
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 57(1) (2025) 53-62
DOI: 10.22060/miscj.2025.23426.5373

Double Deep Q Network with Adaptive Prioritized Experience Replay

Majid Adibian, Mohammad Mehdi Ebadzadeh*

Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran

ABSTRACT: In some deep reinforcement learning models, an experience replay buffer is utilized
to address the issue of sequential data dependencies and leverage useful data generated in the past.
Then, the prioritized experience replay (PER) method modified sampling from this buffer for training
the DQN model, moving away from random selection to choosing each transition in proportion to its
temporal difference (TD) error. This method does not use the importance of transitions and the number
of times that each transition contributes to model training. We proposed a new prioritization method for
calculating the probability of selecting each transition adopted to the importance of that transition and the
contribution counter. So in this method, instead of relying solely on the TD error, three additional values,
including transition reward, transition counter, and policy probability (RCP values) are incorporated.
These three values are obtained for each transition, and after normalization, they are used to calculate
the probability of that transition in the sampling from the replay buffer. Experiments conducted on some
Atari environments demonstrate that each of these values can significantly improve the episode return
compared to the simple prioritization method. Furthermore, three aggregation functions, including min,
max, and mean, are proposed to utilize all three RCP values in data prioritization. The results of the
experiments indicate that the aggregation function should be determined based on each environment,
but the ‘mean’ aggregation function can be a preferred choice due to its acceptable performance across
different environments and the incorporation of all three RCP values.

Review History:

Received: Aug. 08, 2024
Revised: Jul. 08, 2025
Accepted: Aug. 03, 2025
Available Online: Aug. 05, 2025

Keywords:

Deep Reinforcement Learning

Prioritized Experience Replay

Deep Q-Network

53

1- Introduction
In recent years, deep reinforcement learning (DRL) has

garnered significant attention as a powerful framework for
training agents to make sequential decisions in complex and
dynamic environments. By integrating deep neural networks
with reinforcement learning algorithms, DRL has achieved
remarkable success across a wide range of applications,
including game playing, robotics, and autonomous systems.

One of the foundational models in this field is the Deep
Q-Network (DQN) [1], which introduced the use of neural
networks to approximate the action-value function. DQN
enables agents to estimate the optimal action in a given state
by learning a value function Q(s,a), thereby playing a pivotal
role in the advancement of deep reinforcement learning.

In online reinforcement learning, agents interact with the
environment incrementally, generating a continuous stream
of experience data. A key challenge in this setting is the
strong temporal correlation between successive data samples,
which violates the assumption of independent and identically
distributed (i.i.d.) inputs typically required for stable neural
network training. Moreover, important past experiences may be
rapidly overwritten, limiting opportunities for efficient reuse.

To mitigate these issues, the technique of experience
replay was introduced [2], in which transitions collected
during interactions are stored in a replay buffer and later
sampled randomly for training. This approach decorrelates
the data, enhances stability, and improves sample efficiency,
particularly in environments where data acquisition is
expensive or limited.

Traditional experience replay employs uniform random
sampling, treating all stored transitions equally. However,
this assumption neglects the fact that not all experiences are
equally informative. Some transitions carry richer learning
signals than others and can be more beneficial if sampled
more frequently.

To address this, the Prioritized Experience Replay (PER)
method was proposed as an improvement over uniform
sampling [3]. PER assigns higher sampling probabilities to
transitions with larger temporal-difference (TD) errors, which
reflect a greater discrepancy between predicted and actual
values. Transitions with higher TD-errors are considered more
surprising and informative, suggesting that revisiting them can
yield larger updates and accelerate the learning process.

Although Prioritized Experience Replay (PER) has
improved learning by prioritizing transitions with large TD
errors, it suffers from several limitations. PER solely relies *Corresponding author’s email: ebadzadeh@aut.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article

 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/miscj.2025.23426.5373
https://orcid.org/0000-0001-6466-5229

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

54

on the TD error for prioritization, which may overlook other
meaningful signals, such as the actual reward received,
the frequency with which a transition is replayed, or the
significance of an action as indicated by the policy. Moreover,
it uses a fixed exponent for prioritization throughout training,
which may not be optimal as the learning progresses.

To address these limitations, we propose an Adaptive
Prioritized Experience Replay method that augments the
traditional PER framework by introducing three additional
features for each transition: reward, transition usage counter,
and policy probability—collectively termed RCP values.
These values are normalized and used to dynamically adjust
the prioritization of transitions, leading to more informative
sampling and potentially improved learning stability and
efficiency. Our method also allows for various aggregation
strategies over RCP values, providing flexibility to adapt
across different environments.

The next sections first provide a review of related research
in the field of experience replay and deep reinforcement
learning. Based on insights from previous studies, we then
introduce our proposed method. Finally, the effectiveness
of the approach is evaluated through experiments on several
Atari environments.

2- Related Works
In both human cognition and real-world decision-making,

experiences that involve significant outcomes—such as
large rewards or noticeable errors—tend to be recalled
and processed more frequently [4-7] This observation has
inspired the development of mechanisms in reinforcement
learning that aim to mimic such prioritization by replaying
past transitions based on their potential contribution to
learning [8]. Rather than treating all experiences equally,
these methods emphasize the most informative ones,
thereby enabling agents to focus computational resources on
transitions that are expected to yield greater improvements in
policy or value estimation.

Building on this intuition, experience replay has become
a foundational technique in deep reinforcement learning
(DRL), particularly in off-policy settings where data
efficiency is critical. By allowing agents to store and reuse
past experiences, replay buffers have significantly improved
training stability and sample efficiency. One of the most
influential advancements in this area is the introduction of
prioritized experience replay (PER) [3], which proposes that
not all experiences are equally valuable for learning. Instead of
sampling transitions uniformly, PER assigns higher sampling
probabilities to transitions with larger temporal-difference
(TD) errors, under the hypothesis that such transitions
contribute more to updating the value function effectively.

This notion has not only improved the performance of
standard Deep Q-Networks (DQN) but has also proven
effective when scaled to distributed settings, where multiple
actors generate experiences concurrently and a centralized
learner selectively samples from a shared prioritized buffer
[9]. Such distributed architectures have highlighted the
scalability and adaptability of PER in high-throughput

reinforcement learning environments.
Despite the success of PER in value-based methods like

DQN, its direct application to actor-critic architectures—
particularly in continuous control tasks—has shown
limitations. Empirical and theoretical investigations suggest
that high TD-error transitions, which are typically favored by
PER, may not always align with the learning needs of the
actor component. Specifically, such transitions may introduce
instability in policy gradients, leading to divergence from
the optimal policy direction [10]. To address this, various
adaptations of PER have been proposed for actor-critic
settings, including mechanisms that balance the prioritization
between actor and critic objectives to ensure more stable and
effective policy updates.

Further enhancements to PER have explored augmenting
the priority computation with additional features beyond TD-
error alone. For instance, several studies propose combining
model-free and model-based elements, using predictive
signals from learned environment models to enrich the
prioritization criteria [11]. This hybrid approach introduces
auxiliary indicators that can act as proxies for sample
informativeness, leading to more balanced and curriculum-
like sampling strategies. By leveraging both learned dynamics
and value approximations, such model-augmented techniques
aim to improve generalization and accelerate convergence
without significantly increasing computational overhead.

To overcome the limitations of relying solely on TD-error,
some approaches have proposed correcting or complementing
the priority scores using adaptive mechanisms. These include
self-adjusting schemes that estimate the discrepancy between
actual and stored priorities over time, thereby reducing bias
introduced by stale or outdated samples [12]. In parallel,
other methods have introduced value-theoretic perspectives,
interpreting TD-error as a proxy for the marginal value of
each experience. Such interpretations have led to theoretical
bounds that relate the priority of a transition to its potential
contribution to the cumulative reward, thereby offering more
principled ways to guide replay sampling [13]. Together,
these efforts address the challenge of maintaining meaningful
and up-to-date prioritization throughout training.

Another line of research has focused on incorporating
uncertainty into the prioritization process. Traditional PER
may inadvertently prioritize transitions with high TD-errors
arising from noise rather than from actual learning potential.
To mitigate this, uncertainty-aware variants of PER have been
proposed, which leverage epistemic uncertainty estimates
to distinguish informative transitions from stochastic
outliers [14]. These approaches aim to reduce the impact
of noisy experiences that could mislead learning. Similarly,
uncertainty-based filtering has been employed in continual
learning settings to retain only experiences that are both
uncertain and diverse, thereby optimizing memory usage and
preventing catastrophic forgetting over task sequences [15].

Beyond uncertainty, reward-based signals have also
been explored as alternative or complementary cues
for prioritization. Drawing inspiration from cognitive
neuroscience, some methods incorporate reward prediction

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

55

error (RPE) as a prioritization metric, arguing that
discrepancies between predicted and actual rewards reflect
transitions with high learning potential [16]. By integrating
RPE into the prioritization scheme—alongside or instead of
TD-error—these methods aim to better align sampling with
policy improvement objectives, particularly in environments
where value estimation may be unreliable or delayed.

The role of PER has also been re-examined in multi-
task and multi-agent reinforcement learning contexts,
where naive sampling strategies often lead to performance
imbalances across tasks or agents. In such settings, task-
aware prioritization mechanisms have been developed to
dynamically allocate sampling attention to underperforming
tasks or agents, thereby promoting balanced learning [17].
Moreover, integrating shared and task-specific feature
representations within the replay mechanism further
enhances the effectiveness of such prioritization by enabling
better generalization across related tasks. These approaches
highlight the growing need for context-sensitive prioritization
strategies in complex RL environments.

In parallel with algorithmic innovations, several studies
have explored the interplay between experience prioritization
and broader training paradigms such as curriculum learning.
By viewing the replay buffer as a mechanism for structuring
the order of experience exposure, some approaches implicitly
adopt curriculum-like strategies, where simpler or more
informative samples are presented earlier in training [11,
18]. This perspective aligns with findings that structured
sampling—not just random replay—can accelerate
convergence and improve final policy quality. The integration
of curriculum principles into experience replay thus opens
avenues for more adaptive and staged learning strategies.

The effectiveness of PER also depends heavily on the
operational characteristics of the replay buffer itself, such
as its capacity, update frequency, and the ratio of learning
to data collection. Recent empirical studies have shown
that increasing buffer size or adjusting the replay ratio can
have non-trivial and sometimes counterintuitive effects on
learning dynamics [19]. For instance, uncorrected multi-step
returns—though theoretically inconsistent—may yield better
empirical performance when combined with large replay
memories. These insights suggest that prioritized sampling
must be considered in conjunction with the broader design of
the experience replay mechanism to achieve optimal results.

The versatility of prioritized experience replay has also
been demonstrated through its application in domain-specific
problems beyond standard benchmark environments. For
instance, in financial decision-making tasks such as optimal
trade execution, PER has been employed alongside heuristic
policies to enhance learning efficiency in noisy market
conditions [20]. In robotics and communication-constrained
multi-agent systems, PER-inspired scheduling strategies have
been used to prioritize information that maximizes utility
under bandwidth limitations [21]. These applications confirm
that the principles of PER can be effectively extended to
structured real-world problems where sample efficiency and
relevance are critical.

Taken together, these advancements reveal a clear
trajectory in the evolution of experience replay—from
uniform random sampling toward more intelligent, context-
aware, and adaptive prioritization schemes. Whether through
theoretical formulations, hybrid value-model integrations,
uncertainty-driven sampling, or task-specific strategies, the
field continues to refine the criteria by which past experiences
are deemed valuable. These developments underscore the
central role of experience replay in modern reinforcement
learning and motivate continued exploration into how the
structure and content of the replay buffer can be optimized
for different learning objectives and domains.

Building on these prior advancements, we propose an
adaptive experience replay mechanism that enhances the
original PER framework. Our method introduces three
transition-specific signals—reward, usage counter, and policy
probability—and combines them to dynamically determine
the importance of each transition. This approach aims to
provide a more flexible and informative sampling strategy
for training deep RL models.

3- Adaptive Prioritized Replay Buffer
3- 1- Prioritized Experience Replay

If data (), , , s a s r′ exists for each transition in the replay
buffer, the DQN method attempts to predict the Q-value
for state 1s and action a using a neural network θ . The
target Q-value is obtained using a target model θ ′ , which is a
copied version of the model θ .

     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (1)
     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (2)

In this equation, δ is the magnitude of the temporal-
difference (TD) error, and γ is a discount factor.

The prioritized experience replay (PER) method utilizes
the TD error and assigns a probability to each data in the
buffer so that data with higher errors are more likely to be
selected.

     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (3)

Based on the PER paper [3], the exponent α is set to
a fixed value of 0.6. To address bias in high-error data,
importance sampling weight is applied to reduce the impact
of model updates on data with higher priority.

     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (4)

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

56

     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (5)

     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (6)

Which N is the replay buffer size and exponent β is
scheduled from the initial value 0 0.4β = to 1 linearly [3].
By employing this method, higher-error data can contribute
more to the training, ensuring their valuable information
is effectively learned. This method can improve learning,
increasing the return value in many environments compared
to the DQN method with uniform random sampling from the
replay buffer.

3- 2- Prioritization with RCP Values
In this research, we consider the PER method as the

baseline and propose a novel method for calculating the
priority of each data. In this method, in addition to the TD
error, we incorporate three additional values, including
the reward of the transition, the number of times that each
transition has been used in training the model, and the
probability of the action in the current state ()()|a sπ , in
the calculation of the priority of that data. We will refer to
these three values as RCP (Reward, Counter, Policy).

Reward: Assume two transitions have been used in
training the model, both having the same TD error. However,
if the reward obtained from the first transition is significantly
higher than that of the second, learning valuable information
in the first transition will be more important. This is in contrast
to the PER method, which considers equal probabilities for
these two data due to their identical TD errors.

Because of the variety of reward values defined in
different environments and transitions, the reward value in
each transition is normalized to have a number between 0 to
1 as the reward of any transition (see Algorithm 1).

Counter: In cases where two data points have the same
TD error but one has been used 10 times in training while
the other only once, it is better to assign higher priority to
the less frequently used data. Additionally, if a data point is
noisy and consistently has a high error, without considering
the frequency of its contribution to the training, it can be
consistently utilized, posing challenges to the training
process. We know that the PER method does not account for
these factors.

To use this value in calculating the priority of the
transitions, the sigmoid function is used to obtain the
normalized counter, which is a number between 0 to 1 (see
Algorithm 1).

In this sigmoid-based normalization, we use a scaling
factor of -4 in the exponent to control the steepness of the
curve. This value ensures that transitions which have been
used frequently in training quickly receive lower normalized
scores, thereby reducing their sampling probability and
helping the model focus on less-reused but potentially
informative transitions. (Fig. 1)

Policy ()()π a | s : A higher probability of selecting action

a in state s, denoted as π(s, a), indicates that the Q-value
for this state-action pair is relatively higher than for other
actions in the same state. This reflects the agent’s confidence
in choosing this action under its current policy. While
this aspect is not considered in the original PER method,
incorporating π(s, a) into the prioritization process helps
emphasize transitions that are more aligned with the agent’s
learned behavior.

In methods like DQN, where the policy is not explicitly
modeled, π(s, a) can be estimated using a softmax function
over Q-values. Unlike raw Q-values, which are unbounded
and often unstable early in training, the policy probability
is normalized and bounded between 0 and 1, making it a
more stable signal for prioritization. Moreover, it introduces
a probabilistic perspective on policy alignment, which
complements the TD error and reward signals by highlighting
transitions that reinforce the agent’s consistent decision-
making patterns. This can improve learning stability and
policy convergence.

     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (7)

In the proposed method, ()|a sπ is first calculated using
this relationship, and then it is used in a new prioritization
process (see Algorithm 1).

3- 3- Adaptive Prioritization
In this research, we have utilized RCP values to enhance

the prioritization of each transition in the buffer more
effectively. As seen in equation (3), the parameter α is the
exponent of TD error and determines how much prioritization
is used. If we set this parameter to zero, the probabilities of
all transitions become equal, and sampling will be uniformly
at random. However, as this parameter increases, we move
further away from random sampling.

Despite the importance of the value of this parameter, the
PER method sets a constant value for it and does not change
it during training. In the proposed prioritization method, this
parameter is defined based on the information associated with
each data. So the priority value for each data is determined
using TD error and data-dependent parameter α .

     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (8)

Where the parameter α is dependent on the values of
the normalized reward, normalized counter, probability of
action in the current state ()()|a sπ (RCP values), or a
combination of them.

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

57

Fig. 1. Scheduling epsilon from 1 to 0.001 exponentially

Fig. 1. Normalizing transition replay counter using Sigmoid function.

ALGORITHM 1: CALCULATE RCP VALUES

1 m 0eanr  ; 1stdr 

2 Procedure Normalize Reward (batchr)

3 m . ().(1).ean batch meanr mean r r  

4 . ().(1).std batch stdr std r r  

5 . 2 ; . 2mean std mean stdupper r r lower r r    

6 ((,),)batch batchr r lowmax max er upper

7 Return () / ()batchR lower upper lower 

8 Procedure Get Policy ((,)Q s a , ia)

9
(,)(,)(,) / ji Q s aQ s a

i j
s a e e  

10 Return (,)is a

11 Procedure Normalize Counter (1 2, .s a s)

12 1 2(, ,) 41/ (1)counter s a sc e  
13 Return c

     * , , ,aQ s a r Q s argmax Q s a      (1)

   * , ,Q s a Q s a   (2)

  j

ii

P j










(3)

 
1 1.j N P j




 

    
(4)

  . . ,j j Q s a    (5)

.     (6)

 
 

 

,

,
|

i

j

Q s a

i Q s a

j

ea s
e

 


(7)

 
j

i

j

ii

P j










(8)

     |, , , , j j j j j j jf r a s counter s a s   (9)

 (9)

So the training algorithm for DQN using the proposed
prioritized replay buffer will be like the PER, except that the
parameter α is based on RCP values (Algorithm 2).

In the next section, the impact of utilizing each of the
three values of RCP and various combinations of them will
be examined.

4- Experiments and Results
In this study, the Double DQN (D2QN) model has been

employed using Prioritized Experience Replay (PER) as
our baseline, referred to as PER-DQN. The neural network
architecture follows the design introduced by Mnih et al. [1],
consisting of three convolutional layers with ReLU activation
functions, followed by two fully connected layers. The input
to the network is a stack of four consecutive grayscale frames
of size 84×84 pixels. The final layer outputs Q-values for
each possible action in the environment.

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

58

Multiple Atari environments are utilized for training the
models. Each model is trained for up to 10 million steps using a
mini-batch size of 32 and a replay buffer with a capacity of one
million transitions. We use the Adam optimizer with a learning
rate of 0.00025. The target network is updated every 10,000
steps. The epsilon-greedy strategy is employed for exploration,
with epsilon decaying exponentially from 1.0 to 0.001 (Fig. 2).

To evaluate the models during training, the agent undergoes

five evaluation episodes every 100,000 training steps using the
current policy, and the average and standard deviation of the
return values across these 5 episodes are recorded and plotted
to visualize performance trends over time.

All implementations were carried out in Python 3.8 using
PyTorch 1.12.1. The Atari environments were obtained using
OpenAI Gym along with the Arcade Learning Environment
(ALE).

Fig. 2. Normalizing transition replay counter using the Sigmoid function.

Fig. 2. Scheduling epsilon from 1 to 0.001 exponentially.

ALGORITHM 2: DOUBLE DQN WITH ADAPTIVE PRIORITIZED EXPERIENCE REPLAY

 Input: minibatch k , step-size  , replay period K and size N , exponents  and  , budget T

1 Initialize replay memory H =∅, ∆=0, 1 1p 

2 Observe 0S and choose 0 0()a s

3 for 1t  to T do
4 Observe ts , tr , t

5 Store transition (1ts  , 1ta  , tr , t , ts) in H with maximum priority ()t i t ip max p

6 if 0t  mod K then
7 for j=1 to k do:
8 1 1 1 1(, (|), (, ,))j j j j j j jf R a s counter s a s    

9 Sample transition () /j i
j ii

j P j p p  

10 Compute importance-sampling weight    · / ()j i iN P j max
 




11 Compute TD-error     1 1=r + , , ,j j j target j a j j jQ s argmax Q s a Q s a   

12 Update transition priority | |j jp 

13 Accumulate weight-change 1 1(,). . j jj j Q s a    

14 Update weights .     , reset 0 
15 From time to time copy weights into target network argt et 

16 Choose action ()t ta s

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

59

4- 1- Impact of RCP Values
Initially, we investigate the influence of each of the three

RCP values on the episodic returns. To achieve this, we
employ four Atari environments: Seaquest, AirRoad, Qbert
and Breakout. PER-DQN is trained on these environments as
the baseline model.

For each of the three RCP values, the training of DQN
with adaptive prioritized experience replay (APER) is
performed, incorporating only one of these values at a time.
The variations in the returns of evaluation episodes for each
model and environment are observed in the plots depicted in
Fig. 3.

Based on these plots, it is evident that using each of the
RCP values in the calculation of the priority of each data
has significantly enhanced the model compared to the PER
method. After a detailed examination, we can find out that

the impact of using any value of RCP values varies across
different environments. However, in general, it can be
observed that the effects of the two methods, policy and
reward, are closer to each other, while the counter method
has generally achieved a greater improvement.

This improvement is particularly noticeable in
environments with high reward variance, such as Seaquest
and AirRaid, where our method exhibited smoother and more
stable learning curves. This indicates that incorporating RCP
values can enhance robustness against stochasticity in the
reward signal by diversifying the prioritization mechanism
beyond noisy TD errors.

After identifying the beneficial effects of these values
on improving model training, we will explore different
aggregation functions in the next experiment to achieve the
optimal configuration.

(a)

(b)

(c)

(d)

Fig. 3. Comparison of episodes returns in DQN with prioritized experience replay (PER-DQN) and Adaptive prioritized
experience replay (APER-DQN) using RCP values in prioritization.

Fig. 3. Comparison of episodes returns in DQN with prioritized experience replay (PER-DQN) and Adap-
tive prioritized experience replay (APER-DQN) using RCP values in prioritization.

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

60

4- 2- RCP Values Aggregation
To utilize all three RCP values, three functions have

been considered for their aggregation. In each of these
three methods, the RCP values are combined, resulting in
a single value that is the exponent of TD error (equation
(9)) To combine these three values, minimum, maximum,
and average, have been employed to achieve the optimal
aggregation function. Practically, in the Algorithm 2, the
function is defined to minimize, maximize, or average three
RCP values.

To evaluate the three mentioned combination methods, the
same four Atari environments are used. The proposed model
(APER-DQN) is trained with each aggregation function on
these environments and is compared with the results of PER-
DQN. The results of this experiment are illustrated in the
plots of Fig. 4.

According to the obtained results, it is evident that the

use of each aggregation method can increase episode return
values in various environments. Additionally, it is observed
that the impact of each aggregation method varies depending
on the environment, and an appropriate aggregation function
must be selected based on the specific characteristics of the
task.

Despite this variability, the mean aggregation method
demonstrated consistently stable performance across
all tested environments. Unlike min or max, which can
overemphasize a single component of the RCP values, the
mean method ensures a balanced contribution from all three
signals—reward, counter, and policy probability—reducing
the risk of bias toward any individual factor.

Considering both its stable empirical performance and
its balanced nature, the mean function can be regarded as
a strong default choice for aggregation when environment-
specific tuning is not available.

(a)

(b)

(c)

(d)

Fig. 4. Comparison of episodes returns in DQN with prioritized experience replay (PER-DQN) and Adaptive prioritized
experience replay (APER-DQN) using different aggregation functions.

Fig. 4. Comparison of episodes returns in DQN with prioritized experience replay (PER-DQN) and Adap-
tive prioritized experience replay (APER-DQN) using different aggregation functions.

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

61

While the proposed aggregation functions (min, max,
mean) offer effective ways to integrate RCP values, their
performance may vary across different types of environments.
In particular, environments with sparse rewards pose unique
challenges, as the reward component of RCP may lack
sufficient informative value. In such cases, direct reliance
on immediate rewards may lead to unstable prioritization or
even ineffective sampling.

To address this, the adaptive prioritization mechanism can
be adjusted to reduce the influence of the reward component
and instead place more emphasis on the counter and policy
components, which remain informative regardless of reward
sparsity. Additionally, smoothing techniques such as moving
averages or simple reward shaping can be applied to create
a more useful reward signal. This flexibility allows the
proposed method to maintain robust performance even in
environments with highly sparse or delayed rewards.

One potential concern with prioritization strategies is
the risk of overfitting due to repeatedly sampling a narrow
subset of transitions. Our method mitigates this by integrating
multiple signals—reward, usage frequency, and policy
probability—each of which is normalized and aggregated
in a way that smooths prioritization. The use of the counter
component, in particular, penalizes overused transitions,
promoting diversity in sampling. Furthermore, the flexibility
in aggregation allows tuning the prioritization aggressiveness
depending on the environment. These mechanisms
collectively help prevent overfitting to noisy or sparse reward
patterns.

In addition to mitigating overfitting, our adaptive
prioritization approach also encourages exploration
throughout training. The counter component reduces the
likelihood of repeatedly selecting the same transitions, thus
promoting exposure to underutilized experiences. This allows
the agent to explore a wider variety of state-action pairs,
particularly those that may have been initially overlooked.
Furthermore, the inclusion of policy probability in the
prioritization scheme promotes sampling transitions where
the agent has low confidence in its actions, further supporting
exploration of less certain regions of the state space. While
regret-based analysis is beyond the scope of this study,
qualitative results in stochastic environments like Qbert and
Breakout suggest that the proposed method enhances both
exploration and learning stability.

5- Conclusion
In the DQN method, to address the issue of temporal

data dependencies and reusing previously generated data,
an experience replay buffer is employed that stores the
constructed transitions, and training samples are randomly
selected from this buffer.

The prioritized experience replay method introduces
an approach where sampling from this buffer is no longer
uniformly random, and each data has a probability of being
selected based on its TD error.

In this paper, we tried to enhance the prioritized experience
replay method by modifying the prioritization process. In

the proposed approach, the calculation of the probability for
selecting data is not solely based on the TD error but also
incorporates three additional values: reward, the number of
times that each transition has been selected, and ()|a sπ .

Through designed experiments, the impact of using each
of these three values in prioritizing data was examined,
revealing that all three values can bring significant
improvements. Subsequently, three aggregation methods,
including min, max, and mean, were suggested for these
three values, allowing the utilization of all three values in
calculating the probability of selecting each data. It was found
that the aggregation function should be determined based on
each environment, but the ‘mean’ aggregation function can
be a preferred choice as it exhibits acceptable performance
across various environments and also incorporates all three
RCP values.

Although our experiments focused on the Double DQN
architecture, the proposed adaptive prioritization strategy is
model-agnostic and can be applied to other Q-learning-based
algorithms such as Dueling DQN. We leave the evaluation of
our method in these frameworks as part of future research.

References
[1] 	Mnih, V., et al., Playing atari with deep reinforcement

learning. arXiv preprint arXiv:1312.5602, 2013.
[2] Lin, L.-J., Self-improving reactive agents based on

reinforcement learning, planning and teaching. Machine
learning, 1992. 8: p. 293-321.

[3] 	Schaul, T., et al., Prioritized Experience Replay. CoRR,
2015. abs/1511.05952.

[4] 	Atherton, L.A., D. Dupret, and J.R. Mellor, Memory
trace replay: the shaping of memory consolidation by
neuromodulation. Trends in Neurosciences, 2015. 38(9):
p. 560-570.

[5] 	Ólafsdóttir, H.F., et al., Hippocampal place cells construct
reward-related sequences through unexplored space.
Elife, 2015. 4: p. e06063.

[6] 	Foster, D.J. and M.A. Wilson, Reverse replay of
behavioural sequences in hippocampal place cells during
the awake state. Nature, 2006. 440(7084): p. 680-683.

[7] 	McNamara, C.G., et al., Dopaminergic neurons promote
hippocampal reactivation and spatial memory persistence.
Nature Neuroscience, 2014. 17(12): p. 1658-1660.

[8] 	Van Seijen, H. and R. Sutton. Planning by prioritized
sweeping with small backups. in the International
Conference on Machine Learning. 2013. PMLR.

[9] 	Horgan, D., et al. Distributed Prioritized Experience
Replay. in International Conference on Learning
Representations (ICLR). 2018.

[10] Hou, Y., et al. A novel DDPG method with prioritized
experience replay. in IEEE international conference on
systems, man, and cybernetics (SMC). 2017. IEEE.

[11] Saglam, B., et al., Actor prioritized experience replay.
Journal of Artificial Intelligence Research, 2023. 78: p.
639-672.

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

62

HOW TO CITE THIS ARTICLE
M. Adibian, M. M. Ebadzadeh, Double Deep Q Network with Adaptive Prioritized Experience
Replay, AUT J. Model. Simul., 57(1) (2025) 53-62.

DOI: 10.22060/miscj.2025.23426.5373

[12] Oh, Y., et al. Model-augmented prioritized experience
replay. in International Conference on Learning
Representations (ICLR). 2021.

[13] Li, A.A., Z. Lu, and C. Miao, Revisiting prioritized
experience replay: A value perspective. arXiv preprint

arXiv:2102.03261, 2021.
[14] Zhang, H., et al., Self-adaptive priority correction for

prioritized experience replay. Applied sciences, 2020.
10(19): p. 6925.

https://dx.doi.org/10.22060/miscj.2025.23426.5373

