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Robust MRAC for a Wing Rock Phenomenon in Delta Wing Aircrafts
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ABSTRACT: Wing rock phenomenon is undesired vibration in rolling angle occurring in delta 
wing aircraft at large angles of attack. This paper presents three versions of model refernce adaptive 
controllers; namely classical MRAC, σ-modified MRAC and weighted σ-modified MRAC to control 
the rolling dynamics under wing rock phenomenon with the presence of unmatched disturbance. The 
stability analysis of new proposed strategy for weighted σ-modified MRAC has been presented. The 
effectiveness of the controllers is assessed in terms of their robusness under unmatched disturbance. 
The simulated results based on MATLAB/SIMULINK show that σ-modified adaptive controller gives 
better robustness characteristics than classical one; as it could confine different aircraft responses within 
smaller bounded limits. Moreover, as compared to σ-modified controller, weighted σ-modified controller 
gives better enhancement in terms of robustness, control effort and error charcteristics.
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1- Introduction
Delta wing aircrafts development is highly funded aircrafts 
projects. Nowadays, many types of such aircrafts are still in 
military and commercial usage. Figure (1) shows different 
wing types of aircrafts. The delta wing aircraft appears as the 
third one in the figure.

The delta wing aircraft is characterized by high level of speed 
ranges and maneuverability. Its dynamic is complex and highly 
nonlinear [1]. The rolling motion of the delta wing aircraft are 
the rotation of the aircraft on the rolling axis. Rolling axis is 
the line passing through the aircraft’s fuselage and the center 
of gravity as indicated in Figure (2). The ailerons at the end of 
the wing are the movable parts responsible for rolling motion 
control of the aircraft [2].
Wing rock phenomenon is an undesired motion appears in 

high angles of attack. This phenomenon comes out due to 
the presence of a limit cycle caused by wing rock dynamics. 
The wing rock phenomenon results in rolling the aircraft in 
both direction of roll angles with specified amplitude and 
frequency. The dynamics of wing rock phenomenon can be 
seen in many researches and studies [3]

Different related studies are briefly reviewed here; Adaptive 
Feedback Linearization has been proposed by (Krstic, etal)[4]. 
Also, dynamic recurrent neural networks for stable adaptive 
control are presented by (Steven Boon Kooi)[5]. Nonlinear  
H∞ method for control has been proposed by (Shyh-Pyng 
Shue and etal) as indicated in[6]. Simulation and Analysis 
of Wing Rock Physics is performed by (A. Saad, Ahmed) in 
[7]. Passino developed new techniques for nonlinear systems 
with a time-varying structure [8]. Comparative Analysis 
of various nonlinear active control has been proposed by 
(Józef  Pietrucha)  [9]. Linear and Nonlinear Robust Control 
strategies are presented by (Alon Kuperman and etal) [10]. 
Adaptive Backstepping type design proposed by (Ene Costin) 
can be found in [11]. It is clear from the above literature 
survey that most of the proposed techniques are interested in 
controller design and no mention of how well the robustness 
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Fig. 1. Aircrafts wing types

Fig. 2. Delta wing aircraft axis and ailerons
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will be in presence of unmatched disturbance effect on the 
roll rate due to sensor inactivity.
Adaptive control theory are still seeking for robustness and 
robustness related problem are yet open and waiting to be 
solved  [12],[13].
Recently, Model Reference Adaptive Control (MRAC) has 
acquainted significant attention due to its ability to adjust 
controller elements in real-time situation. This would 
enable the control system to operate in a highly uncertain 
environment in the presence of malfunctions or damages. 
In theory, a Model Reference Adaptive Controller can drive 
the plant to asymptotically track a specified reference model 
if certain matching conditions on the uncertainties are met. 
However, practically, such matching conditions usually 
do not fit due to the presence of matched and unmatched 
unmodeled dynamics, disturbances and parameterization 
errors. This may lead to weakening of stability property of 
Uniform Ultimate Boundedness (UUB) and also a parameter 
drift would arise which in turn may lead to instability 
problems. In order to cope with such types of uncertainties 
and to have a robust MRAC, this requires a modification in the 
adaptive law of MRAC strategy. As such, several structures 
of modification have appeared like dead-zone modification, 
e-modification, σ-modification and others. The salient feature 
of σ-modification MRAC is that it does not need the upper 
bound of disturbance. Therefore, it would be our candidate 
for having a robust control of aircraft roll motion [14]. 
However, it is not difficult to see that the adaptive law 
in σ-modification MRAC add the same damping to all 
matrix elements of adaptive parameters. It is interesting to 
investigate the effect of adding different weight of damping 
to different matrix elements of adaptive parameters. This is 
equivalent to give different importance to different matrix 
elements of adaptive parameters. This is main key of the 
work contribution. This new version of modification is 
termed “weighted σ-modification” due to different weights 
of damping assigned to different matrix elements. Thus, in 
the present work, weighted σ-modification is introduced and 
the stability analysis is developed.    
The objective of the present work is to assess the performance 
of three versions of model reference adaptive controllers 
under unmatched uncertainty for delta wing aircraft. The 
well performed controller is the one which gives the best 
robust characteristics under the considered uncertainty. 
The performance of σ-modified and weighted σ-modified 
controllers are compared to that of classical one. It is worthy 
to mention that the entire scenario occurs around small 
neighborhood of an operation point.
In order to make the case study under consideration more 
realistic, the work considered the limitation imposed on 
deflection ailerons angle in real application. This the other 
challenge which has been avoided by many researchers. 

2- Mathematical Model
Wing rock phenomenon were studied and analyzed  by 
many researchers in the literature. The derived model is 
formulated by fitting the experimental data gathered from 
wind tunnel simulation to a mathematical expression agreed 
to describe the wing rock phenomenon. The models got from 
the experimental fitting are a second order nonlinear models 
differs from each other’s by nonlinearity terms. One of the 
first most cited works for modern control theory is the model 

proposed by [3] . A further development on the model is 
suggested by [15]. The most recent wing rock phenomenon 
suppression controllers were designed considering the result 
of [16] depending on the original work in [17]. For the case 
of one degree of freedom which means that the considered  
movement in the aircraft inside the air tunnel is the roll 
motion only as shown in Figure (3).
The experimental procedure has done for an 80° delta 
wing aircraft with a number of aircrafts configuration and 
for different angle of attack simulation cycles for each 
configuration, as indicated in Figure (4). 

In this paper the C configuration shown in Figure (4) will be 
considered as a case study for the presnt work.
The C configuration is the closest configuration for the delta 
wings aircrafts in use either fighter or civilian aircrafts. The 
C configuration comprise the delta wing (80°swept wing), 
the forebody and the nose tip. The differential equation that 
describe the C configuration is constructed as:
For a case of one degree of freedom the considered model 
of wing rock dynamics is based on the following equation of 
motion [16], [3]:

where ϕ is the roll angle, ρ is the air density, U∞ is the speed of 
the free stream of air, S is the area of the wing plane, b is the 
chord, Ixx is the moment of inertia of the wing around the axis 
of the roll span, u is the differential ailerons position and D is 
the effectiveness of the differential ailerons rolling.
Referring to [3] and [15], Cl can be given by;

where a1, a2, a3, a4 and a5 are unknown constants. Substituting 
Eq.(2) into Eq.(1), one can have the following equation:

Fig. 3. experimental construction [16]

Fig. 4. 80° delta wing aircraft configurations [16]
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where b1, b2, b3, b4 and b5 are still unknown constants.   
Letting                                               ,one can get the state equation 

The first impression of the above system of equations is that it 
is a nonlinear system with unknown parameters. Gust and wind 
storms effects have not yet been included in the system. Since 
the gust affect directly to the ailerons, it will be treated later as 
a bounded disturbance. Then, the system the will be given as,

where,

and,

It is interesting to investigation the equilibrium points for 
the unforced and unperturbed system. It is simply found by 
equating f1 and f2 of Eq.(6) and (7) to zero, which results in,  
x2=0 and x1=0 or                        and the equilibrium points 
will be;

Three equilibrium points can be found and the origin can be 
classified as a saddle point and the two other are unstable 
nodes; a chance of appearance of limit cycle which is the 
cause of instability.

3- Controller Design
For a system with dynamics, 

where,
A∈Rn×n : is unknown matrix.
B∈Rn×m : is unknown matrix.
Λ∈Rm×m : is unknown matrix diagonal matrix.
θ∈RN×m : is unknown matrix.
ϕ∈RN×m : is known function matrix.
y∈Rq : is the output vector.
C_m∈Rq×n : is the output weight matrix (known)
ζ∈Rn : is unmatched disturbance ((upper bound) known)
This system must behave as a reference system given by

where, 
Am∈Rn×n : is the reference model matrix.
Bm∈Rn×m : is the reference input matrix.
xm∈Rn : is reference state vector.
r∈Rm : is the desired input.
In order to design a controller u which able to make the system 
of Eqs.(11-12) track the desired input r based on reference model 
behavior, the controller has to perform the following tasks:

• Cancel out the nonlinearity of θT ϕ. 
• Find the feedback and forward gains such that the 
system to be designed could coincide to model reference 
characteristics,
• Tackle the uncertainties represented by A, Λ and θ. 
Choosing the control input as follows,

where:

such that
	  : is a matrix of an estimated values of θ.
                : is a matrix of the adaptive feedback gains.
                   : is a matrix of the adaptive feed forward gains.
Matching condition must exist for the system to mimic the 
characteristics of reference model. Existence of matching 
condition means that the following equalities must hold;

where           represent the ideal feedback and feed-forward 
gains, respectively, while     stands for estimated parameters 
coefficients. The closed loop system becomes,

The difference between the actual state and reference model 
state is given by the following error equation

The time derivative of the above error yields

or

In the sense of stability analysis, it is appropriate to choose 
the following Lyapunov candidate;

1 1 2x and x xφ = φ = =



1 2x x= (4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

1 1 1 2 2 3 1 4 2 2

3
5 1 6

x b x b x (b x b x )x

b x b u

= + + +

+ +



1 1 1x f= + ζ

2 2 6x f b u= +

1 2f x=
( ) 3

2 1 1 2 2 3 1 4 2 2 5 1= + + + +f b x b x b x b x x b x

1 1 5x b / b= ± −

1 2,3 1 5P (0,0),P ( b / b ,0)= = ± −

Tx Ax B (u )= + Λ + θ φ + ζ

my C x=

m m m mx A x B r= +



T
u K= Ψ (14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

   

T T T T
x rK [K K ]= −θ

T[x r ]Ψ = φ



N mR ×θ∈


n m
xK R ×∈


m m
rK R ×∈

T
x mA B K A+ Λ =

T
r mB K BΛ =

T T T 0∆θ = θ −θ =
T T
x xK ,K

Tθ



T Tx Ax B (K )= + Λ Ψ +θ φ + ζ

me x x= −

me x x= −  

T
me A e B K= + Λ∆ Ψ + ζ

T T T 1
kV(e, K ) e Pe tr( K K )−∆ = + ∆ Γ ∆ Λ

1ζ ≤ ζmax‖ ‖



A. J. Humaidi and A. H. Hameed, AUT J. Model. Simul., 49(1)(2017)113-122, DOI: 10.22060/miscj.2016.825

116

where V(e,ΔKT):Rn×m→R and P∈Rn×n  |P=PT>0  is a positive 
definite symmetric matrix. The matrix P is calculated by 
solving the following equation:

where Q∈Rn×n is positive definite symmetric matrix. and 
ΓK∈Rz×z |ΓK=ΓK

T>0 , z=n+m+N is diagonal matrix known as 
adaptation or learning rate. The derivative of V(e,ΔKT) will be:

For ζ=0 then the system can be asymptotically driven to the 
origin by choosing the adaptive law:

This leads to

which is negative definite. If ‖ζ‖≤ζmax, then

where d=2eTPζ. Using the fact,

If one assumes that

then     will no longer be negative definite and the stability 
will be threated. Instability begins with growth of      elements 
which is called adaptive parameters drifts. Due to presence of 
disturbance the desired convergence to the desired equilibrium 
point will not be guaranteed any more. In case of none vanishing 
disturbance the best solution could reach to the uniform ultimate 
boundedness of the system trajectory. Internal stability is an 
important and basic concept in robust control; boundedness of 
all system signal is the condition of the internal stability [14]. 
Parameter drifts could degrade the internal stability by estimating 
high gains to the controller parameters.

3- 1- σ-modifications MRAC
The problem has just been argued above can be avoided by 
a modification in adaptive law of MRAC named as Leakage 
or sigma modification (σ-modification). This technique was 
presented recently by[18] and further discussed in [14]. 
Leakage or sigma modification has more than one form 
depending of choice of sigma and the form suggested in this 
paper is the fixed sigma modification. The modification is 
done to the adaptive law where it modified to:

where σ>0 is a constant chosen by the designer. Choosing 
the adaptive law indicated by Eq.(31), the Lyapunov time 
derivative function given by Eq.(25) becomes;

or,

The inequality of Eq. (33) has two variables     and       and 
            if:

and,

where inequalities (34) and (35) is guarantees the ultimate 
uniform boundedness of all adaptive gains, control input and 
the state variables and that’s the aim of the robust adaptive 
control. However, combining both conditions of Eq.(34) 
and(35) to form the set defined as α outside which     is 
assured to be negative,

where  e∈Rn and ΔK∈RN×M.

3- 2- Weighted σ-modification MRAC
So far, the σ-modification technique add equally a damping 
constant, represented by constant σ, to all elements of      The 
proposed weighted sigma modification is based on assigning 
different weight of sigma constant to each element of 
adaptive gain matrix    . Based on this notion, the adaptive 
law of Eq.(31) can be written as:

where σ>0 is a constant chosen by the designer and Σ∈RN×N 
is diagonal positive definite matrix whose elements are the 
weights for the elements adaptive gain matrix such that  Σii>0.
Substituting the adaptive law of Eq.(36) into Eq.(25) we have;

or
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The satisfication of the above equation depends on the bound 
of two variables ‖e‖ and ‖ΔK‖F. Then      <0, if

and

It is easy to see that the there is no change of the error bound 
‖e‖ and this technique would scaling the bound ‖ΔK‖ only. 
Again combining both variables confined by Eq.(39) and 
(40) which gaurantees the negative definitness of    and 
guarantees the ultimate uniform boundedness of all adaptive 
gains, control input and the state variables and that’s the aim 
of the robust adaptive control; one can find the unified set αw 
associated with weighted σ-modifications,

where ‖K‖F
2>0. One can argue that the region of stability for 

weighted modification αw can be determined by Frobinus norm 
‖Σ‖F. It works as a scaling factor of the region of stability; the 
region of stability may be tolarated to a larger bound for Σmin<1 
or restricted to a smaller bounds for Σmin>1.

4- Simulated Results
The simulation of wing rock responses under supervision 
of suggested and proposed controller has been implemented 
using Matlab/Simulink. Before we proceed, the following 
conditions have to be kept in mind;

• The maximum allowable excursion of roll angle is 
limited to ±30 degree.
• An environmental gust conditions effect is embodied 
by applying an unmatched disturbance wind gust as a 
uniform random signal with the following maximum 
bounds:

−10≤ξ≤10    (Degree)
• The system parameters used for simulation are listed 
below [3],[19]:

      b1=−0.018,   b2=0.015,   b3= −0.062,
      b4=0.009,   b5=0.021,   b6=0.75
The phase plane for the open loop system is shown in Figure 
(4). The figure shows the instability of the equilibrium points 
and the existence of limit cycle.
The reference model matrices are chosen to be: 

Many tuning trials, the following appropriate diagonal values 
for the matrices ΓK , Q, Λ and ∑ are found;

The desired trajectory in terms roll angle (model reference 
trajectory) and the disturbance behavior are depicted in 
Figure (5).
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Fig. 4. Phase plane for the open loop
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The first scenario of simulation considers the case with 
unlimited aeleron deflection. Figure (6) describe the behaviors 
of roll angle and roll rate for the three suugested controllers. 
The value of sigma σ is set to value of 0.05. This value would 
satisfy both good performance and stability. The same value 
is assigned to the case of weighted sigma modification. Figure 
(7) shows the control action resulting from these controllers. 
It is seen that from the figures that all controllers perform 
well under exerted disturbance. It is evident from Fig.(7) that 
the maximum aileron excursion is the largest in the case of 
classical MRAC than that seen with other controllers.  
Further comparison bewteen σ-modification controller and 
weighted σ-modification controller are illustrated in Fig.
(8). The figure shows that the control action needed by 
weighted σ-modification controller is less than needed by 
σ-modification controller. Therefore, one may argue that the 
opputunity of reaching wind-up in weighted σ-modification 
controller is less than that in case of other controller.
Figure (9 shows the trajectory of errors between the states of 
model reference and plant.
One can see from Fig.(9) that the weighted σ-modification 
controller enable the states of aircraft to track the model 
reference states in least error than other controllers do.  
However, the important feature of σ-modifiied and weighted 
σ-modifiied controllers is that they could keep the estimated 
forward and feedback gains and within a small bounded 
limits. Also, the controllers could successfully cancel the 
nonlinear gains. On the other hand, the classical MRAC fails 
to stop drifting of such gains. The drift which may lead to 
instability problems and it is undesirable. This is evident from 
Fig.s (10) to (15). 
In what follows, the above scenarios have been repeated, but 
the presented controllers are applied to aircraft in which the 
movement of aircraft ailerons is restricted to the following 
limits [20];

 −25≤‖u‖≤25   (Degree)
The relevant simulations of such limited case are shown in 
Fig.s (16)-(25).
Figure (16) shows that there is high degradation in performance 
due to classical MRAC comapred to that resulting from 
modified controllers (sigma and weighted sigma). The latter 
controllers could sucessfully keep the performance of roll 
motion dynamics at high level.  
Figure (17,18) shows the behavior of control actions due to the 
three control strategies. It is clear that the worst behavior is the 
one resulting from classical MRAC; as the control action shows 
undesirable chattering. Meanwhile, both modified controllers 
could confine the control action within the prescribed limits. 
This action is practically preferable, since it would save power 
and save the ailerons from damage. Furthermore, weighted 
σ-modifiied controller could give better and less control action 
than that obtained from σ-modifiied controller.
Figure (19) shows the error behaviors between the states 
of model refernce and the plant. It is clear  from the figure 
that Both σ-modified controller and weighted σ-modified 
controller give less error variance as comapred to classical 
controller. Moreover, weighted σ-modified controller yields 
the least errors as compared to others. 
However, the restriction of actuator led that classical MRAC 
could fix the gains at high bound level as indicated in Fig.
(20). Meanwhile, both modified controllers could prevent the 
gain drift to exceed small bounds. This is clearly seen in Fig.s 
(21)-(25). Also, as illustrated from the figures that weighted 
σ-modified controller show better improvement in terms of 
gain drift characteristic.

Fig. 6. Roll angle and roll angle rate (non-restricted actuator)

Figure 7. Control action (non-restricted actuator)

Fig. 8. Control action comparison (non-restricted actuator)

Fig. 9. Error trajectory (nonconstraint actuator) 
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Fig. 10. Feedback and feed forward gains MRAC (non-
restricted actuator)

Fig. 14. Weighted σ-modified controller for cancellation for 
nonlinearity  gains  (non-restricted actuator)

Fig. 11. Feedback and feed forward gains (σ-modification (non-
restricteded actuator))

Fig. 15. σ-modified controller for cancellation of nonlinearity 
gains (non-restricted actuator)

Fig. 12. Feedback and feed forward gains (Weighted 
σ-modification (non-restricted actuator)) 

Fig. 16. Roll angle and roll angle rate (restricted actuator)

Fig. 13. Classical MRAC for cancelation of nonlinearity gains 
(non-restricted actuator) Fig. 17. Control input (restricted actuator)
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Fig. 18. Control input comparision  (restricted actuator) Fig. 22. Feedback and feed forward adaptive gains Weighted 
σ-modified (restricted actuator)

Fig. 19. Error trajectory (restricted actuator) Fig. 23. MRAC Nonlinearity cancelation gains 
(restricted actuator)

Fig. 20. Feedback and feed forward gains MRAC (restricted 
actuator) Fig. 24. σ-modified Nonlinearity cancelation gains (restricted 

actuator)

Fig. 21. Feedback and feed forward gains σ-modified 
(restricted actuator)

Fig. 25. Weighted σ-modified MRAC Nonlinearity cancelation 
gains (restricted actuator)
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5- Conclusions
Three model reference adaptive controllers are presented 
here to control the roll motion of delta wing aircraft under 
unmatched uncertainty with consideration to the wing 
rock phenomenon. The weighted σ-modified controller is 
proposed in the present work and its performance is assessed 
and compared to fixed σ-modified controller and classical 
model refernce adative controller. Based on the observations 
of simulated results, the following points can be hilighted;

• Both σ-modified controller and weighted σ-modified 
controller prevents gain drifting and therefore grant the 
adaptive control system good robust charcteristics. On the 
contrary, classical MRAC could not confine the adative 
gains withing small limited bound and it is not robust 
against variation of paramters. 
• Both σ-modified controller and weighted σ-modified 
controller give less error variance as comapred to classical 
controller. Generally, weighted σ-modified controller 
yields the least errors as compared to others. 
• Both σ-modified controller and weighted σ-modified 
controller give less control action than that given by 
classical controller. However, control action behavior is 
better improved by weighted σ-modified controller. 

6- Appendix  
The modification is done to the adaptive law where it modified to:

where σ>0 is a constant chosen by the designer and Σ∈RN×N 
is diagonal positive definite matrix represents the weighting 
added to each adaptive gain  Σii>o.
By choosing the Eq. (A.1) as adaptive law and by back to the 
Lyapunov candidate time derivative and substitute equation 
Eq. (A.1) in it Lyapunov candidate time derivative will be:

taking in consideration that:

and that led to:

Considering the fact of Frobinus norm for matrices is:

and that’s led to:

and by the famous Schwarz inequality of  for any two vectors 
a and b the following inequality holds: |aT b|≤‖a‖‖b‖ and also 
hold for more than two vectors which leds to:

Gathering the result of inequalities of (A.6) and (A.7) and 
substitute in Eq.(A.5) led to the inequality of:

For any two vectors a and b the fact of 2ab≤a2+b2 led to:

And that led to:

The inequality (A.9) has two variables ‖e‖ and ‖ΔK‖F and
     <0 if:

And:
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And

Where inequalities (A.17) and (A.18) means that by using 
of weighted sigma modification the Lyapunov candidate time 
derivative negative definite outside the compact set:
It’s clear that the set αw where the Lyapunov candidate is 

negative definite by the effect of the proposed weighted 
sigma modification; weighted sigma modification works as a 
scaling factor of the region of stability; the region of stability 
may be tolarated to a larger bound for Σmin<1 or restricted to a 
smaller bounds for Σmin>1.
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