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ABSTRACT: This paper examines the flow and heat transfer characteristics of an Eyring-Powell
fluid passing over a stretched sheet surface that is being heated by hot fluid from beneath. The thermal
mechanism of the model is analyzed on the considerations that the thermal conductivity is a linear
function of temperature, the fluid viscosity obeys the Reynolds model, and that the Cattaneo—Christov
heat flux model is incorporated into the energy equation. The governing nonlinear partial differential
equations were transformed into a system of nonlinear ordinary differential equations using suitable
similarity variables. The resulting self-similar problems were then solved using the spectral quasi-
linearization method (SQLM). The effectiveness and accuracy of this method were demonstrated through
error analysis and comparative studies with relevant existing results. Graphical outcomes illustrating the
impact of pertinent fluid parameters in the model equations are presented as velocity and temperature
profiles. It is noteworthy that both fluid temperature and velocity decline when the thermal relaxation
parameter and slip velocity parameter are increased. The results also reveal that the fluid variables,
such as the thermal relaxation time parameter , Eyring-Powell parameter , slip velocity parameter ,
surface-convection parameter , or radiation parameter boost the rate of heat transfer when any of these
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parameters is increased.

1- Introduction

Rheological fluids are generally recognized by scientists
and engineers as being more suitable than Newtonian
fluids for various real-world engineering and industrial
applications. Notable uses include the extrusion of polymers,
the molding of metals, and petroleum drilling. Researchers
have explored a variety of non-Newtonian fluids that exhibit
distinct rheological behaviors [1-5]. Among these, the
Eyring—Powell model has gained considerable importance.
This model’s relevance is not merely derived from empirical
observations; it can also be understood through the kinetic
theory of liquids. One significant advantage of the Erying-
Powell model is its ability to accurately describe fluid
behavior across a range of shear rates. Specifically, it aligns
with Newtonian fluid characteristics at both low and high
shear rates, making it versatile for different operational
conditions. The insights gained from this model have been
instrumental in understanding flows associated with modern
industrial materials such as powdered graphite and ethylene
glycol.

The Eyring—Powell model finds extensive application
across various natural, geophysical, and industrial processes.
These applications include temperature and moisture
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distribution in agricultural fields, environmental pollution
dynamics, underground energy transfer mechanisms, crop
damage due to freezing temperatures, thermal insulation
considerations, and more. Recent studies have delved into
different aspects of the Erying-Powell fluid under various
conditions. Patel and Timol [6] conducted a numerical
investigation on the flow behavior of an Eyring-Powell fluid
under asymptotic boundary conditions. The influence of
radiation on magnetohydrodynamic (MHD) flows of Eyring-
Powell fluids over stretching surfaces was examined by Hayat
et al. [7]. Rosca and Pop [8] examined the Powell-Eyring
fluid flow and heat transmission over a decreasing surface
in a parallel free stream. The flow of Powell-Eyring fluid
over a nonlinear stretching sheet was studied analytically by
Panigrahi et al. [9] Hayat et al. [10] looked at how convective
boundary conditions affected the constant flow of Powell-
Eyring fluid over a moving surface. Hayat et al. [11] looked
at the impact of heat flux and chemical reactions on the flow
of Eyring-Powell fluid past an exponentially extending sheet.
Moreover, quantitative analyses involving thermal radiation
and magnetic fields affecting Erying-Powell fluid flows have
been approached using spectral collocation methods [12].
The MHD dissipative Powell-Eyring fluid flow caused by
a stretching sheet with a convective boundary condition and
slip was solved via the shooting technique and the Runge-
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Kutta Method [13].

The study of boundary layer flow over stretching sheets
has gained significant attention recently due to its wide-
ranging applications in various manufacturing processes.
Understanding fluid behavior on different surfaces is
essential to optimizing industrial operations. Abbas et al. [14]
emphasized the practical benefits derived from analyzing fluid
flow over stretching surfaces, particularly in the production
of glass, polymer, aerodynamic plastic sheet extrusion, liquid
coating of photographic films, condensation of metallic plate
in cooling baths, and lubricant systems. The boundary layer
flow of a viscous fluid across a sheet moving with a velocity
proportional to the aperture distance was studied by Crane
et al. [15]. Kumari and Nath [16] reported the exact solution
of two-dimensional flow across a stretching surface in the
presence of a magnetic field. Mukhopadhyay [17] investigated
the MHD boundary layer flows past exponentially stretched
sheets while incorporating heat radiation and slip conditions
alongside the suction/blowing factor. The role of chemical
reactions and unstable free convection on heat transmission
via an expandable sheet in a permeable medium was
investigated by Chamkha and Mansour [18]. Turkyilmazoglu
([19]) discussed solutions to two-dimensional laminar flow
in a closed shape that crosses a continuously stretched sheet.
Tawade et al. [20] presented a numerical method designed for
solving unsteady, two-dimensional, laminar nanofluid flows
using fourth-order Runge-Kutta schemes complimented by
the shooting technique. Finally, the stagnation point flows
involving MHD nanofluids toward expandable sheets were
studied by Ibrahim et al. [21].

The heat transfer process, driven by temperature
differences within or between bodies, plays a critical role
in various applications such as power generation, nuclear
fusion, and so on. The foundational understanding of heat
conduction was established by Fourier [22], whose law
describes the instantaneous rate of heat flow and leads to the
parabolic heat equation. However, recognizing that different
materials exhibit varied thermal relaxation times, Cattaneo
[23] proposed in 1948 an integration of thermal relaxation
time into Fourier’s model. This adjustment enhances the
accuracy of modeling effective heat transfer rates. Building
on this idea, Christov [24] introduced a time derivative model
called the Cattaneo-Christov heat flux model. A comparative
study conducted by Hayat et al. [25] utilized the Cattaneo-
Christov double diffusion model to analyze viscoelastic
nanofluid flow. Furthermore, advancement was made by
Liu et al. [26], who developed an improved model for heat
conduction using Riesz fractional calculus combined with
the Cattaneo-Christov framework. Meraj et al. [27] studied
the role Cattaneo-Christov heat flux model on the Jeffrey
fluid through the Darcy-Forchheimer flow with variable
conductivity. Reddy et al. [28] used the Cattaneo-Christov
heat flux to analyze the energy equation while examining
the cross diffusion effects. Hadad [29] investigated thermal
instability in porous media under the influence of a heat flux
model. Hayat et al. [30] investigated how variations in surface
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thickness affect flows governed by the Cattaneo-Christov
model framework. The impact of the Cattaneo-Christov heat
flux model on the thermal behavior of a three-dimensional
Maxwell fluid with varying thermal conductivity was
demonstrated by Abbasi and Shehzad [31].

In this current study, we investigate the flow and heat
transfer characteristics of an Eyring-Powell fluid over a
convectively heated stretched sheet. This paper intends to
achieve the following objectives:

To explore the thermal mechanisms associated with a
convectively heated Erying-Powell fluid, particularly in
the context of nonlinear thermal conductivity, temperature-
dependent viscosity, and Cattaneo—Christov heat flux model

To provide critical insights on the roles of convective
conditions and slip effects in modifying the flow dynamics
under practical application scenarios.

To analyze the combined effects of non-linear thermal
conductivity, temperature-dependent viscosity, viscous
dissipation, joule heating, and slip velocity on the flow
characteristics over a stretching surface.

The novelty of this research lies in its focus on the
aforementioned objectives. This study extends existing
literature, particularly the work of Sogbetun et al. [32], by
integrating complex factors such as non-linear thermal
conductivity and variable viscosity within the framework
outlined by Cattaneo-Christov for heat flux modeling. To
the best of our knowledge, this is one of the first studies
that comprehensively addresses these aspects concerning
convectively heated Erying-Powell fluids.

2- Model Formulation

An incompressible, electrically conducting, steady
transport of an Eyring-Powell fluid passing over a
convectively heated two-dimensional linearly stretching
sheet with Cattaneo-Christov heat flux is studied. (x Y ) are
taking as the coordinate system of the flow and (u ,v) are
the respective velocity components. The x—axis is considered
as the flow direction, while y axis is perpendicular to it,
and hot fluid exists beneath the expandable sheet’s bottom
surface, as shown in Fig. 1. A non-varying magnetic field
of strength B is imposed along the positive y-axis. The
magnetic Reynolds number is considered to be small, hence
the induced magnetic field is neglected. The continuous sheet
moves in its own plane with the velocity U, =ax where
a the stretching parameter is. The stretched sheet surface is
heated by hot fluid from beneath through convection with the
temperature 7, =T, +A4x", T, <T, where T, denotes a
stable cold fluid temperature away from the sheet, A and m
are constants. The flow and heat transfer is being influenced
by thermo-physical terms like viscous dissipation, radiation
term, heat source, thermal relaxation parameter, and Joule
heating.

Under the aforementioned assumptions, the governing
boundary layer equations for an Eyring-Powell hydromagnetic
fluid in the presence of Cattaneo-Christov heat flux take the
form
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Here, # and v denote the velocity components along
the x and y axes, and the symbols T, p,,o,c, .k (T') and ¢
denote the fluid temperature, ambient fluid density, electricity
conductivity parameter, specific heat term, nonlinear thermal
conductivity, dynamic viscosity and heat flux, respectively.
The Powell-Eyring fluid parameters are symbolized by A
and C. These Eyring-Powell parameters, £ and C, are very
important because they determine the unique rheological
properties and behavior of the fluid. They have a direct
impact on how the fluid behaves and interacts in different
circumstances, providing vital information about how it
reacts to external factors.

The Cattaneo-Christov heat flux model for the fluid takes
the form

p A, [g‘t’ +VNGg—qNV + (V.V)q} =—KTWVI ()

The liquid thermal conductivity and thermal relaxation
time are presented by k (T') and A, respectively. Replacing

by 4, =0 Eq. (4) reduced to the Fouriar’s law. For
incompressible, Eq. (4) gives
q+ A [VNg—qNVV]==k(T)VT (5)

Now eliminate (} from Eq. (3), we have
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We introduce the following stream function and similarity
variables in Eq. (9)

w=yJav,xf(n),

©)
T-T
o)==
() =

The fluid viscosity and thermal conductivity are expressed
as:
uo=.e’ and
(10)
KT)=k, (1+5'(T-T,))

where )/ is a viscosity variation parameter and g is the
fluid dynamic viscosity at the ambient temperature, & is the
constant value of the coefficient of thermal conductivity far
from the plate, and §° is a small parameter.
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Applying Egs. (9)-(10) to Egs. (1), (2) and (6)-(8) give:
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Here «,0,4,M ,G,,A,Q,Ec,Pr,e,R,and & represent
the Eyring-Powell fluid parameters, slip parameter, magnetic
parameter, thermal Grashof number, surface-convection
parameter, heat source, Eckert number, Prandtl number,
thermal conductivity parameter, radiation parameter and
thermal relaxation term, respectively. Their mathematical
expressions are hereby represented as follows:

1 aU?
o =— , 5: w ,
B, v.C?

2
=2 L, M=

T -T h, |
G, Zgﬂ(/;“’)’ A=_I L’
ax k,\ a
9, U,
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c
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3- Skin Friction and Nusselt Number

The dimensional surface drag force and Nusselt number
associated with the model are expressed in Eq. (14)
respectively

7, =—{y* O 1 ginh (i
&y p ¢

(15)
*5u+ 1 8_u_ 1 (auJ
[ o ey o) | |
oT
qw=(—k( )—+qu (16)
oy o

Using Egs. (14)-(16), the dimensionless skin friction and
Nusselt number is obtained as

CfRe,: = {(e_ye(o) +a)y’(0)- 0%( "3 (O)} "

H(1+6(0))0 (0)+R,6'(0) (18)

1
Nu_Re 2 =

The solution to the Eqgs. (11)-(12) and their boundary
conditions Eq. (13), are sought after using the Spectral Quasi-
Linearisation Method. Applying the Taylor series of multiple
variables Eqgs. (11)-(13) yield

aOr r+l +a1rfr+l +a21fr+1

(19)
+a3rfr+l +a4r9r+l +a5r 0r+1 1
bOr 0r+1 + blr 0r+1 + b2r 9r+1

(20)

+b3rfr+l +b4rfr+l +b5rfr+l :RZ

Subject to
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Where

RI :aOrfr +alrfr +a2rfr

, (22)
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Egs. (19)-(20) are integrated using Chebyshev Spectral
Collocation method which is based on the Lagrange
interpolation polynomial defines on the interval [—1,1] . By
employing algebraic mapping in Eq. (32)

5:2%7— , ge[—l,l] (32)

the semi-infinite domain [0,00) in Eq. (21) is transformed
into the computational domain [—1,1] and thereafter discretize
into N collocation points by Gauss-Lobatto collocation
points using Eq. (33)

g =c0s%j; ee[-11];

(33)
j=0,1,2,3,.,N

Using the relation D = ED where D is the Chebyshev
spectral  differentiation néatrix, applying the spectral
transformation in Egs. (32)-(33) on the coupled Egs. (19)-
(20) and their boundary condition Eq. (21), we have

AY =B (34)

Subject to
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fr+1 (gN ): 0 In Eqgs. (38)-(44), T signifies the transpose of a matrix,
I denotes an (N +1)><(N +1) identity matrix and g, and

. W b, , (k = 0,1...,n),(r =0,,...,.N ) are diagonal matrices of
fo e ( )_1"'/1@ “f (gN ) (35) size (N +1)x(N +1). Applying the invertible method, the

. s solution to Egs. (34)-(37) is expressed as
+iaf | (e, )—g/laéfm (ev.)

Y=4"B (45)
, (1-6ley, ) |
0r+1 (gN ): —-A - (36) The appropriate initial solutions for Egs. (11)-(12) and
” il + 85{8 N, ” their boundary conditions in Eq. (13) are given by Eqgs. (46)-
(47)
' = O 0 ( ) = 0 = 1 79 7
S (gNO) +1\EN, (37 1= glaé‘—ﬂe —da-2 ne
In Eq. (34), 4 represents 2(N +1)x2(N +1) matrix, Y + (2 Aad—-22e7’ —2Aa— 3}6" (46)
and B connotes 4(N +1)x1 matrices as defined below 3
+24e7 4200 -2 Aas+3
A= {An A12:| 3
= (38)
4, 4y
1+A
A n
Thus, §=——c¢ (”A”A) (47)
I+A

Ay =a, D fr+1( )+aer fr+1( )
(39)

+a, Df ;€ ( )+a3rfr+l (3,- )I 4- Result and Discussion
Here, numerical and graphical representations of the
influence of salient fluid variables in the model Egs. (11) —
(13) are presented for discussion for better understanding.
A, =a,, Dem( )+ a 5r9r+1 (g )[ (40) For the numerical computation, the fluid parameters
were assigned the following values: A=Q =y =0.1,
a=¢(=€=0=A=FEc=M =02, Rd =Grx =0.5 and
Pr =1.2 except otherwise stated.

A, =b, D*f ( )+b Df ( ) The validation of our chosen solution methodology
21 3r r+l 4r r+l . . . .

41) is clearly established through the comparative numerical

+bs,f (6‘ 7 )1 results presented in Table 1. By setting Pr=1and all other

fluid parameters to zero while maintaining non-zero values
for e and 6, we created conditions directly comparable

, =by, D gm( )+b DHM( ) to previous studies. Our computational results demonstrate
(42) excellent agreement with three independent benchmark

+b2,6’,+1( ) solutions: Abbas et al. [13] obtained using the fourth-order
Runge-Kutta method combined with shooting technique,

Hayat et al. [33] derived through homotopy analysis method

y |:fr+l(80)’fr+l(81)""’fr+l(gN )’}T (HAM), anq Spgbetun et al. [32] solv'ed via the spect.ral
= (43) quasi-linearization method (SQLM). This strong correlation
6 (‘90)’9”1 (‘91)’ L (gN ) across different numerical approaches not only verifies the

accuracy of our implementation but also robustly confirms
the effectiveness and precision of SQLM in solving boundary

R ( & ) ( & ) ( & ) 4 value problems. The consistent alignment of our results with
B = ' v (44) these established methods underscores the reliability of both
R, (fo ),Rz (51 )7"-aR2 (ffN ) our current findings and the broader applicability of SQLM

for similar computational challenges.
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Fig. 2(a, b) show the effect of the thermal relaxation
time parameter (&) on the velocity distribution (f ' (77)) and
temperature distribution (9(77)) respectively. The relaxation
time parameter shows the same effect on both the velocity
and temperature distributions for the Eyring-Powell fluid.
For a greater estimation of thermal relaxation parameter,
the thickness of both the fluid velocity and temperature
distribution wane. An increase in thermal relaxation time
indicates that it takes longer for particles to exchange heat with
nearby particles, resulting in a drop in system temperature
and thus leads to a decrease in the dispersion of temperatures
and fluid velocity.

Fig. 3(a, b) illustrate the impact of the slip velocity
parameter (/1) on the heat transfer rate 6 (77) and the velocity
distribution/" (77) . A similar downward trend is observed for
both the velocity profile and thermal profile for an increasing
slip velocity parameter (/1) in both Fig. 13(a) and 3(b).
This observable fact can be explained physically by the slip
velocity effect, which signifies the existence of roughness
or irregularities on the sheet’s surface. Therefore, the fluid
velocity in the boundary layer area is slowed down by this
specific characteristic.

The consequence of the Powell-Eyring parameter (&)
variation against the fluid velocity profile (f '(n7))and
temperature profile (6(77)) is depicted in Fig. 4(a, b). The
graph reveals a major advancement in the velocity field and a
small decline in the temperature field for a greater estimation
of « . The inverse relationship between the power-Eyring
parameter ¢ and viscosity parameter is responsible for
the outcome. An increment in the fluid viscosity results in
the Powell-Eyring parameter reduction, which lowers fluid
internal resistance by allowing the fluid molecules to travel
more freely and thus increases the velocity field.

Analysis of the Powell-Eyring parameter (&) via fluid
velocity distribution (f '(77)) and temperature distribution
(6(n)) is expressed in Fig. 5(a, b). Observations from the
Fig. reveal a distinct impact Powell-Eyring parameter &
has on the velocity field and temperature field. The thermal
distribution for an Eyring-Powell fluid appreciates for a
higher Eyring-Powell parameter (5 = 0.2,0.4,0.6,1.0) while
the fluid flow velocity declines.

Consequence of the magnetic parameter (M ) variation
against the Powell-Eyring fluid flow velocity f° (77) and
temperature distribution & (77) is illustrated in Fig. 6(a, b). It
is observed that an augmentation in the magnetic parameter
decelerates the velocity gradient of the Eyring-Powell fluid.
Greater estimation in magnetic influence raises the resistance
force or Lorentz force, which acts perpendicular to the path of
fluid flow. As a result, the boundary layer thins as the Lorentz
force grows and the impedance force rises in an attempt to
resist fluid flow. It is clear that raising the magnetic parameter
results in an improvement in the temperature distribution
and the sheet temperature 6’(0), which raises the thermal
boundary layer thickness.

Fig. 7(a, b) represent the influence of viscosity parameter
variation (y) on the fluid velocity profile(f '(r7))and the
thermal distribution (6(77)) for Eyring-Powell fluid. An
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exaggerated estimation of viscosity parameter reduces the
fluid velocity gradient but raises the temperature field for
an Eyring-Powell fluid. It is a fact that fluid’s molecules
interact more intensely at a higher viscosity, which hinders
the molecular movement capability. At greater estimation
of viscosity, the fluid particles encounter greater resistance
while flowing and this leads to a rise in internal resistance and
a slight decrease in the fluid velocity distribution.

The impact of the surface-convection parameter (A) on
the temperature distribution (6(77)) and velocity distribution
f'(n) is seen in Fig. 8(a, b). A higher surface-convection
parameter raises both the fluid temperature and the sheet
temperature 6 (0) due to the direct relationship between
the surface-convection parameter and the heat transfer
coefficient. Furthermore, as the value of A grows, the
velocity distribution of the boundary layer substantially
increases. Surface-convection parameter is responsible for
heat transfer from the fluid to its surroundings. When the
surface-convection parameter increases, the enhanced heat
transfer causes the fluid’s temperature to increase.

The graphical representation of the temperature
distribution 9(77) and velocity distribution f (77) of the
Eyring-Powell fluid against variation in thermal conductivity
parameter (&) is shown in Fig. 9(a, b). The fluid velocity field
is indirectly affected by the thermal conductivity parameter,
which results in a little increase in the fluid velocity gradient.
Furthermore, advancement in thermal conductivity parameter
implies a higher molecular kinetic energy which results in an
increase in molecular collisions and greater thermal boundary
layer thickness away from the sheet.

The relationship between the Powell-Eyring fluid
velocity field f'(77), temperature distribution (8(77)) and
radiation parameter (R,) are presented in Fig. 10(a,b). In
Fig. 10(a) we notice the impact of the radiation parameter on
the temperature and found that the temperature field escalates
when the radiation parameter is boosted. Also, the reaction of
velocity field to increasing radiation parameter is illustrated
in Fig. 10(b). The graph indicates that for every increase in
the radiation parameter, fluid velocity accelerates.

Fig. 11(a,b) show how the Eyring-Powell fluid temperature
distribution 9(17) and flow profile f~ (77) are affected by the
heat generation/absorption parameter (Q) . For both the heat
distribution and the fluid velocity in Fig. 11(a) and 11(b),
a consistent trend is observed. An improvement in the heat
generation/absorption  parameter (Q = 0.1,0.2,0.3,0.4)
increases both the temperature profile and the velocity field.

Fig. 12(a, b) display the reaction of Eyring-Powell
thermal profile (6(77)) and momentum profile f'(77) to
varying Eckert number (Ec). An Eckert number is the
process by which kinetic energy is transformed into stored
energy and subsequently dispersed as heat when work is
done in proportion to a viscous fluid’s stresses. Therefore, a
rise in Eckert number significantly improves the temperature
distribution and sheet temperature and indirectly raises the
fluid velocity gradient.

Fig. 13(a,b) show the effect of the thermal Grashof
number (G, ) on the velocity field (f ' (77)) and temperature
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ﬁeld(@(n)) for an Eyring-Powell fluid. Fig. 13(a) represent
the change in velocity profile under the influence of thermal
Grashof number. For a greater estimation of the thermal
Grashof number Grt =0.5,1.0,2.5,5.0, the fluid velocity
improves. The behavior of the fluid temperature field towards
an enhanced thermal Grashof number is found in Fig. 13(b).
We observed that the temperature profile for Eyring-Powell
fluid decreases when enhancing the thermal Grashof number
Fig. 14(a, b) illustrates the consequence of Prandtl number
(Pr) variation against the fluid velocity profile (f ' (77)) and
temperature profile (9(77)) . Fig. 14(a) represents the change
in velocity profile under the influence of Prandtl number. An
increase in the estimation of Prandtl number causes a decline
in velocity profile. Fig. 14(b) depicts effect of Prandtl number
on thermal field. For increasing Prandtl number, thermal
diffusivity decreases, meaning that fluid particles move more
slowly from the hot to the cold side which consequently
reduces the temperature profile of an Eyring-Powell fluid.

4- 1- Phyisical Quantities

Table 2 presents an overview of the impact of some
pertinent varying fluid properties on the skin friction and
Nusselt number of an Eyring-Powell fluid. The computed
values shown in the table reveal that advancement in
either the thermal relaxation time parameter(§), Eyring-
Powell pararneter(a), or thermal conductivity parameter
(&) thickens the skin friction of the fluid. In contrast, a
higher value of the Powell-Eyring parameter (&), viscosity
parameter variation(y), slip velocity parameter(4),
surface-convection parameter (A ) , radiation parameter (Rd )
, or heat generation/absorption parameter (Q ) causes the skin
friction to wane. Further, fluid variables such as the thermal
relaxation time parameter (&), Eyring-Powell parameter ()
, slip velocity parameter(ﬂ,) , surface-convection parameter
(A), or radiation parameter (Rd ) boost the Nuselt number
when either of the parameters is increased. However, the
augmentation of the Powell-Eyring parameter(5 ), viscosity
parameter variation (), thermal conductivity parameter (&)
, or heat generation/absorption parameter (Q) reduces the
Nuselt number.

5- Conclusion

An insight into the consequences of the varying fluid
properties on the flow and heat transfer characteristics of
Eyring-Powell fluid over a convectively heated stretched
sheet in the presence of Cattaneo—Christov heat flux model is
hereby presented below:

Enhancement of the Powell-Eyring parameter (0()
, thermal relaxation parameter(f), slip velocity parameter
(4), thermal Grashof number (G, ) or Prandtl number (Pr
against the Eyring-Powell fluid temperature profile (6’ 7])
reveals a decline in the fluid temperature field

Augmentation of thermal relaxation parameter (<),
slip velocity parameter(A), Powell-Eyring parameter (&)
, magnetic parameter (M ), viscosity parameter (y), or
Prandtl number (Pr) decelerates the velocity gradient of
Eyring-Powell fluid.
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The thermal boundary layer thickness of an Eyring-Powell
fluid appreciates for a higher Powell-Eyring parameter (5 ) ,
magnetic parameter (M ) , Viscosity parameter (7) , surface-
convection parameter(A), thermal conductivity parameter
(5) , radiation parameter (R J ), heat generation/absorption
parameter (Q) , or Eckert number (E )

Advancement in the Eyring-Powell fluid velocity is
observed when the Powell-Eyring parameter (&), surface-
convection parameter(A), thermal conductivity parameter
(5) , radiation parameter (R d) heat generation/absorption
parameter (Q) thermal Grashof number (Gn) or Eckert
number (£ ) is boosted.
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