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ABSTRACT: The significant integration of variable renewable energy sources, along with the
uncertainties in their generation, presents a substantial challenge for the distribution system operator.
Microgrids, recognized as intelligent grid systems, offer a promising solution for the efficient integration
of local renewable energy resources. However, the intermittent nature of renewable energy introduces
operational complexities and additional costs associated with maintaining stable performance within
the microgrid’s energy management system. The presence of multiple microgrids facilitates the creation
of a flexible and diversified energy market structure. This paper investigates the impact of losses on
microgrid expenses through the analysis of various scenarios. A compromise model objective is proposed,
focusing on the minimization of microgrid costs. To address the uncertainties associated with variable
renewable energy sources and their impact on system costs, distributed energy resource schedules, and
the overall energy market, we propose a new data-driven probabilistic efficient point method. This
method calculates the optimal generation from sustainable energy at various risk levels, which can then
be integrated into a suggested transactive day-ahead market model. Simulation results confirm that the
proposed compromise strategy is feasible, with system cost nearly matching the minimum achievable.
Specifically, during peak demand periods, the compromise scenario yields a 3% reduction compared
to the actual system cost. Likewise, system losses, which reach their maximum during high-demand
intervals, are reduced by 2.5% under the compromise-based solution relative to the actual system. These
outcomes confirm the effectiveness of the proposed approach in simultaneously achieving economic
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1- Introduction
1- 1- Motivation and approach

In contemporary power grids, the proliferation of
distributed energy resources (DERs), including solar and
wind power, battery storage systems, and controllable
generators, necessitates the implementation of effective
integration strategies. Microgrids emerge as a promising
solution for optimizing the utilization of DERs within
local power grids [1,2,3,4]. The integration of small-scale,
modular distributed generation units and energy storage
systems into low- and medium-voltage distribution networks
has given rise to a new paradigm in power systems, referred
to as microgrids (MGs). From the perspective of the utility
operator, a microgrid can be regarded as a controllable and
flexible load whose power consumption can be dynamically
adjusted according to operational conditions. Specifically,
the load may remain constant under normal circumstances,
increase during off-peak periods when electricity costs are
lower, or be curtailed to minimal or even zero levels during
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network stress or critical events. Microgrids can be deployed
across diverse environments, including commercial centers,
industrial parks, and university campuses. A defining feature
of microgrids is the proximity of distributed generation
resources to the end-users, enabling both grid-connected
operation and autonomous islanded mode, thereby enhancing
operational flexibility, reliability, and resilience of the
local power system. Figure 1 illustrates a representative
microgrid configuration5,6] ]. While microgrids offer
several advantages, including enhanced grid reliability,
increased flexibility for future grid expansions, and reduced
transmission losses, operating as standalone entities can
expose them to vulnerabilities. Single microgrids may be
susceptible to interference and can experience operational
breakdowns due to a single fault, hindering their intended
efficiency [3,7]. To address the challenges associated with
standalone microgrids, the concept of Multi-Microgrids
(MMGs) has been introduced, wherein multiple microgrids
are interconnected in terms of power and energy exchange.
Figure 2 illustrates a representative MMGs configuration.
MMGs offer enhanced efficiency, superior techno-economic
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Fig. 2. Schematic of a multi-microgrid

advantages, and greater adaptability and resilience compared
to individual microgrids. Microgrid operation modes can
be classified into grid-connected mode and islanded mode,
contingent upon their interaction with the distribution
networks [2,7]. Financial incentives offered by Distribution
System Operators (DISCOs) serve as an effective mechanism
to encourage the strategic deployment and utilization of
Distributed Generators (DGs). Pricing methodologies,
particularly Locational Marginal Pricing (LMP), play a
pivotal role in this incentive-based approach. While LMP
offers a valuable tool for achieving short-term efficiency by
calculating marginal prices at network nodes, including those
with DGs, its implementation in distribution networks and
microgrids can lead to fluctuations in generation values and
parameters, potentially impacting their economic operation.
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DISCOs can leverage LMP as a strategic tool for controlling
and operating networks to align with their objectives [1,8]. To
address the uncertainties inherent in the increasing integration
of variable renewable energy (VRE) production, we propose a
novel data-driven probabilistic efficient point (PEP) method.
This approach leverages historical data to calculate expected
VRE generation values at various confidence levels, which
are subsequently incorporated into the distribution location
marginal pricing (DLMP)-based day-ahead market (DAM)
model. The PEP method empowers the Distribution Network
Operator (DNO) with Increased adaptability in managing the
uncertainties associated with VRE production. Moreover,
this paper presents valuable insights into the significance of
reactive power pricing and provides a detailed analysis of the
Beneficial and detrimental elements of DLMP under varying
levels of VRE implementation and reliability.
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1- 2- literature review and contributions

This paper proposes a frequency-based energy
management system (FEMS) for the autonomous operation of
a residential MG, incorporating a lithium-ion battery energy
storage system (LIBESS) and DGs [9]. To optimize the
utilization of renewable energy resources and address energy
distribution challenges within islanded MMGs, a sequential
algorithm combining symbiotic search (SOS) and a distributed
robust algorithm is suggested [2,10]. This research focuses on
DC standalone multi-microgrid systems, emphasizing their
inherent adaptability, resilience, and operational effectiveness
in managing fluctuating, variable, and unpredictable
generation shortfalls [11]. Paper [12] presents a resilient
optimization framework for the collaborative operation of
microgrid-centralized energy storage systems (MG-CES),
incorporating distributed generation amidst uncertainty. The
proposed model adopts a two-stage, four-layer structure,
referred to as “min-min-max-min.” In [13,14], the focus is
on the distributed energy management of MMGs to achieve
energy coordination, incorporating precise modeling of
demand-side resources. The primary objectives include
minimizing carbon emissions and fostering self-organization
within each MG. This paper proposes a convex optimization
framework for an energy management system, integrating
interactions within a local energy marketplace across three
asymmetrical microgrids. The goal is to either minimize
consumer expenses or maximize supplier profits [1]. This
study identifies and examines clustered or synchronized
renewable energy-driven microgrids capable of providing
support services, participating in market activities, and
facilitating inter-microgrid communication. These attributes
contribute to enhanced grid flexibility and reliability [15].
This paper proposes an optimal multi-energy microgrid
configuration within the electricity market. The objectives of
the proposed framework encompass hierarchical cooperative
optimization of the microgrid system, dynamic pricing based
on supply-demand dynamics, cost minimization, penalty-
based enforcement of consistency, and robust demand
response [16]. Furthermore, this paper introduces an economic
strategy aimed at reducing line currents to mitigate strain on
line capacity, minimize losses, and enhance overall network
reliability within microgrids and dynamic distribution
networks, including DG [8]. This research introduces Local
Energy and Reserve Markets (LERMs), enabling Microgrid
Managers (MGMs) to effectively meet their energy and
storage needs through strategic resource planning and
competition with other microgrids [17]. [18] investigates
a market-oriented pool approach for a MG to facilitate
efficient electricity trading within the distribution electricity
market (DEM). A distributed robust model predictive control
(DRMPC) energy management strategy is proposed for
islanded multi-microgrids to mitigate the adverse effects of
uncertain renewable energy output [19]. In ref. [20] introduces
a flexible two-stage joint planning model for MMGs based on
non-cooperative game theory for electricity price fluctuations
and seeks to address the joint profit allocation problem
using a generalized Nash equilibrium for energy Uses. [21]
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presents a comprehensive electricity market model for a smart
microgrid, incorporating a stochastic allocation of distributed
resources and an optimal demand response analysis. This
model prioritizes environmental sustainability through the
utilization of renewable energy sources (RES), enhances
system reliability by incorporating conventional generators,
and emphasizes economic efficiency by flattening demand
curves. To facilitate efficient electricity trading among
multiple grid-connected microgrids and their participation
in ancillary services markets, this paper proposes a real-
time market trading mechanism [3,22,23]. Reference [24]
introduces a methodology for neighboring microgrids
within a distribution network to collaborate and establish
a multi-microgrid (multi-MG) configuration, integrating a
cloud energy storage system (CES). This initiative aims to
enhance profitability and reliability. The article commences
by providing an overview of existing market structures at the
distribution level and their initial deployment. Subsequently, it
delves into a comprehensive examination of the application of
distribution location marginal pricing (DLMP) for managing
and planning DERs and distribution system operators
(DSOs) [25]. This paper introduces a novel contract theory
framework designed to address the complexities inherent in
formulating efficient contracts for electricity suppliers (ESs).
A dynamic pricing model is proposed to incentivize ESs
to meet both base load and peak load demands, tailored to
their respective classifications [26]. This paper introduces a
two-stage stochastic collaborative approach for wind power
plants (WPPs) and pumped storage power plants (PSPs)
operating within a microgrid. The proposed framework is
designed to effectively address the challenges posed by
uncertainty constraints and associated penalties [27]. [28]
introduces a day-ahead scheduling method for multi-carrier
microgrids (MCMGs) that integrate renewable generators
and combined heat and power (CHP) units. This method
employs a mixed-integer linear programming (MILP) model
to optimize scheduling decisions. To address the uncertainties
associated with renewable energy, the study incorporates
information gap decision theory (IGDT) and a scenario-based
stochastic approach. Studies have shown that community-
based and game-theoretic approaches can significantly
reduce operational costs while enhancing system efficiency,
whereas methods such as alternating coefficient orientation
provide an optimal trade-off between privacy, performance,
and energy utilization [29]. Hybrid optimization techniques,
including QI-NLS-G20 combined with GRZPNet, have
demonstrated improved load forecasting accuracy and up
to 20% enhancement in system efficiency in multi-source
microgrids [30]. Multi-objective algorithms, such as NSGA-
II-MC, have been employed to manage resilient microgrids,
achieving reductions in costs and grid dependency alongside
a 49.7% improvement in the Hypervolume metric for large-
scale scenarios [31]. Optimal energy management strategies
for multi-energy MMG networks have also been proposed,
enabling microgrid autonomy, efficient resource allocation,
and reductions in carbon emissions by 37.5% and operational
costs by 12% [32]. Robust controllers designed using MOPSO
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and MOGA have proven effective in islanded microgrids,
enhancing system stability, transient response, and tolerance
to uncertainties in renewable generation and variable loads
[33]. Real-time optimal strategies incorporating energy
storage participation have further increased renewable
energy utilization while improving system reliability and
flexibility [34]. Moreover, the integration of EVs into multi-
source microgrids has been shown to significantly influence
optimal performance and energy management policies due
to uncertainties in charging times and connection locations
[35]. Collaborative scheduling models employing improved
Genetic Algorithms and Particle Swarm Optimization have
facilitated higher renewable energy accessibility, reduced
operational costs, and ensured system stability [36]. Finally,
hybrid PV-wind-fuel cell MMG systems optimized via the
Grey Wolf Optimizer, as well as two-stage robust models
for islanded microgrids, have demonstrated cost reduction,
enhanced accuracy, faster convergence, and minimized
investment and operational costs under renewable energy
uncertainties [37,38]. Furthermore, a brief overview of recent
research details on techno-economic analysis of MMGs is
given in Table 1.

This paper provides a comprehensive analysis of
microgrid optimization, encompassing critical aspects such
as economic load dispatch, transmission loss minimization,
and the associated economic considerations of system
costs. To address the inherent uncertainties stemming from
the intermittent nature of renewable energy sources, the
Probabilistic Efficient Point (PEP) method is employed.
Unlike conventional approaches that rely on complex
probabilistic distribution functions, PEP enables the
representation of uncertainties using only historical and
synthetic data, thereby enhancing modeling accuracy while
reducing computational complexity.

From a strategic perspective, the study focuses on the
development of a compromise-based objective function that
simultaneously optimizes both economic costs and network
losses within an integrated framework. This dual-focus
approach not only improves decision-making processes in
the operation and planning of microgrids but also provides
a balance between technical performance and economic
efficiency. The conceptual findings highlight the inherent
trade-off between cost and losses: minimizing losses often
results in increased costs, and vice versa. Consequently,
identifying the optimal equilibrium between these two
conflicting objectives remains a fundamental challenge in
power system optimization. The proposed framework seeks
to establish such a balance, thereby offering deeper insights
into the techno-economic modeling of microgrids.

The key contributions of this research are summarized as
follows:
 Integration of energy management with Economic Load

Dispatch (ELD) in a multi-microgrid framework, enabling

the simultaneous enhancement of both economic and

technical performance of the system.
» Reformulation of ELD considering losses, which are often
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neglected in prior studies, thereby ensuring more realistic

and practically applicable results.

* Development of a novel compromise-based objective
function to establish an effective trade-off between total
system cost and losses, allowing for a simultaneous
reduction in both indices.

* Formulation of the optimization problem as a Mixed-
Integer Linear Programming (MILP) model, ensuring high
accuracy, computational efficiency, and suitability for
real-world energy market applications.

» To address the inherent uncertainties in variable renewable
energy (VRE) generation, a novel data-driven mixed-
integer linear programming (MILP) approach was
introduced in this paper. Leveraging an extensive dataset
of historical VRE generation data, this method effectively
solved probabilistic efficient points (PEPs) without relying
on any prescribed probability distribution function.
Analogous to probabilistic optimization approaches
with chance constraints, the PEP method empowered
distribution system operators (DSOs) with enhanced
flexibility in managing the uncertainties associated with
VRE production.

The paper’s subsequent sections are structured as follows:
Section 2 presents the underlying modeling and mathematical
formulation. Section 3 delves into the probabilistic efficient
point (PEP) method. Section 4 conducts a comprehensive
analysis of the impact of each variable on the desired
outcomes. Finally, Section 5 provides a comprehensive
summary and conclusion.

2- Modeling and Mathematical Formulation
2- 1- Proposed model MMG

The proposed MMG system is depicted in Fig. 3. Under
normal operating conditions, the MMG operates in grid-
connected mode. However, all MGs possess the capability
to island from the upstream grid at Bus 1, facilitating power
exchange among individual MGs. Each MG comprises a
diverse mix of conventional and renewable energy resources,
mirroring the composition of real-world MMGs. Additionally,
these MMGs incorporate storage facilities and local control
centers, thereby encompassing the essential infrastructure
elements of a practical MMG.

The primary objective of this research is to evaluate the
efficacy of the proposed energy market approach within the
context of islanded MG operation. Furthermore, Table II
provides detailed information regarding the cost and capacity
limitations of the individual generators. The identification
of optimal operating points for these generators constitutes
a key research goal. Figure 4 illustrates the 24-hour system
demand profile.

2- 2- Problem formulation

In this paper, an optimization model for the optimal
distribution of electricity generation in energy systems is
presented. The model is presented in order to minimize the
power generation cost and transmission losses, taking into
account the load requirements and uncertainty of VRE and
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Table 1. A brief overview of recent research in the field of Techno-economic analysis MMG

Energy Main research Main Optimization Innovation and Research
Ref. sources S method and . - A
used focus objectives algorithm differentiation limitations/gaps
Improving Application of
7] PV «WT ¢ technical and Re(iirlilcer(l)(‘)/seses, Cooperative repetitive Lack of focus on
CCGT economic VO[]) tage Game Theory games in a uncertainty
conditions & microgrid
Combining the
Two-level . carbon market .
PV ¢WT ¢ . . Cost and Bi-level . . Failure to check
[8] scheduling with L with multiple
CG, BESS, pollutants optimization . storage resources
carbon markets island
microgrids
Multi-microgrid EV integration
PV ¢WT « energy Cost reduction Multlple mna mul?" Lack of focus on
[29] management . comparison microgrid
BESS (EV . and courier . network losses
with a focus on algorithms management
EV and BESS framework
Multi-energy .
. Failure to
PV ¢WT « energy 'Impr.ove Hybrid rpethod Using a hybrid consider multi-
[30] management reliability and (definite + . .
BESS . e model for RES microgrid
with RES cost probabilistic) . .
. Interaction
uncertainty
Resilience and Sustainability Considering Failure to
PV, WT, multi-stage . multi-stage consider multi-
[31] BESS «CG constraint and C(.)St Multi-stage MOO constraints for microgrid
reduction - .
management resilience cooperation
P\ég\liT ‘ Cost and Cost and Mountain Gazelle | New algorithm No comparison
[32] Boiler ﬁeat emissions emission Optimizer inspired by with methods with
pur’np optimization reduction MGO) nature losses
Frequency Frequency Combining
[33] CG ‘WT, control in control in Hybrid MOO + robust control Fo_c)ursloc;neﬁg?trol
FC isolated isolated p-synthesis with £y
. . . . e management
microgrids microgrids optimization
Real-time Improve real- | Predictive storage Collaboration Lack of economic
[34] PV «BESS control and mp € | between storage .
. time response model . cost analysis
guidance providers
PV ¢WT « Op Flmal . EV Uncertainty Stochastic EV Uncertainty | Lack of focus on
[35] operation with L .
EV «(BESS EV uncertainty Management optimization Modeling network losses
Island design Managing Distributionally Applying DRO Fa}llure to .
PV «CHP ¢ . . consider multi-
[36] BESS and operation uncertainty and Robust to Isolated microerid
with DRO sustainability Optimization Microgrid . el
interaction
Optimization of
m(l)llt;;rg(c)zotg;rld Combining loss | Need for broader
op y Reducing costs Compromise criteria with comparison with
. PV «WT « simultaneously . . .
This Ly and losses, programming + uncertainty new algorithms
BESS « considering . . o
study CHP. CG losses. costs. and managing Uncertainty modeling in a and more
’ o uncertainty modeling compromise sensitivity
uncertainty of .
framework analysis.
renewable
resources
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Otf-Grid mode

Fig. 3. Schematic of proposed model

Table 2. Cost coefficients and capacity constraints on MGs

Unit Pmax(MW)  Pumin(MW) Cost Coefficients

ai bi Ci
MG 1 600 150 0.003 2.45 105.0
MG 2 500 100 0.005 3.51 44 .4
MG 3 300 50 0.006 3.89 40.6
MG 4 300 50 0.004 2.78 66.9

Demand (MW)

1 3 5 7 9 11 13 15 17 19 21 23
Time (h)

Fig. 4. System demand profile in 24 hours
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power plant constraints in MMGs. The following parts of this
section provide a meticulous and detailed exposition of the
model’s equations. Eq. (1) formally defines the total cost of
electricity generation, one of the primary objective functions.

Minimize : cost . =

: o . (1
Z(ai xPg(i),, +b xPg(i),, +c )
P8

Costf, = A" = VieG,VteT )

’ n;

P

Costtcl;p :lifuel - t,i

’ n"LHV 3)
Vi eCHP,Vt €T
pE,—pf <RU* VieT, t+24 (4)
pE,—pf <RD? VieT, t#1 (5)
P —p <RU™ VteT, t+24 (6)
pfhf pfh” < RDeCh” VeeT, t#1 (7)

Inthe above formulations, Eq. (1) represents the calculation
of the overall expense of electricity generation, which is
determined by the production power of each microgrid (Pg)
and the coefficients (ai), (bi) and (ci). Equations (2) and (3)
represent the operational costs of the CHP and conventional
diesel generator units. Further, Equations (4) through (7)
outline the ramp-up and ramp-down limitations of both diesel
generator and CHP units[37].

ess ess,dis ess,ch

p, =p. " =D, VteT (8)
ess dis zpdts VieT (9)
ess ch chh \v/t c T (10)
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0< p < p .p!™ VieBat,VteT (1)

0< p < pii.pi™™ VieBat,VteT (12)

P+ ph<l pel01},VieBat,VteT (13)
SoC,, =SoC,_,,

1 1 is 14

- ess ,max ( ptdl _77607!\/ l pp[ l) ( )
pi nconvz

0<SoC,, <1 VieBat,VieT (15)

Eq. (8) represents the battery power level, while Eq.s
(9) and (10) describe the total charging and discharging
power. Furthermore, Eqs (11-13) define the constraints on
the charging and discharging power of the batteries, and Eq.s
(14-15) illustrate the charging/discharging states within the
batteries [37].

YteT

Mg
— g
- Zpt,i
i=1

(16)

0<pf <pP™ VieG,VteTl (17)
Lh” = fp‘hp VteT (18)
0< p < p™  VieCHP,VteT (19)

Further, Eq.s (16) to (19) define the electrical power
constraints for the conventional diesel generator and CHP
generation units [37].

The total power transmission losses are given in Eq. 20.

loss = 3" (Pg(i) o Bli, ))* Pe(j) )

i,jei

(20)

Here, the equation of total power transmission losses is
the sum of the power generation in each microgrid (Pg) by the
transmission loss coefficients between microgrids (B(i,j)).
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Equations (21) and (22) delineate the maximum and
minimum limits of electricity generation. These constraints
ensure that the electricity generation of each power plant
adheres to specified bounds, preventing production levels
from exceeding maximum capacities or falling below
minimum thresholds.

Pg(i),,; < Pmax(i)Vie1 (1)

Pg(i),,; 2 Pmin(i)Vi ei (22)

Equation (23) shows the compatibility of electricity
generation with load requirements.

S Pg(i) = Pd

iei

(23)

This equation shows that the total electricity generation
in all microgrids should be equal to the load requirements.
Equation (24) expresses the compatibility of electricity
generation with load and loss requirements.

ZPg(i)MG = Pd +loss

iei

24

Equation (25) shows that the total electricity generation in
all power plants must be equal to the sum of load requirements
and losses.

Minimize : compromise =

cost (25)

( )2 +( loss )2
COs? min loss min

This equation quantifies the agreement value between cost
and waste as the square root of the sum of squared deviations
from their respective minimum values.

3- Probability Efficient Point (PEP) Method

The integration of Variable Renewable Energy (VRE)
into the Day-Ahead Market (DAM) often leads to significant
discrepancies between the forecasted and actual production
levels [37]. The stochastic nature of VRE generation makes
cost-effective DAM resource scheduling particularly
challenging, especially when VRE output does not follow a
predictable distribution. The PEP method can identify efficient
points for VRE generation at specific confidence levels. The
novel, data-driven mathematical approach proposed here [38]
effectively determines PEPs using historical VRE generation
data without assuming any specific probability distribution
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function. The foundational concepts of the PEP method are
outlined below PS].

Let p € R be a stochastic vector, and v, u € R be two
realizations. The probability distribution function F; ( p)and
of the stochastic vector p is denoted as F; (v )=Pr {v=p}.

Description 1. If, Vv evand Vu, eu, v, 2u,,
then v >u. Similarly, if v>u,thenv >u .

Description 2. Let € (0,1) . A point v/ € R is named
y-efficient of F; if F; _(Vé )>7 and none are present u < v’
,uz v sothat £y (v')>y.

Aligned with Description2,ifv 7 represents the 7 -efficient,
then F; (u)> y is equal to u>v” at a probability state
. In other words, a stochastic constraint Pr(u>p)>. May be
transformed into a definite limitation u>v . The cornerstone
of this transformation is calculating the PEP v” derived
from historical data sets. Let & represent the deterministic
set of historical sample realizations of the stochastic vector
p=(p,. B ﬁw) for [R| VRE locations in the
distributed system. being the p° =(py, P, » P ) show
s™ sample from this set, and realization of p, where s € S.
Let 7° denote the probability of each scenario s, where n° =P,
(p'=p)>0and ZSE 7 = 1. According to [24], the program
for solving PEP can be formulated as a Mixed-Integer Linear
Program (MILP) in Egs. (26)— (27).

The objective function in Eq. (26) denotes the element-
by-element sum of the PEP vector v” . The limitations
mentioned in Eq. (27a) ensure that the cumulative
probability of a group of selected samples is no less than
y . From this set of selected samples, limitation (27b)
ensures that the minimal solution, aligned with Eq. (26), is
selected, where every component of the solution (v €v”)
is greater than the corresponding element of the historical
data samples ( p,, € p° ). This is enforced through the binary
variable C’, which equals ‘1’ if all constraints v/ > p?
(form=1, ...,|R | ), are satisfied in the s* sample, and zero
otherwise. It is important to note that since each historical
sample vector p’ consists of different types of VRE units,
assigning the binary variable C’ to the entire vector p°
respects the correlation between these technologies. The
optimization program in Eq.s (26)— (27) ensures that an
optimal solution is derived from the set of chosen samples,
alluded to as the PEP, v 7. The component-wise sum of the
PEP vector indicates the overall optimal quantity of system
VRE generation at a specified probability level y (confidence
level a =1 — y). According to Description 2, at a confidence
level a, the VRE m located at node i is anticipated to produce
an amount, v/ , which will be substituted for ﬁfr in the
power balance Eq. (24) to calculate the DLMP amounts.

It is important to highlight that the PEP method does
not ensure a unique solution. However, considering the
randomness of historical samples, as observed within our
model, this lack of uniqueness seldom poses a problem.
Nonetheless, if this scenario occurs, multiple PEP solutions
can be found, and A scenario-oriented stochastic optimization
framework can be used to solve the problem probabilistically
[39,40].
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L

Minimize Z v (26)
4 v
W s Vg el

Subject to:
D s >y, (a)
Vi >pc’, m=1,...,|R|, ses (b)
(27)
§ {01}, ©)

vieR+, m=1,..,

R| (d)

The historical daily production profiles for wind (W)
and PV systems are shown in Figs. 5 and 6, respectively.
According to the explanation given, 30 production scenarios
related to PEP are shown in figures. For using the outputs
generated by PEP, 4 cases are selected at confidence levels
of 25%, 50%, 75% and 100% and the remaining cases are

90
80
70
60
50

40

Power (MW)

30

20

10

0

shown as highlighted. The number of scenarios is reduced to
4scenarios reduced using the confidence levels method, and
the reduced scenarios are then applied to the optimization
problem. Reducing the number of these scenarios is essential
to ensure the optimization dimensions remain manageable.

4- Simulation Results and Discussion
4- 1- Evaluation of MG’s operation

Considering Fig. 7(a), it is observed that, except two
instances atthe beginning and end of the interval, no significant
changes in power generation occur in MG 4. This stability
can be attributed to the reliance on fossil fuel power sources,
such as diesel generators and CHP systems, which provide
a consistent output. Additionally, the WTs equipped with
maximum power point tracking (MPPT) systems and batteries
maintain a stable generation profile between 08:00 and 16:00,
unlike solar panels, which exhibit greater fluctuations during
this period. This is because the operational cost of WTs is
very low, so it is preferable to maximize production under
any energy pricing offer. In contrast, MGs 2 and 3 exhibit
variations in power generation between 08:00 and 14:00,
attributable to the greater number of solar panels installed.
During the period from 18:00 to 21:00, there is an increase in
the energy discharged from the batteries, which contributes
to an upward trend in the production curve. Conversely, MG

——75% —@=—100%

== 50% 25%

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time ¢h)

Fig. 5. Scenarios produced by PEP for WT
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Fig. 6. Scenarios produced by PEP for PV

1 demonstrates fluctuations in power generation primarily
due to the reliance on two diesel generators and the absence
of MPPT systems in its WTs. However, it is noteworthy that
between 08:00 and 14:00, MG1 achieves maximum power
generation from PV panels due to the implementation of
MPPT technology, while between 17:00 and 21:00, battery
assistance further enhances power output. Additionally,
as illustrated in Fig. 7(b), MGs 2 and 3 display the least
variability in their production curves, indicating a more
stable generation profile. However, MG 1 shows changes
in its production due to the use of fossil fuel power sources.
MG 4 also experiences fluctuations and reduced production
levels between 05:00 and 09:00, as well as between 13:00
and 18:00. These changes are likely attributable to the
operation of two CHP systems and two WTs, which affect
the overall production curve. As illustrated in Figs 7(a), 7(b)
and 7(c), effective resource management, energy storage,
and responsive load strategies enable microgrids to inject
active power into the main microgrid throughout operational
hours, thereby capitalizing on financial opportunities within
the energy market. However, during the early morning hours
(01:00 to 03:00) and the final hours of energy planning
(20:00 to 22:00), these microgrids tend to inject less active
power into the MMG. This reduced output is primarily due
to lower energy prices during these periods, coupled with
elevated fuel costs associated with non-renewable energy
sources. Such economic dynamics underscore the importance
of strategic planning in optimizing energy production and
market participation.

4- 2- Evaluation of MGs’ Economic Status

Figure 8 presents a comparative analysis of system costs
under two scenarios: one without losses, with losses, and
the other compromise-based approach. As illustrated in the
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figure, system costs are notably higher during the periods
of 08:00 to 12:00 and 17:00 to 21:00, which corresponds
to increased energy demand during these hours, resulting in
elevated prices. Conversely, the operational decisions of PV
systems regarding energy delivery to the grid are influenced
by strategies aimed at energy storage for enhanced economic
benefits in response to price fluctuations. Unlike WTs,
PV systems can store energy, allowing them to maximize
production capacity between 08:00 and 14:00 while
simultaneously charging batteries. Subsequently, during
the peak pricing period from 17:00 to 21:00, these batteries
discharge their stored energy into the grid. This strategy is
further elucidated in Fig. 7. Moreover, Fig. 8 indicates that
price increases occur across all time intervals, primarily
attributed to system losses. This section highlights the impact
of these losses on system prices over a 24-hour period,
underscoring the importance of considering both demand
dynamics and operational strategies in cost assessments.

4- 3- Evaluating of the best compromise solution

Achieving a solution that simultaneously minimizes
both cost and loss is practically infeasible. To address this
challenge, a compromise objective function can be defined,
which serves as a distance metric from the origin (0,0) to the
cost-loss curve within a two-dimensional cost-loss coordinate
system.

The compromise objective function is defined
as outlined in Eq. 25. This equation allows for the
determination of a compromise solution that effectively
balances the trade-offs between cost and loss.
By employing this approach, the inherent conflicts between
minimizing costs and losses can be systematically navigated,
ultimately leading to a more practical and achievable solution.
Figure 7(c) and Fig. 8 illustrate the impact of the compromise
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function on unit production and system price. As shown in
Fig. 7(c), for MG1, the production curve exhibits increased
output during time intervals 5-8 and 14-18, deviating from
the valley shape observed in Fig. 7(a). Consequently, a
smoother power production curve is observed. However, due
to computational losses, the power output during intervals 5-8
and 14-18 is slightly reduced compared to the minimum loss
state (Fig. 7(b)). For MG4, a minor decrease in production is
observed during the interval 20-24 due to the introduction of
system losses. In contrast, MG2 and MG3 exhibit minimal
changes owing to their reduced reliance on PV systems and
the incorporation of MPPT systems and ESS.

As shown in Fig. 8, the system price increases compared
to the previous states. However, due to the compromised
objective function, this increase is marginal. Notably, the
least price deviation occurs during intervals 9-13 and 18-
20, attributable to the utilization of PV and battery systems,
which minimize losses during these periods. Conversely,
the most significant price deviation is observed during the
interval 21:00-24:00.

4- 4- Sensitivity Assessment of System Costs and Losses
under Operational

In this section, a comprehensive sensitivity analysis
is conducted to evaluate the performance of the proposed
methodology. The primary objective is to establish a well-
structured balance and achieve arational trade-off between two
fundamental indices in power system operation, namely the
overall operating cost and the total network losses. These two
indicators simultaneously reflect the economic and technical
dimensions of power system planning and operation, thereby
serving as key benchmarks for assessing system efficiency. As
formulated in Eq. (25), the problem can be characterized as
an optimization, where it is practically infeasible to attain the
absolute minimum of both indices simultaneously. In other
words, a reduction in one parameter inherently leads to an
increase in the other. Consequently, the focus of the proposed

)
>®
(=3
S
(=)

6000
4000
2000

Cost ($/MWh

123456

approach is to determine an optimal compromise solution that
ensures an efficient balance between technical performance
and economic feasibility. To systematically investigate this
trade-off, the sensitivity analysis has been carried out under
three distinct scenarios: minimum achievable cost, actual
system cost, and compromise-based cost. An analogous
evaluation has also been performed for the network losses,
considering the same three operating scenarios. The results of
these analyses are illustrated in Figs 9 and 10.

According to Fig. 9, the maximum cost values in all three
scenarios predominantly occur during the time intervals
of hours 5-6, 9—15, and 19-20, which correspond to high-
demand periods. It can be observed that the system cost under
the compromise-based approach is nearly aligned with the
minimum achievable cost. More specifically, the compromise
scenario results in a 3% reduction compared to the actual
system cost, while exhibiting only a 0.7% increase compared
to the minimum cost case .Similarly, Fig. 10 demonstrates
that system losses also peak within the same time intervals. In
this regard, the compromise-based solution achieves a 2.5%
reduction in losses compared to the actual system, with merely
a 0.6% increase relative to the minimum-loss scenario.

These findings clearly highlight the effectiveness and
robustness of the proposed methodology, as the considerable
reductions in both operating cost and losses relative to the
actual system far outweigh the marginal increases compared
to their absolute minima. This confirms that the compromise-
based strategy provides a practical and technically sound
balance between conflicting objectives. Moreover, it should
be emphasized that, in operations mode, minimizing system
cost inherently increases network losses, and vice versa.
Thus, achieving a simultaneous reduction in both metrics
represents a major challenge in power system optimization.
Nonetheless, the obtained results demonstrate that the
proposed framework successfully addresses this challenge
by delivering a stable, efficient, and economically justified
solution for modern power system operation.

® Cost-min ™ Cost = Cost-comp

16
1718 19 20 21 2o 23 24

Time (h)

Fig. 9. Sensitivity analysis of system costs under varying operational
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5- Conclusions

This study presents an advanced energy management
strategy for MGs within the framework of a MMGs system,
explicitly considering the participation of MGs in energy
markets. A novel optimization problem has been formulated,
incorporating two primary objectives: minimization of
energy cost and losses alongside a compromise-based
objective function designed to balance these conflicting
goals. Numerical evaluations demonstrate that the proposed
compromise strategy effectively reduces both system costs and
network losses. Specifically, in the case of power generation
among MGs, MG4 exhibited the largest fluctuations across
the three studied scenarios, which can be attributed to the
integration of WTs and the associated variability in their
output.

Furthermore, simulation results highlight that the system
cost under the compromise-based approach closely aligns
with the minimum achievable cost. In this regard, during
peak demand periods, the compromise scenario achieves
a 3% reduction compared to the actual system cost, while
incurring only a marginal 0.7% increase relative to the
absolute minimum-cost case. Similarly, system losses, which
peak during high-demand intervals, are reduced by 2.5% in
the compromise-based solution compared with the actual
system, with only a 0.6% increase relative to the minimum-
loss benchmark.

These findings clearly underscore the effectiveness
and robustness of the proposed method. The reductions
achieved relative to the actual system substantially outweigh
the marginal increases observed against absolute optimal
benchmarks. This confirms that the compromise-based
optimization strategy successfully delivers a technically
sound and economically practical trade-off, ensuring balanced
improvements across conflicting system objectives.
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