discrete-time linear system 
(6) or equivalently the original system, i.e., the 
descriptor discrete-time linear system (1) is obtained 
by PEVA. On the other hand, we need to reassign 
undesired eigenvalues of open-loop spectrums in a 
new system with smaller sizes of matrices such that 
other eigenvalues unchanged. Also, a theorem for 
existence and uniqueness of the solution for PEVA 
in multi-input is represented. Then, feedback in the 
previous system (before using PEVA) are obtained 
by an easy relationship between this feedback and 
gained feedback by PEVA by (17). It is important to 
say for reassigning undesired eigenvalues, similarity 
transformation (section 4) is used that is a simple 
method with a high accuracy.

As mentioned earlier, it is clear that our method 
has some advantages in which solving the descriptor 
discrete-time linear systems will be easier. The first 
advantage is converting descriptor discrete-time 
linear system into the standard discrete-time linear 
system because working on standard systems is easier 
than descriptor systems. EVA has been an applicable 
method for finding a  solution in standard systems 
and their stability, but by PEVA just by reassigning 
a part of open-loop matrix spectrum in standard 
systems while keeping other eigenvalues invariant, 
their stability are kept. In PEVA we decrease the size 
of matrices and state and input vectors. It is obvious 
that calculating is easier than EVA and obtaining 
state feedback is so comfortable by state feedback 
governed in PEVA which  are other advantages of 
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our method. Therefore, the state and input vectors 
in the original system, i.e., descriptor discrete-time 
linear system, converge into balance point which are 
displayed by figures in our example. It is worthy to 
mention that we do not need some assumptions like 
not having eigenvalues near zero and some criteria 
on some vectors and being distinct eigenvalues by 
orthogonality relations for PEVA in [23] or dealing 
with full row rank matrices in every performed 
algorithm and finding index of Shuffle and Drazin 
for descriptor systems in [4,12,14,16] and these are 
other excellence of the method in this paper. What is 
more, this method can be used for continuous-time 
descriptor linear systems by defining a suitable state 
feedback.

This paper is organized as follows. Next section, 
presents the convergence of  the descriptor discrete-
time linear system into the standard discrete-time 
linear system which both systems have invertible 
eigenvalues for closed-loop of their matrices. 
The PEVA problem for obtaining the derivative 
state feedback is displayed in section 3. Section 4 
proposes the similarity transformation to reassign 
eigenvalues in PEVA. An algorithm and numerical 
results are presented in sections 5 by an algorithm 
with all proposed details in its previous sections and 
a numerical example with the results of all steps of 
the algorithm in it. Also, the convergence of state 
and input vectors to balance point, i.e. zero, by their 
figures are shown. At the final section, concluding 
remarks are given.

The following notation will be used: ℜ= the set 
of real numbers, C/ = the set of complex numbers, 
ℜn×m= the set of n×m real matrices and ℜm=ℜm×1,  
AT= the transposed matrix of A, Ω(A)= spectrum of 
eigenvalues of the matrix A, In= the unit matrix of size 
n.

2- STATEMENT OF THE PROBLEM
Consider the descriptor linear time-invariant 

controllable system of the form as in the following:
(1)

where E∈Rn×n with rank(E)≤n, xk∈Rn is the state vector 
and uk∈Rm is input vector. It is assumed that 1≤m≤n, 
A∈Rn×n and B∈Rn×m are open-loop and input matrices, 
respectively. Also x0 is a nonzero definite vector.

Consider the descriptor system (1) with the 
derivative state feedback:

(2)

The aim is the eigenvalue assignment to design a 
derivative state feedback controller matrix  producing 
a closed-loop system of (1) via feedback (2) with a 
satisfactory response by shifting p(≤n) controllable 
poles of L={λ1,λ2,...,λn} from undesirable to desirable 
locations where λi∈C/  and λi≠0 and are self-conjugate 
complex numbers for i=1,2,...,n while other 
eigenvalues of open-loop matrix remain unchanged, 
i.e., PEVA.

To establish the proposed results, consider the 
following assumptions:

I) rank[E|B]=n,
II) rank[A]=n,
III) rank[B]=m. 
It is clear that if assumption (I) holds, then there 

exists F such that [3]:
(3)

For F such that (3) holds, then from (2) it follows 
that (1) can be rewritten like a standard linear system, 
given by:

(4)
Lemma 2.1: Consider a matrix M∈Rn×n, with 
rank(M)=n and the eigenvalues equal to [18,19]: 
λ1, λ2,..., λn. Then, the eigenvalues of M‑1 are the 
following: λ1

‑1, λ2
‑1,..., λn

‑1.
Remark 2.1: Consider that λ=a+bi is an eigenvalue 
of M, then from Lemma 2.1:

is also an eigenvalue of M‑1.
Theorem 2.1: Define the matrices N and M as (5) 
and suppose (N,M) are controllable:

(5)
Also, let F be state feedback matrix, such that 

L‑1={λ1
‑1, λ2

‑1,..., λn
‑1} are the eigenvalues of the 

closed-loop system

(6)

where λi∈C/  and λi≠0, i=1,2,...,n are arbitrarily 
assigned. Then for this gained F, the desired spectrum 
L={λ1, λ2,..., λn} is the eigenvalues of the controlled 
system (1) with derivative feedback (2) and also the 
condition (3) holds.
Proof: Considering that (N,M) are controlled, then 
we can find a state feedback matrix F such that the 
closed-loop of the controlled system with control law 
(6) given by:

(7)
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has poles equal to L‑1={λ1
‑1, λ2

‑1,..., λn
‑1}. Now by (5) 

note that:
(N+MF)‑1=(A‑1(E‑BF))‑1, so (N+MF)‑1= (E‑BF)‑1A 

and from (7) and Lemma 2.1, the spectrum L={λ1, 
λ2,..., λn} is the eigenvalue of the closed-loop matrix 
(E‑BF)‑1A. Therefore, (3) holds and the eigenvalue of 
the closed-loop system (1) and feedback (2) are equal 
to L={λ1, λ2,..., λn}.

3- PARTIAL EIGENVALUE ASSIGNMENT 
(PEVA)

In this section, we will describe a method to 
find the feedback F in system (1) by derivative state 
feedback (2). At first, some definitions and theorems 
that we need for the existence and uniqueness 
theorem for multi-input and single-input PEVA 
problem are proposed. Next, we bring the Existence 
and Uniqueness Theorem and its proof and by the 
description of its proof, the PEVA method is displayed 
to obtain the derivative feedback F in system (6).

Theorem 3.1. Eigenvector Criterion of 
controllability [8]. The standard system (6) or, 
equivalently, the matrix pair (N,M) is controllable 
with respect to the eigenvalue λ of N if yHM≠0 for all 
y≠0 such that yHN=λyH.
Definition 3.1: The standard system (6) or the matrix 
pair (N,M) is partially controllable with respect to 
the subset λ1, λ2,..., λp of the spectrum of N if it is 
controllable with respect to each of the eigenvalues 
λj,j=1,2,...,p [8].
Definition 3.2: The standard system (6) or the 
matrix pair (N,M) is completely controllable if it is 
controllable with respect to every eigenvalue of N [8].
Theorem 3.2: Existence and Uniqueness for 
Eigenvalue Assignment Problem [7]. The eigenvalue 
assignment problem for the pair (N,M) is solvable 
for any arbitrary set {μ1,μ2,...,μn} if and only if (N,M) 
is completely controllable. The solution is unique if 
and only if the system is a single-input system (that 
is if M is a vector). In the multi-input case, there are 
infinitely many solutions, whenever a solution exists.
Theorem 3.3: Existence and Uniqueness for 
partial eigenvalue assignment Problem. Consider 
the pair (N,M) in system (6) and let λ1,λ2,...,λn be 
the eigenvalue of N∈C/ n×n, Λ=diag{λ1,λ2,...,λp,λp+1,...,
λn}, Λ1=diag{λ1,...,λp} and Λ2=diag{λp+1,...,λn} be the 
diagonal matrices containing the given eigenvalues 
and the sets {λ1,λ2,...,λp} and {λp+1,λp+2,...,λn} be 
disjointed. Also, let the eigenvalues λ1,λ2,...,λp to be 
changed to μ1,μ2,...,μp and λp+1,λp+2,...,λn stay invariant. 

Now, if the pair (N,M) is partially controllable with 
respect to the set {λ1,λ2,...,λp} then partial eigenvalue 
assignment problem for the pair (N,M) solvable for 
any desired choice of the closed-loop eigenvalues 
μ1,μ2,...,μp and vice versa. If the system is a completely 
controllable single-input system, the solution is 
unique and there are infinitely many solutions, in 
the multi-input case and single-input case, when the 
system is not completely controllable and whenever 
a solution exists.
Proof: We first prove the necessity. Suppose the pair 
(N,M) is not controllable with respect to some λj, 
j=1,2,...,p. Then, there exists a vector y≠0 such that 
yH(N‑λjI)=0 and yHM=0. This means that for any F, 
we have yH(N+MF‑λjI)=0, which implies that λj is an 
eigenvalue of N+MF for every F, and thus λj cannot 
be reassigned.

Next, we prove the sufficiency. Considering Λ1 
and Λ2, we need to prove that there exists a feedback 
matrix F which assigns the eigenvalues in Λ1 arbitrarily 
while keeping all the other eigenvalues unaltered.

Let X={x1,x2,...,xn} and Y={y1,y2,...,yn} be, 
respectively, the right and left eigenvector matrix 
of N, and let Y1={y1,y2,...,yp}. Since YHX=I and 
YHNX=diag(Λ1,Λ2), then the partial controllability of 
the pair (N,M) with respect to eigenvalues in Λ1 implies 
the partial controllability of the pair (diag(Λ1,Λ2), 
YHM) with respect to the same eigenvalues. Therefore, 
the pair (Λ1,Y1

HM) is completely controllable because 
{λ1,λ2,...,λp}∩{λp+1,...,λn}=0/ .

By Theorem 3.2, there exists a feedback matrix 
K (see system (16)) such that the closed-loop matrix 
Λ1+Y1

HMK has the desired eigenvalues μ1,μ2,...,μp.
Denote

(8)
Then the eigenvalues of a closed-loop matrix are 

exactly as required. This is seen as follows:

(9)

The uniqueness of the solution in the single-input 
case that is completely controllable and the existence 
of infinitely many solutions in the multi-input case 
follow directly from Theorem 3.2.

To complete the proof, we need to show that 
infinitely many solutions to the PEVA problem are 
possible when M is a vector (single-input case) and 
there exists an uncontrollable eigenvalue λk for some 
k>p (that is, the associated kth right eigenvector yk is 
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such that yk
HN=λkyk

H and yk
HM=0).

Let F be a solution to the partial eigenvalue 
assignment problem. Denote the left and right 
eigenvectors of the closed-loop matrix Nc=N+MF by 
Yc and Xc. Clearly yk

HNc=yk
H(N+MF)=λkyk

H and thus 
yk is also the kth column of Yc. Let Fβ=βyk

H, where 
β is an arbitrary scalar. As in (3.9), we can show 
that the eigenvalues μ1,...,μp,λp+1,...,λk‑1,λk+1,...,λn of Nc 
remain unchanged by the application of feedback Fβ. 
Furthermore, the eigenvalue λk of Nc also remains 
unchanged by the feedback Fβ, since the pair (Nc,M) 
is not controllable with respect to λk by the necessity 
part of this theorem. Thus,

(10)

showing that if F is a solution, so is F+βyk
H for an 

arbitrary β.
Suppose that Ω(N)={λ1,...,λp,λp+1,...,λn} which p 

is the number of undesired eigenvalues of Ω(N) for 
the pair of (N,M) in system (6) and assume the set 
S={μ1,...,μp} be closed under complex conjugation 
which rank(M)=rank(B)=m≤p. The aim of PEVA 
problem is to look for the derivative state feedback 
F such that:

(11)
and also the sets {λ1,...,λp} and {λp+1,...,λn} be 
disjointed.
This means that finding F which reassigns eigenvalues 
{λ1,...,λp} arbitrarily while keeping all the other 
eigenvalues, {λp+1,...,λn}, unaltered.

First, we need to obtain left eigenvector of matrix 
N as follows:

(12)
Then, we put columns y1,y2,...yp of Y in Y1 that are 

associated columns by eigenvalues λ1,...,λp. Therefore,

(13)

Now consider the pair of (Λ1,Y1
HM) as follows:

(14)

(15)

As a result, the aim is to find feedback K in the 

system

(16)

such that the eigenvalues of the closed-loop of the 
system (16) be {μ1,...,μp}. At the end, for finding F in 
system (6), we have:

(17)

4- SIMILARITY TRANSFORMATION OF 
THE STATE SPACE

In this section, we describe a method for finding 
feedback K in system (16).

Consider the system (16) by defining A1=Λ1
∈ℜp×p 

and B1=Y1
HM∈ℜp×m as follows:

(18)

instead of system (16) and in order to display 
similarity transformation on it easier.

To obtain the derivative feedback matrix K in 
system (16), consider the state transformation

(19)
where T can be obtained by elementary similarity 
operations as described in [18,19]. Substituting (19) 
into the first relationship of (18) yields

It is noted that the transformation matrix T is 
invertible. In this way,

(20)
are in a compact canonical form known as vector 
companion form [18,19]:

(21)

Here R0 is a m×p matrix and M0 is an m×m upper 
triangular matrix. Note that the Kronecker invariants 
of the pair (A1,B1) are regular if the difference between 
any of them is not greater than one. If Kronecker 
invariants of the pair of (A1,B1) are regular, then Ã1 
and B̃1 are always in the above form [18]. In the case 
of irregular Kronecker invariants, some rows of Ip‑m 
in Ã1 are displaced [19]. (For more details about 
Kronecker invariants, see [17])

The state feedback matrix which assigns all the 
eigenvalues to zero for the transformed pair (Ã1, B̃1) 
is then chosen as:

(22)
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which results in the primary state feedback matrix for 
the pair (A1,B1) defined as:

(23)
The transformed closed-loop matrix

(24)
assumes a compact Jordan form with zero eigenvalues

(25)

Theorem 4.1: Let D be a block diagonal matrix in 
the form

where each Dj, j=1,2,...,k is either of the form

(to designate the complex conjugate eigenvalues 
αj+iβj)
or in the case of real eigenvalues

If such that diagonal matrix D with self-conjugate 
eigenvalue spectrum is added to the transformed 
closed-loop matrix, Γ0̃, then the eigenvalues of the 
resulting matrix is the eigenvalues in the spectrum.
Proof: The primary compact Jordan form in the case 
of regular Kronecker invariants is in the form (25). 
The sum of Γ0̃ with D has the form:

(26)

and also Is, s=1,2,...,r is the unit matrix of size 2 in 
case p‑m is even. In case p‑m is odd, only one Is takes 
the form of a unit matrix of size one.

By expanding det(H̃‑λI) along the first row, it is 
obvious that the eigenvalues of H̃ are the same as 
those  of D. For the case of irregular Kronecker 
invariants [19], only some of the unit columns of 
Ip‑m are displaced, since the unit elements are always 
below the main diagonal, the proof applies in the 
same manner.

Therefore, the closed-loop system matrix 
(26) becomes (27). Simple elementary similarity 
operations can be used to obtain the matrix H̃λ from 
H̃ such that

(27)

Thus, the primary feedback matrix K which gives 
rise to the assignment of eigenvalues {λ1,...,λp} to the 
system (16) becomes

(28)

5- ALGORITHM AND NUMERICAL 
EXPERIMENT

In this section, we present an algorithm to obtain 
the solution of system (1) using partial eigenvalue 
problem in section 3 based on assigning eigenvalue 
problem in section 4. Then by an example, we show 
the simplicity of our method.
Object: Assign desired eigenvalues {μ1,...,μp} to the 
system (16) and find the matrices K such that the 
spectrum of closed-loop system (1), i.e., (E‑BF)‑1A in 
(3) be {μ1,...,μp,λp+1,...,λn}.
Input: The matrices A, B and E.
Step 1: Calculate matrices N and M from (5).
Step 2: Assign desired eigenvalues {μ1,...,μp} and 
find K in system (16).
Step 2.1: Obtain R0, M0 and T‑1 of (19), (20) and (21).
Step 2.2: Obtain the state feedback matrix Φ̃ and Φ 
by (22) and (23), that assigns zero eigenvalues to pair 
(Ã1,B̃1) and (A1,B1)=(Λ1,Y1

HM) respectively.
Step 2.3: Calculate the transformed closed-loop 
matrix Γ0̃ by (24) and (25) which assumes a compact 
Jordan form with zero eigenvalues.
Step 2.4: Add a diagonal matrix D=diag(μ1,...,μp) for 
an arbitrarily set of self-conjugate eigenvalues to Γ0̃. 
Then, the closed-loop system matrix (25) in step 2.3 
becomes H̃ in (26).
Step 2.6: Obtain the primary feedback matrix K 
that gives rise to the assignment of eigenvalues 
Ω={μ1,...,μp} to system (16) by K=Φ+M0

‑1RλT
‑1 from 

(28).
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Step 3: Calculate the derivative state feedback F in 
system (16) by (17).
Step 4: Find the solution of the system (1) by putting   
on step 3 in (4).
Example 5.1: Consider the descriptor system (1) 
with following matrices which rank(E)=8<9.

Now we bring the results of all steps in the 
proposed algorithm.
Step 1:

Step 2:

Ω ( N ) = { ‑ 6 . 6 6 , ‑ 0 . 5 1 ± 1 . 9 2 i , 0 , 0 . 2 4 ± 0 . 4
7i,0.72,1.86,3.61}

Therefore, p=4 and by considering

the matrix Φ which assigns zero eigenvalue to the 
system (16) is obtained as:

and by reassigning {±10,±5} instead of 
{0,.024+0.47i,0.72}, the matrix feedback K is 
obtained as:

Step 3: The derivative state feedback matrix F for the 
system (6) is calculated by:

Now, we have:

Figs. 1 and 2 show simulation results when

6- CONCLUDING REMARKS
A method for finding the solution of descriptor 

discrete-time linear system in the form of (1) has been 
considered. First, by the use of the derivative state 
feedback (2), a displayed system is converted into a 
standard discrete-time linear system (6) and it explains 
the advantages of this method because working with 
the standard systems is much easier than the descriptor 
mode. Secondly, the PEVA method standard system  
based on similarity transformation and assigning zero 
eigenvalues to our standard system has been used to 



Partial Eigenvalue Assignment in Discrete-Time Descriptor Systems via Derivative State Feedback

72 AIJ - Modeling, Identification, Simulation and Control, Vol. 48, No. 2, Fall 2016

Fig. 1. State vector converging into zero in example 5.1
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Fig. 2. Input vector converging into zero in example 5.1

obtain F in (6). Thirdly, the state and input vectors in 
(1) has been obtained and illustrated by a numerical 
example which  showed the input and state vectors 
convergence to balance point (zero) which  is another 
advantage of our method.
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