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ABSTRACT: In this paper, Generalized Aggregated Uncertainty measure 2 (GAU2), as a new 
uncertainty measure, is considered to evaluate uncertainty in a localization problem in which cameras’ 
images are used. The theory that is applied to a hierarchical structure for a decision making to combine 
cameras’ images is Dezert-Smarandache theory. To evaluate decisions, an analysis of uncertainty is 
executed at every level of the decision-making system. The second generalization of Aggregated 
Uncertainty measure (GAU2) which is  applicable for DSmT results is used as a supervisor. The 
GAU2 measure in spite of the GAU1 measure can be applied to the problems with vague borders or 
continuous events. This measure may help to make decisions based on better preference combinations 
of sensors or methods of fusion. GAU2 is used to evaluate uncertainty after applying classic DSmT 
and hybrid DSmT with extra knowledge. Therefore by using the decision making system, results with 
less uncertainty are generated in spite of high conflict sensory data. 
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1- Introduction
Information fusion generally deals with the integration 
of uncertain information from multiple sensors. Usually, 
physical constraints, detection algorithms, environmental 
noises, and transmitting channel of sensors cause uncertainties 
in information [1]. In 1986, the US Department of Defence 
constituted the Data Fusion Sub-Panel of the Joint Directors 
of Laboratories (JDL) to address key issues in data fusion and 
planned the new field in one work to unify the terminology 
and procedures [2]. Other models have been developed such 
that sensor fusion algorithms could be applied to variant 
applications . These models such as Multi-sensor integration 
fusion model, Thomopoulos architecture, Waterfall model, 
Behavioural knowledge-based data fusion model, Omnibus 
data fusion model, and Distributed blackboard data fusion 
architecture have been reviewed in [2].
There has been considerable researches on sensor fusion 
methods such as Bayesian approach and Dempster–Shafer 
theory in the recent years [3]. Other methods based on 
Shafer’s model are also presented in [4-7]. The evidence 
theory, also known as Dempster–Shafer theory, is one of the 
most popular frameworks to deal with uncertain information. 
In the evidence theory, the singletons as in the probability 
theory have non-null confidence. Several applications of 
DST are stated in the literature to overcome its limitations. 
For example, in [8] alternative combination rules have been 
proposed to resolve the appeared conflicts of evidence.
The Dezert–Smarandache Theory (DSmT) has been  suggested 
by Dezert and Smarandache in the recent  years [9-12]. It can 
be considered as an extension of the classical Dempster–
Shafer theory (DST) but with fundamental differences. DSmT 

formally allows a fusion of any kind of independent sources of 
information which are represented in terms of belief functions 
while it mainly focuses on the fusion of high conflict, uncertain 
and imprecise sources of evidence [10].
It is important to have an uncertainty assessment after 
sensor fusion for an improved decision making as uncertain 
information often exists at all levels of the process of 
information fusion [1]. Hartley [13] and Shannon [14] 
established the field of information theory and developed 
information entropy as a measure for redundancy, 
respectively. According to the approaches, information 
or preferably uncertainty-based information can be 
quantified by different common measures commonly called 
uncertainty measures [15]. In the evidence theory, a body 
of evidence or equally a belief function hides two types 
of uncertainty: conflict and non-specificity, which can be 
considered as ambiguity. In [16], a DS–AHP, Dempster–
Shafer theory of evidence with the analytic hierarchy 
procedure is suggested. The method is proposed for the 
purpose of decision making using a multi-criteria system, 
MCDM, which permits extra analysis, including levels of 
uncertainty and conflict in the decisions made. Also, in 
[17], a DS–AHP method is suggested for multi-attribute 
decision making (MADM) problems with incomplete 
information, solving a problem directly based on its 
incomplete decision matrix. Also, a DSmT–AHP based 
multi-criteria decision making is offered in [18]. Several 
other applications of DSmT in classification problem 
are reported [19]. The applications and new advances of 
DSmT for information fusion are collected in [20].
Uncertainty measurement is a significant task to assess the 
results of the fusion. In previous researches such as in [20-
26], various measures of ambiguity which are often called 
measures of total uncertainty, have been proposed. Among 
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them, Maeda, Y. et al. [27] followed by [28] suggested a 
measure of aggregated uncertainty which is named AU. The 
measure is defined in the framework of the evidential theory 
that aggregates nonspecificity and conflict. It has been verified 
that the measure fulfills the five requirements defined in [15, 
28, 29]. Jousselme, A.L. et al. [30] presented a new measure 
of aggregated uncertainty as another uncertainty measure, 
which is named AM for Ambiguity Measure which aims to 
remove the weaknesses of AU such as computing complexity. 
An alternative to measuring ambiguity in Dempster–Shafer 
theory is offered by AM. But the suggested measure is not 
sub-additive in general. By a particular counterexample, Klir 
and Lewis [31] showed that the used assumption in the last 
stage of the proof mentioned in [30] is improper and that AM 
violates sub-additivity indeed.
The AU uncertainty measure and its ass`ociated computing 
algorithm presented by Harmanec [29], in spite of their 
efficiencies, are devoted to DST framework and cannot 
be applied to DSmT. DSmT is a generalization of DST by 
removing the exhaustivity and the exclusivity conditions of 
events. Using a natural definition of defining entropy, this 
measure has already been introduced in specific by Dezert 
and Smarandache in their studies on the Dezert–Smarandache 
Theory (DSmT) which is called pignistic entropy [10, 11, 12, 
25, 26]. DSmT is used in [32] to fuse fingerprint information. 
In [30] based on the pignistic probability (BetP) and likelihood 
ratio test, a decision is made to accept or reject attained 
results and a contextual unification framework is proposed to 
dynamically select the most suitable evidence-theoretic fusion 
algorithm for an assumed scenario. While measures similar to 
pignistic entropy and some uncertainty measures cited in [34] 
are generally used, they  do not satisfy the needed axiomatic 
Klir and Wierman’s requirements [15] for an uncertainty 
measure and sub-additivity. Consequently, it can be indicated 
that there is not any measure such as AU to evaluate uncertainty 
in the DSmT framework in the literature. 
The AU measure has been generalized by the authors of this 
paper in two forms that are named GAU1 and GAU2 to deal 
with uncertainty measure in the DSmT framework in [36]. It has 
been shown that the new measures have a sufficient efficiency 
to assess the DSmT-based fused results. In this article, a study 
of uncertainty  to localize an object on a plane, as a simple 
interpretation of more applicable examples, e.g. localization of 
cars in parking lots or highways, is considered. To this end, 
three cameras are used in different positions. Information of 
the occupied spaces on  a plane by an object in views of the 
cameras is used within the ongoing sensor fusion frameworks. 
Dezert-Smarandache theory in classic and hybrid forms 
are applied as the fusion algorithm to deal with the problem 
using free and hybrid models, respectively. In [37], the results 
of the localization problem are assessed using Generalized 
Aggregated Uncertainty measure 1 (GAU1) that cannot be 
practical in the problems with unclear borders or continuous 
events. To assess the fused results from an uncertainty point 
of view, the second generalization of Aggregated Uncertainty 
(AU) measure named Generalized Aggregated Uncertainty 2 
(GAU2) is used for the results. The uncertainty analysis by 
GAU2 measure is completed in a hierarchical decision-making 
system to compare the results of sensor fusion. The measure 
has formerly been studied by the authors for a different case 
study on a fusion of ultrasonic data in a target differentiation 
in [38] which two sensors have been used. In this paper, three 

sensors are used for the localization problem which yields a big 
conflict between sensors’ data.
The remaining of this article is organized as follows. The 
Dezert-Smarandache theory is introduced in section 2 in 
both classic and hybrid forms. A brief discussion on the 
uncertainty measure AU and the present GAU2 measure is 
given in section 3. Section 4 is devoted to a brief overview of 
the experimental setup. In section 5, fusion results of cameras’ 
images are offered and but this measures are discussed in a 
uncertainty point of view. Eventually, concluding remarks are 
presented in section 6. 

2- Dezert-Smarandache Theory

2- 1- Foundation of DSmT
Dezert–Smarandache Theory is a theory of plausible and 
paradoxical reasoning [10-12]. The expansion of DSmT 
arises from the necessity to overcome the intrinsic limitations 
of Dempster–Shafer Theory [3] which are strictly related to 
the acceptance of Shafer’s model for the under-consideration 
fusion problem.
This means that the frame of discernment Θ={θ1,θ2,…,θn} is 
implicitly defined as a finite set of exhaustive and exclusive 
hypotheses. The basis of DSmT is based on the definition of 
the Dedekind’s lattice DΘ which is additionally called hyper-
power set of the frame Θ in the consequence. The hyper-power 
set DΘ is defined as the set of all composite propositions made 
from elements of Θ with ∪ and ∩ operators such that:
1. ∅, θ1, θ2,…,θn∈DΘ

2. if  A,B∈DΘ  then  A∪B∈DΘ  ,A∩B∈DΘ 
3. No further elements belong to DΘ except those that satisfy 
rule 1 or rule 2.
From a common frame Θ, a map associated with a given body 
of evidence is defined as:

The quantity m(A) is called the generalized basic belief 
assignment/mass (gbba) of A.
Shafer’s model in DST is denoted by M0(Θ). In DSmT, free DSm 
model is denoted by Mf(Θ), and hybrid DSm model is denoted 
by M(Θ) [10-12]. Almost in the same way as in the DST, the 
generalized belief and plausibility functions are defined, i.e.

2- 2- Classic DSmT Rule of Combination
The classic DSm rule of combination mMf(Θ)(.)=m(.)=[m1⊕m2]
(.) of two independent sources of evidences over the same 
frame with belief functions Bel1(.), Bel2(.) associated with 
gbba m1(.), m2(.) corresponds to the conjunctive consensus of 
the sources. It is given by:
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Since DΘ is closed under ∪ and ∩ set operators, this new rule 
of combination guarantees that m(.)  is a proper generalized 
belief assignment, i.e. m(.):DΘ⟶[0,1].

2- 3- Hybrid DSmT Rule of Combination
To remove the degenerate vacuous fusion problem from the 
Classic DSmT rule of combination, the assumed hybrid DSm 
model M under consideration is always different from the 
vacuous model M; It≠∅ where It≜θ1∪θ2∪…∪θn is the total 
ignorance. The hybrid DSm rule of combination is defined 
in association with an assumed hybrid DSm model M≠M∅; 
the hybrid rule of combination for two sources for all A∈DΘ 

is as:
where ϕ(A) is the characteristic non-emptiness function of a 
set A i.e. ϕ(A)=1 if A∉{∅M,∅} and ϕ(A)=0 otherwise. ∅M is 
the set of all elements of DΘ which have been forced to be 
empty by the constraint of the model M and ∅ is the classical 
empty set. Also U≜u(X1)∪u(X2). u(X) is the union of all 
singletons θi that compose X. For example, if X=θ1∩θ2 or 
X=θ1∪θ2 then u(X)=θ1∪θ2.

3- Uncertainty Measurement
To evaluate the results of the fused data in uncertainty point 
of view, a suitable uncertainty measure is needed that  can 
be applied to DSmT-based fused results. In this section, the 
aggregated uncertainty (AU) measure developed for DST 
framework by [29] is studied. Then, a generalization of AU 
is introduced in order to be practical to the results of DSmT-
based fusion problem.

3- 1- Aggregated Uncertainty Measure
Although the objective of data fusion is to reduce the global 
uncertainties, in [29] the concept of comprehensive uncertainty 
measurement in the DST framework has been explored.
Definition 3.1. The measure of the Aggregated Uncertainty 

contained in Bel, indicated as AU(Bel), is defined by:
where the maximum is taken over all {pθ}θ∈Θ such that pθ∈[0,1] 
for θ∈Θ, ∑θ∈Θ pθ =1 and for all A⊆Θ , Bel(A)≤∑x∈A px.
While AU technique is not an efficient algorithm, it is proved 
in [29] that it satisfies all the properties for a reasonable 
uncertainty measurement, especially the sub-additivity and the 
additivity. The algorithm of computing Aggregated Uncertainty 

was originated in [29]. Under the suggested algorithm, the 
input is treated in the form of a frame of discernment Θ, with a 
belief function Bel on Θ. The algorithm  is: 
Input: a frame of discernment Θ, a belief function Bel on Θ
Output:AU(Bel) , {pθ}θ∈Θ  such that AU(Bel)=-∑θ∈Θpθ  log2pθ  
,0≤pθ≤1 ,∑θ∈Θ pθ=1 and Bel(A)≤∑x∈A px  for  all ∅≠A⊆Θ 
Line 1) begin
Line 2) Y = Θ, Bel`= Bel
Line 3) while Y≠∅ and Bel` (Y) > 0 do
Line 4) find a nonempty set A⊆Θ such that Bel(A) ⁄ |A| is 
maximal if there are more such sets A than one , take the one 
with maximal cardinality endif
Line 5) for each x∈A, do px=Bel`(A) ⁄ |A| end for
Line 6) for each B⊆Y-A, do Bel`(B)=Bel`(B∪A)-Bel`(A)  
endfor
Line 7) Y = Y−A
Line 8) endwhile
Line 9) if  Bel`(Y)=0 and Y≠∅
Line 10) then for all x∈Y do px=0 endfor
Line 11) endif
Line 12) AU(Bel)=-∑θ∈Θ pθ  log2 pθ

Line 13) end
As it is obvious, the algorithm is applied for DST framework 
whereas it cannot be directly applied for DSmT. The reason 
is behind the line 6 of the algorithm of computing AU 
and mainly in the key difference of DST and DSmT. As 
mentioned previously, DSmT overcomes the limitation of 
DST in the Shafer’s model. The frame of discernment of the 
fusion problem under consideration in the DST assumed to 
have exhaustive and exclusive elementary hypotheses but 
these conditions are violated in DSmT. Observing line 6  of 
the algorithm of computing AU measure concludes that at 
least one part of the information determined by A∩B will be 
missed if someone wants to use this algorithm to compute 
uncertainty in DSmT. Consequently, measuring of uncertainty 
would not be correct. Therefore, a generalized form of the 
AU measure, called Generalized Aggregated Uncertainty 2 
(GAU2) measure and its associated algorithm are presented 
that can be used for DSmT-based fused results.

3- 2- Generalized Aggregated Uncertainty Measure 2 (GAU2)
In order to clarify the motivation of Generalized Aggregate 
Uncertainty 2, consider a set of exclusive events such as 
{A,B}. It is easy to see that A=A-B because of exclusivity 
of the events. Now consider the same set with nonexclusive 
events. In this case, it is concluded that A=A-B+(A∩B) 
because of intersection between events A and B. In the GAU2 
measure, probability distribution assignments which are used 
in GAU2 are computed for nonexclusive events and all of 
their intersections. Consequently, a new set should be defined. 
Consider the set of n nonexclusive events Θ={θ1,θ2,…,θn} or 
Θ={θ|θ=θi,i=1,2,…,n}. GAU2 is defined based on a class of 
probability distribution of events of a set such as ΘP while the 
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entropy of Shannon is maximized. ΘP is equivalent to:
where I is any nonempty subset of the set {1,2,…,n}. ΘP has 
the simple form:

This new set contains all the nonexclusive events in Θ 
and their intersections. The cardinality of ΘP is defined as 

Definition 3.2. The measure of the Generalized Aggregated 
Uncertainty 2 contained in Bel, which is indicated as 
GAU2(Bel), is defined by:

pθP is the associated probability distribution assignment of 
each event of ΘP and the maximum is taken over all {pθP}θP∈ΘP 
such that for all θP∈ΘP, 0 ≤ pθP ≤1,

The exceeding conditions endorse that pθP is a probability 
distribution. For instance, consider the previous set with 
nonexclusive events {A,B}. The set of probability distribution 
assignments ΘP which are defined for this problem is 
{pA,pB,pA∩B} that must satisfy the probability condition 
pA+pB−pA∩B=1.
The generalized algorithm to compute the GAU2 measure is: 
Input: a frame of discernment Θ (with n nonexclusive events), 
a generalized belief function Bel on Θ
Output: GAU2(Bel),{pθP}θP∈ΘP such that:

Line 1) begin
Line 2) make

Line 3)Y=ΘP, Bel`=Bel
Line 4) while Y≠∅ and Bel`(Y)>0 do
Line 5) find a nonempty set A⊆ΘP such that Bel(A) ⁄ |A| is 
maximal if there are more such sets A than one, take the one 
with maximal cardinality endif
Line 6) for each θP∈A do pθP= Bel`(A) ⁄ |A|  endfor
Line 7) for each B⊆(Y−A)∪(Y∩A) do
Bel`(B)=Bel`(B∪A) − Bel`(A)+ Bel`(B∩A) endfor
Line 8) Y=(Y−A)∪(Y∩A)
Line 9) end while
Line 10) if Bel`(Y)=0 and Y≠∅  then
Line 11) for all  θP∈Y do pθP =0 endfor
Line 12) endif
Line 13) GAU2(Bel) = −∑θP∈ΘP pθP log2 pθP
Line 14) end
It can be seen that the differences between the above algorithm 
and the main AU measure algorithm are:

• replacing the set of non-exclusive events Θ by the new 
set ΘP

• the condition imposed to ΘP in the Definition 3.2
• By comparison line 7 with line 6 of the AU measure 

algorithm, one may find that the term Y∩A  is added 
(also Bel’ (B∩A) is added in the next line). The term 
is added to compensate extra deletion of the term Y∩A  
in Y=Y-A 

• By comparison line 8 with line 7 of the AU measure 
algorithm, one may find that the term Y∩A  is added. 
This term is added to compensate extra deletion of the 
term Y∩A  in Y=Y-A 

In GAU2, clearness of the borders  of events in the frame of 
discernment is not necessary. Hence GAU2 is an appropriate 
uncertainty measure for continuous frameworks.

4- Experimental Setup: Object Localization Using 
Cameras’ Images
In this study, three cameras in three different positions 
pointing the plane are applied. The first camera is located 
at an angle of 60 degrees to the plane. The second camera 
is located on the other side with an angle of 30 degrees to 
the plane. The third camera is implemented on the top of 
the plane vertically. The architecture works at the decision 
level to find the location of an object on a plane using 
predefined regions.
Uncertainties are usually involved in the transform of 
cameras’ information from 3-D space into 2-D space. It is 
necessary to find out the object’s position in the projected 
plane  and then estimate the position on the plane, in order 
to estimate the real object position. Decisions from cameras 
can be generated by applying a perspective-based basic belief 
assignment function. This basic belief assignment function 
represents uncertainty derived from cameras perspective 
locating object on the plane. It is possible to apply projective 
transform in order to estimate objects positions on the ground 
plane for surveillance tasks where objects positions have to 
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be given according to the ground plane, however, this process 
might carry errors from perspective [39].
The calculation of the area of the projected image of the 
object in the predefined zone in 2-D space is an alternative 
technique to assign basic belief functions. This value will 
be an accurate basic belief assignment (bba) function 
or a generalized bba with respect to the area of the total 
projected image of that object. Some pre-processes, e.g. 
edge detection, noise elimination and partitioning of the 
plane to distinct areas, must be performed on the captured 
images before determining the bba. Images are transformed 
to 2-D space at first and the projected area of the object for 
each zone is calculated after edge detection and deciding 
on margins of zones. Then, the ratio of the occupied space 
of an area to the overall occupied space by the object can 
be assigned as gbba. This process is accomplished for all 
cameras’ images.
A 2-D Gaussian distribution for the localization of the object 
in each area is considered because of the existence of the 
noise and uncertainty in cameras’ images. The mean values 
of these Gaussian distributions are equal to the center of 
each area. Accordingly, the maximum of the distributions is 
assigned to the center of each area. Lastly, decision fusion is 
used to combine the results, i.e. these distributions, to make 
the final decision. 
Consider Figure 1. Assume that the object is located in area 2. 
The object’s position is determined in areas 1 and 2 according 
to the projected image of Camera 1 in 2-D plane, and it is 
determined in areas 2 and 3 according to the projected image of 
Camera 2 in 2-D plane. In this simple position, cameras make 
conflicting decisions. Hence, a suitable choice is to combine 
the results by a theory of fusion that can deal with such high 
conflict problems. DSmT in classic and hybrid forms to carry 
out this task is applied in the succeeding section.

5- Data Fusion Results

5- 1- Assignment of mass function to areas
At first, a value is assigned to the occupied space of each area 
by the object as gbba in a Gaussian distribution form. Figures 
1 to 3 represent these assigned distributions.
Associated distribution of Camera 1 in areas 1 and 2 shows 
that this camera has located the object in areas 1 and 2 as it 
is clear in Figure 1. Figure 2 illustrates localization results 
by Camera 2. Areas 2 and 3 are decided as locations of 
the object in this case. The result of Camera 3 is shown in 
Figure 3. Camera 3 yields the results with less uncertainty. 
Numerical results of the assigned mass functions to each area 
by Cameras 1, 2 and 3 are listed in Table 1. Clearly, there are 
values for a total ignorance in each camera’s results in the last 
row of Table 1 because of noise and cameras’ uncertainty and 
some calculation approximations.

5- 2- Results of data fusion; classic DSmT
DSmT in classic form is used to fuse all possible pairs 
of sensors according to (4). Figures 4 to 7 illustrate the 
results of fusion results of Cameras 1&2, Cameras 1&3, 
Cameras 2&3 and Cameras 1&2&3, respectively. Table 2 
presents the fusion results for the hyper-power set DΘ with 
19 possible events. In the tables: mij

f(A)=mi⊕mj ;i,j=1,2,3. 
The final decision in locating the object is area 2 in all 
four cases. Furthermore, total ignorance (i.e. θ1∪θ2∪θ3) 

is reduced in the fusion processes. These results confirm 
the effectiveness of DSmT to deal with problems with a 
high conflict. For well decision making, the assessment 

Fig. 1. Results of localization of the object by camera1

Fig. 2. Results of localization of the object by camera2

Fig. 3. Results of localization of the object by camera3

Table 1. Associated mass functions of cameras 1, 2, 3

Events (A) m1 (A) m2 (A) m3 (A)
∅ 0 0 0
θ1 0.4841 0 0
θ2 0.3963 0.4656 0.7166
θ3 0 0.3408 0

θ1∩θ2 0.0541 0 0
θ1∩θ3 0 0 0
θ2∩θ3 0 0.0479 0

θ1∩θ2∩θ3 0 0 0
θ1∪θ2∪θ3 0.0654 0.1457 0.2834
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of the DSmT-based results in uncertainty point of view 
that could be done by a suitable uncertainty measure like 
GAU2 measure. 

5- 3- Results of data fusion; hybrid DSmT
Supplementary knowledge may help with making 
meaningful decisions. As can be assumed that area 1 and 
area 3 have no shared area, DSmT can be used in the hybrid 
form. In this case: θ1∩θ3≡∅ and therefore θ1∩θ2∩θ3≡∅. 
Thus, hybrid DSmT can be used for this problem according 
to (5) to (8). Table 3 presents results of hybrid DSmT-based 
fusion of cameras’ images for Cameras 1&2. The condition 
θ1∩θ3≡∅ has converted some events to simpler events such 
as (θ1∩θ3)∪θ2≡θ2 which are illustrated in Table 4. The 
number of events is reduced accordingly. If the associated 
values to these events are nonzero, they should be added to 
their equivalent events.
In the problem, all these simplified events have zero mass 
functions. Hence, m12(A) has not changed but the number 
of events is reduced. Hybrid DSmT transfers the sum of 
relatively empty sets to the nonempty sets which cause more 
precise decisions.

Fig. 4. Results of localization after fusing cameras 1&2

Fig. 6. Results of localization after fusing cameras 2&3

Fig. 7. Results of localization after fusing cameras 1&2&3

Table 2.  Results of data fusion; Classic DSmT

Fig. 5. Results of localization after fusing cameras 1&3

Events (A) m12
f (A) m13

f (A) m23
f (A) m123

f (A)

∅ 0 0 0 0
θ1 0.0705 0.1372 0 0.0200
θ2 0.2727 0.4432 0.5700 0.2796
θ3 0.0223 0 0.0966 0.0063

θ1∩θ2 0.2585 0.4010 0 0.3090
θ1∩θ3 0.1650 0 0 0.0467
θ2∩θ3 0.1572 0 0.2922 0.1732

θ1∩θ2∩θ3 0.0442 0 0 0.1625

θ1∪θ2 0 0 0 0

θ1∪θ3 0 0 0 0

θ2∪θ3 0 0 0 0

θ1∪θ2∪θ3 0.0095 0.0185 0.0413 0.0027

(θ1∩θ2)∪θ3 0 0 0 0

(θ1∩θ3)∪θ2 0 0 0 0

(θ2∩θ3)∪θ1 0 0 0 0

(θ1∪θ2)∩θ3 0 0 0 0

(θ1∪θ3)∩θ2 0 0 0 0

(θ2∪θ3)∩θ1 0 0 0 0

(θ1∩θ2)∪(θ1∩θ3)
∪(θ2∩θ3)

0 0 0 0
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Table 3. Results of data fusion; Hybrid DSmT θ1∩θ3≡∅ Table 5. 1st step of computing GAU2 measure for results of 
m12

f(A); Classic DSmT

Table 4. Result of data fusion; Hybrid DSmT- reduced events
Table 6. 1st step of computing GAU2 measure for results of 

m12(A); Classic DSmT

Events (A) ϕ(A) S1 (A) S2 (A) S3 (A) m12 (A)

∅ 0 0 0 0 0
θ1 1 0.0705 0 0 0.0705
θ2 1 0.2727 0 0 0.2727
θ3 1 0.0223 0 0 0.0223

θ1∩θ2 1 0.2585 0 0 0.2585
θ1∩θ3 0 0.1650 0 0 0
θ2∩θ3 1 0.1572 0 0 0.1572

θ1∩θ2∩θ3 0 0.0442 0 0 0

θ1∪θ2 1 0 0 0 0

θ1∪θ3 1 0 0 0.1650 0.1650

θ2∪θ3 1 0 0 0 0

θ1∪θ2∪θ3 1 0.0095 0 0 0.0095

(θ1∩θ2)∪θ3 1 0 0 0.0185 0.0185

(θ1∩θ3)∪θ2 1 0 0 0 0

(θ2∩θ3)∪θ1 1 0 0 0.0232 0.0232

(θ1∪θ2)∩θ3 1 0 0 0 0

(θ1∪θ3)∩θ2 1 0 0 0.0026 0.0026

(θ2∪θ3)∩θ1 1 0 0 0 0

(θ1∩θ2)∪(θ1∩θ3)
∪(θ2∩θ3)

1 0 0 0 0

Events (A) m12 (A) m13 (A) m23 (A) m123 (A)

∅ 0 0 0 0
θ1 0.0705 0.1372 0 0.0200
θ2 0.2727 0.4432 0.5700 0.2815
θ3 0.0223 0 0.0966 0.0063

θ1∩θ2 0.2585 0.4010 0 0.3090

θ1∩θ3≡∅ - - - -
θ2∩θ3 0.1804 0 0.2922 0.1732

θ1∩θ2∩θ3≡∅ - - - -

θ1∪θ2 0.0026 0 0 0.0166

θ1∪θ3 0.1650 0 0 0

θ2∪θ3 0 0 0 0.0132

θ1∪θ2∪θ3 0.0095 0.0185 0.0413 0.1802

(θ1∩θ2)∪θ3 0.0185 0 0 0

(θ1∩θ3)∪θ2≡θ2 - - - -

(θ2∩θ3)∪θ1 0.0232 0 0 0

(θ1∪θ2)∩θ3≡θ2∩θ3 - - - -

(θ1∪θ3)∩θ2 0.0026 0 0 0

(θ2∪θ3)∩θ1≡θ1∪θ2 - - - -

(θ1∩θ2)∪(θ1∩θ3)
∪(θ2∩θ3)≡ θ2∩(θ1∪θ3)

- - - -

DΘ m12
f (A) Bel(A) Bel(A) ⁄ |A| 

θ1 0.0705 0.5382 0.5382
θ2 0.2727 0.7326 0.7326
θ3 0.0223 0.3887 0.3887

θ1∩θ2 0.2585 0.3027 0.3027
θ1∩θ3 0.1650 0.2092 0.2092
θ2∩θ3 0.1572 0.2014 0.2014

θ1∩θ2∩θ3 0.0442 0.0442 0.0442

θ1∪θ2 0 0.9681 0.4841

θ1∪θ3 0 0.7177 0.3589

θ2∪θ3 0 0.9199 0.4600

θ1∪θ2∪θ3 0.0095 1 0.3333

(θ1∩θ2)∪θ3 0 0.6472 0.3236

(θ1∩θ3)∪θ2 0 0.8976 0.4488

(θ2∩θ3)∪θ1 0 0.5382 0.2691

(θ1∪θ2)∩θ3 0 0.3664 0.1832

(θ1∪θ3)∩θ2 0 0.4599 0.2299

(θ2∪θ3)∩θ1 0 0.4677 0.2339

(θ1∩θ2) ∪ (θ1∩θ3) ∪ 
(θ2∩θ3)

0 0.6249 0.2083

DΘ m12 (A) Bel(A) Bel(A) ⁄ |A| 
θ1 0.0705 0.3290 0.3290
θ2 0.2727 0.7142 0.7142
θ3 0.0223 0.2027 0.2027

θ1∩θ2 0.2585 0.2585 0.2585

θ1∩θ3≡∅ - - -
θ2∩θ3 0.1804 0.1804 0.1804

θ1∩θ2∩θ3≡∅ - - -

θ1∪θ2 0.0026 0.8105 0.4053

θ1∪θ3 0.1650 0.7410 0.3705

θ2∪θ3 0 0.7550 0.3775

θ1∪θ2∪θ3 0.0095 1 0.3333

(θ1∩θ2)∪θ3 0.0185 0.4823 0.2412

(θ1∩θ3)∪θ2≡θ2 - - -

(θ2∩θ3)∪θ1 0.0232 0.5352 0.2676

(θ0∪θ2)∩θ3≡θ2∩θ3 - - -

(θ1∪θ3)∩θ2 0.0026 0.4415 0.2208

(θ2∪θ3)∩θ1≡θ1∪θ2 - - -

(θ1∩θ2) ∪ (θ1∩θ3) 
∪ (θ2∩θ3) ≡ θ2 ∩ 

(θ1∪θ3)
- - -
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5- 4- Uncertainty measurement for the DSmT-based fusion 
results

5- 4- 1- Uncertainty measurement of classic DSmT-based 
fusion results
Apply GAU2 measure to the set ΘP={θP1, θP2, θP3, θP4, θP5, 
θP6, θP7} where θP1=θ1, θP2=θ2, θP3=θ3, θP4=θ1∩θ2, θP5=θ1∩θ3, 
θP6=θ2∩θ3, θP7=θ1∩θ2∩θ3. GAU2 measures uncertainty in 
DSmT-based results by probability assignment to the events 
of the set ΘP which  keeps the continuity of the main events. 
In Table 5, the maximum value of Bel(A) ⁄ |A| , which is 
underlined, is obtained for the event θ2 according to the 
computing algorithm of GAU2 measure. Consequently, 
the probability distribution assignment for θP2=θ2 i.e. pθP2

 is 
equal to 0.7326. The algorithm is followed from  Line 7  by 
eliminating the event θP2=θ2 to compute the other probability 
distribution assignments and pθP1=0.5382, pθP3=0.3983, 
pθP4=0.3027, pθP5=0.2092, pθP6=0.2014, pθP7=0.0442. Lastly, 
the value of uncertainty involved in DSmT fusion results 
calculated by GAU2 measure (Eq. (10)) is 2.9974. These 
computing steps can be followed for individual cameras 
or other fusion results. Table 9 summarizes the uncertainty 
values of cameras and the uncertainty values of fusion of all 
possible pairs of cameras by classic DSmT.

The uncertainty values in Table 9, measured by GAU2, 
illustrates that the uncertainty involved in camera 3 is less 
than the other cameras. Consequently, decisions made by 
camera 3 are more precise than those  of camera 1 and camera 
2 in uncertainty point of view. Furthermore, the uncertainty 
in DSmT fusion results is less than the sum of uncertainties 
in the associated cameras and even less than the uncertainty 
of each camera. Lastly, it can be concluded that DSmT has 
improved the results in uncertainty point of view using the 
generalized aggregated uncertainty measure, GAU2. In 
this case, the fusion of the cameras’ data with less sum of 
uncertainty (e.g. camera 2, camera 3) leads to final fusion 
results with less uncertainty (i.e. m23

f).

5- 4- 2- Uncertainty measurement of the hybrid DSmT-based 
fusion results
Supplementary knowledge affects the decisions made by 
cameras using hybrid DSmT. The effects of this knowledge 
which may be given by an expert are inspected in uncertainty 
point of view. As mentioned before, it is supposed that 
θ1∩θ3≡∅. Thus, there are three nonexclusive events while 
there is no community between θ1 and θ3. Tables 6 to 8 
illustrate the computing steps of GAU2 measure for the 
fusion results by hybrid DSmT for m12 (A) as an example.
The maximum value is underlined in Table 6. The maximum 
value of Bel(A) ⁄ |A|  is obtained for the event θ2. Hence 
probability distribution assignment for ϑ2 is pϑ2=0.7142.
Table 7 is attained by discarding ϑ2 to compute the other 
probability distribution assignments. In Table 7, the 
maximum value is for θ1∪θ3. Consequently, pθ1=pθ3=0.3637. 
Therefore, pθ1∩θ2=0.2585 and at last pθ2∩θ3=0.1830. Finally, 
the value of uncertainty involved in m12 (A) according to 
Eq. (10) is 2.3611. The uncertainties involved in cameras 
and fusion of other pairs of cameras by hybrid DSmT 
are summarized in Table 9. It is supposed that θ1∩θ3≡∅ 
in hybrid DSmT based results. Therefore, the values of 
uncertainties in cameras’ data are changed in comparison to 
classic DSmT-based results.
The following conclusions are drawn from Table 9. The 
uncertainty values in the results using hybrid model are less 
than the uncertainty values in the results using free model. 
This is because of supplementary knowledge considered 
in hybrid model. Besides, extra knowledge reduces the 
uncertainty in measurements and final decisions as it is 
expected. 
The uncertainty in hybrid DSmT fusion results is less 
than the sum of uncertainties in the associated cameras. 
Therefore, it can be concluded that DSmT has improved the 
results from uncertainty point of view.
Even though fusion of the cameras’ data with fewer sums of 
uncertainty (e.g. Camera1, Camera3) leads to final fusion 
results with less uncertainty, i.e. m13, it seems that the 
conclusion is not generally true.  As an instance, the sum 
of uncertainties in Camera 1 and Camera 2 is less than that  
of Camera 2 and Camera3 but uncertainty in m12 is greater 
than m23. When supplementary knowledge is considered, 
combination of sensors’ data that support each other 
leads to the results with less uncertainty in comparison to 
combination of conflicting sensory data. 
In this case, as can be understood from the result of  m123, 
increasing the number of cameras essentially does not give 
the final results with the least uncertainty.

Table 7. 2nd step of computing GAU2 measure for results of 
m12(A); Hybrid DSmT

Table 8. 3rd step of computing GAU2 measure for the results of 
m12(A); Hybrid DSmT

Table 9. Uncertainty values for DSmT-based fusion results 
measured by GAU2 measure

DΘ ́ Bel`(A) Bel`(A) ⁄ |A| 
θ1 0.3548 0.3548
θ3 0.2212 0.2212

θ1∩θ2 0.2585 0.2585
θ2∩θ3 0.1804 0.1804
θ1∪θ3 0.7273 0.3637

(θ1∩θ2)∪θ3 0.4823 0.2412
(θ2∩θ3)∪θ1 0.5378 0.2689
(θ1∪θ3)∩θ2 0.4415 0.2208

DΘ ́ Bel`(A) Bel(A) ⁄ |A| 
θ1∩θ2 0.2585 0.2585
θ2∩θ3 0.1804 0.1804

(θ1∪θ3)∩θ2 0.4415 0.2208
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DSmT

1.4846 1.6385 1.1434 2.9974 1.3229 1.4225 3.0805

Hybrid 
DSmT

1.4846 1.6385 1.1434 2.3611 1.3225 1.4225 2.0572
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6- Conclusion
Dezert-Smarandache theory was used in this paper to fuse 
the attained information of cameras for the localization of an 
object on a plane. Three cameras in three different positions 
were used in the experimental setup. The cameras’ images 
lead to decisions with conflict to locate the object. Therefore, 
DSmT was selected to deal with this the high conflict problem. 
Proficiency of DSmT to deal with high conflict problems 
and generality of the model used in DSmT rather than other 
fusion algorithms such as Dempster-Shafer theory are the 
motives to select DSmT as data fusion algorithm. To achieve 
fusion task, an associated mass function for each camera 
was calculated by some pre-processes on collected data, 
including noise removal, edge detection, and assignment of 
Gaussian distribution to the decisions of each camera. Then 
DSmT was applied to fuse data of sensors in free and hybrid 
models. There are some conditions in modeling the events 
that convert some events to empty sets. Hence, Hybrid DSmT 
was applied regarding to nature of the problem. The fusion 
results showed the ability of DSmT in problems with conflict. 
Uncertainty measurement was carried out at every level of 
fusion to select the best choice of sensors or to select the best 
results of sensor fusion from uncertainty point of view. An 
appropriate uncertainty measure is required like AU that is 
developed for DST. A generalized AU measure, i.e. GAU2, 
was introduced by suitable extension of events to overcome 
the limitation of AU measure in problems with non-exclusive 
events such as the model used in DSmT. More reliable results 
in measurements and fusion are available using GAU2 in 
the framework, and also final decisions were made with less 
uncertainty.
Given the present results, the subsequent conclusions may 
be drawn.

• The uncertainty in the results of classic and hybrid 
DSmT-based fusion problem was less than the sum of 
uncertainties in the associated cameras. Consequently, 
DSmT improves the results from uncertainty point of 
view which is assessed by GAU2 measure.

• Due to  additional knowledge which is considered in 
the hybrid model in hybrid DSmT in comparison to 
classic model, the uncertainty values were less than the 
uncertainty values in classic DSmT-based fusion results.

• Even though fusion of the cameras’ data with less 
sum of uncertainty leads to final fusion results with 
less uncertainty, it appears that this result should be 
considered as a theoretical one. 

• It should be noted that when there is an extra knowledge, 
a combination of sensors’ data that are  in agreement 
leads to the results with less uncertainty in comparison 
to the combination of conflicting sensory data.

• Increasing the number of cameras to fuse data by classic 
DSmT gave the final results with the least uncertainty 
but it did not yield the least uncertain final results 
when hybrid DSmT was applied. This issue should be 
examined theoretically as well.

GAU2 is an appropriate uncertainty measure for DSmT. 
However, when the number of events increases, its application 
is complicated. 
For future works, other fusion methods like Proportional 
Conflict Redistribution rules can be analysed. Besides, the 
effects of an improved experimental setup and assignments 
of mass function to each area can be examined.
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