@

AUT JOURNAL OF
MODELING AND
SIMULATION

AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 57(1) (2025) 53-62
DOI: 10.22060/miscj.2025.23426.5373

Double Deep Q Network with Adaptive Prioritized Experience Replay
Majid Adibian =, Mohammad Mehdi Ebadzadeh *

Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran.

ABSTRACT: In deep reinforcement learning, experience replay buffers are used to reduce the effects of ~ Review History:

sequential data and make better use of past experiences. Prioritized Experience Replay (PER) improves Received: Aug. 08, 2024

upon random sampling by selecting transitions based on their temporal difference (TD) error. However, Revised: Jul. 08, 2025

PER does not consider how important each transition is or how many times it has been used during Accepted: Aug. 03, 2025
training. In this paper, we propose a new method for adaptive prioritization that takes into account three Available Online: Aug. 05, 2025
additional transition-level factors: reward, usage count (counter), and policy probability—collectively
referred to as RCP values. These values are normalized and used alongside the TD error to calculate
the probability of selecting each transition from the replay buffer. We evaluate our method on several
Atari environments and show that using any of the RCP values individually can improve performance
compared to standard PER. To combine all three RCP components, we explore three aggregation
functions: minimum, maximum, and mean. Experimental results show that the best aggregation method
depends on the environment. However, the mean function generally provides stable improvements

Keywords:
Deep Reinforcement Learning
Prioritized Experience Replay

Deep Q-Network

across tasks, as it balances all RCP signals and avoids over-relying on any single factor.

1- Introduction

In recent years, deep reinforcement learning (DRL) has
garnered significant attention as a powerful framework for
training agents to make sequential decisions in complex and
dynamic environments. By integrating deep neural networks
with reinforcement learning algorithms, DRL has achieved
remarkable success across a wide range of applications,
including game playing, robotics, and autonomous systems.

One of the foundational models in this field is the Deep
Q-Network (DQN) [1], which introduced the use of neural
networks to approximate the action-value function. DQN
enables agents to estimate the optimal action in a given state
by learning a value function Q(s, a), thereby playing a pivotal
role in the advancement of deep reinforcement learning.

In online reinforcement learning, agents interact with the
environment incrementally, generating a continuous stream
of experience data. A key challenge in this setting is the
strong temporal correlation between successive data samples,
which violates the assumption of independent and identically
distributed (i.i.d.) inputs typically required for stable neural
network training. Moreover, important past experiences may
be rapidly overwritten, limiting opportunities for efficient
reuse.

To mitigate these issues, the technique of experience
replay was introduced [2]. In which transitions collected

*Corresponding author’s email: ebadzadeh@aut.ac.ir

during interactions are stored in a replay buffer and later
sampled randomly for training. This approach decorrelates
the data, enhances stability, and improves sample efficiency,
particularly in environments where data acquisition is
expensive or limited.

Traditional experience replay employs uniform random
sampling, treating all stored transitions equally. However,
this assumption neglects the fact that not all experiences are
equally informative. Some transitions carry richer learning
signals than others and can be more beneficial if sampled
more frequently.

To address this, the Prioritized Experience Replay (PER)
method was proposed as an improvement over uniform
sampling3]]. PER assigns higher sampling probabilities to
transitions with larger temporal-difference (TD) errors, which
reflect a greater discrepancy between predicted and actual
values. Transitions with higher TD-errors are considered
more surprising and informative, suggesting that revisiting
them can yield larger updates and accelerate the learning
process.

Although Prioritized Experience Replay (PER) has
improved learning by prioritizing transitions with large TD
errors, it suffers from several limitations. PER solely relies
on the TD error for prioritization, which may overlook other
meaningful signals, such as the actual reward received,
the frequency with which a transition is replayed, or the
significance of an action as indicated by the policy. Moreover,

Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
BY NG is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,

please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/miscj.2025.23426.5373
https://orcid.org/0009-0007-5361-4937
https://orcid.org/0000-0001-6466-5229

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

it uses a fixed exponent for prioritization throughout training,
which may not be optimal as the learning progresses.

To address these limitations, we propose an Adaptive
Prioritized Experience Replay method that augments the
traditional PER framework by introducing three additional
features for each transition: reward, transition usage counter,
and policy probability—collectively termed RCP values.
These values are normalized and used to dynamically adjust
the prioritization of transitions, leading to more informative
sampling and potentially improved learning stability and
efficiency. Our method also allows for various aggregation
strategies over RCP values, providing flexibility to adapt
across different environments.

The next sections first provide a review of related research
in the field of experience replay and deep reinforcement
learning. Based on insights from previous studies, we then
introduce our proposed method. Finally, the effectiveness
of the approach is evaluated through experiments on several
Atari environments.

2- Related Works

In both human cognition and real-world decision-making,
experiences that involve significant outcomes—such as
large rewards or noticeable errors—tend to be recalled
and processed more frequently [4-7]. This observation has
inspired the development of mechanisms in reinforcement
learning that aim to mimic such prioritization by replaying
past transitions based on their potential contribution to
learning [8]. Rather than treating all experiences equally,
these methods emphasize the most informative ones,
thereby enabling agents to focus computational resources on
transitions that are expected to yield greater improvements in
policy or value estimation.

Building on this intuition, experience replay has become
a foundational technique in deep reinforcement learning
(DRL), particularly in off-policy settings where data
efficiency is critical. By allowing agents to store and reuse
past experiences, replay buffers have significantly improved
training stability and sample efficiency. One of the most
influential advancements in this area is the introduction of
prioritized experience replay (PER)3]], which proposes that
notall experiences are equally valuable for learning. Instead of
sampling transitions uniformly, PER assigns higher sampling
probabilities to transitions with larger temporal-difference
(TD) errors, under the hypothesis that such transitions
contribute more to updating the value function effectively.

This notion has not only improved the performance of
standard Deep Q-Networks (DQN) but has also proven
effective when scaled to distributed settings, where multiple
actors generate experiences concurrently and a centralized
learner selectively samples from a shared prioritized buffer
[9]. Such distributed architectures have highlighted the
scalability and adaptability of PER in high-throughput
reinforcement learning environments.

Despite the success of PER in value-based methods like
DQN, its direct application to actor-critic architectures—
particularly in continuous control tasks—has shown

54

limitations. Empirical and theoretical investigations suggest
that high TD-error transitions, which are typically favored by
PER, may not always align with the learning needs of the
actor component. Specifically, such transitions may introduce
instability in policy gradients, leading to divergence from
the optimal policy direction [10]. To address this, various
adaptations of PER have been proposed for actor-critic
settings, including mechanisms that balance the prioritization
between actor and critic objectives to ensure more stable and
effective policy updates.

Further enhancements to PER have explored augmenting
the priority computation with additional features beyond TD-
error alone. For instance, several studies propose combining
model-free and model-based elements, using predictive
signals from learned environment models to enrich the
prioritization criteria [11]. This hybrid approach introduces
auxiliary indicators that can act as proxies for sample
informativeness, leading to more balanced and curriculum-
like sampling strategies. By leveraging both learned dynamics
and value approximations, such model-augmented techniques
aim to improve generalization and accelerate convergence
without significantly increasing computational overhead.

To overcome the limitations of relying solely on TD-error,
some approaches have proposed correcting or complementing
the priority scores using adaptive mechanisms. These include
self-adjusting schemes that estimate the discrepancy between
actual and stored priorities over time, thereby reducing bias
introduced by stale or outdated samples. [12]. In parallel,
other methods have introduced value-theoretic perspectives,
interpreting TD-error as a proxy for the marginal value of
each experience. Such interpretations have led to theoretical
bounds that relate the priority of a transition to its potential
contribution to the cumulative reward, thereby offering
more principled ways to guide replay sampling [13].
Together, these efforts address the challenge of maintaining
meaningful and up-to-date prioritization throughout training.
Another line of research has focused on incorporating
uncertainty into the prioritization process. Traditional PER
may inadvertently prioritize transitions with high TD-errors
arising from noise rather than from actual learning potential.
To mitigate this, uncertainty-aware variants of PER have been
proposed, which leverage epistemic uncertainty estimates to
distinguish informative transitions from stochastic outliers
[14]. These approaches aim to reduce the impact of noisy
experiences that could mislead learning. Similarly, uncertainty-
based filtering has been employed in continual learning settings
to retain only experiences that are both uncertain and diverse,
thereby optimizing memory usage and preventing catastrophic
forgetting over task sequences [15].

Beyond uncertainty, reward-based signals have also
been explored as alternative or complementary cues
for prioritization. Drawing inspiration from cognitive
neuroscience, some methods incorporate reward prediction
error (RPE) as a prioritization metric, arguing that
discrepancies between predicted and actual rewards reflect
transitions with high learning potential [16]. By integrating
RPE into the prioritization scheme—alongside or instead of

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

TD-error—these methods aim to better align sampling with
policy improvement objectives, particularly in environments
where value estimation may be unreliable or delayed.
The role of PER has also been re-examined in multi-task and
multi-agent reinforcement learning contexts, where naive
sampling strategies often lead to performance imbalances
across tasks or agents. In such settings, task-aware prioritization
mechanisms have been developed to dynamically allocate
sampling attention to underperforming tasks or agents, thereby
promoting balanced learning [17]. Moreover, integrating
shared and task-specific feature representations within the
replay mechanism further enhances the effectiveness of such
prioritization by enabling better generalization across related
tasks. These approaches highlight the growing need for context-
sensitive prioritization strategies in complex RL environments.
In parallel with algorithmic innovations, several studies have
explored the interplay between experience prioritization and
broader training paradigms such as curriculum learning. By
viewing the replay buffer as a mechanism for structuring the
order of experience exposure, some approaches implicitly adopt
curriculum-like strategies, where simpler or more informative
samples are presented earlier in training [11, 18]. This
perspective aligns with findings that structured sampling—not
just random replay—can accelerate convergence and improve
final policy quality. The integration of curriculum principles
into experience replay thus opens avenues for more adaptive
and staged learning strategies.

The effectiveness of PER also depends heavily on the
operational characteristics of the replay buffer itself, such
as its capacity, update frequency, and the ratio of learning
to data collection. Recent empirical studies have shown
that increasing buffer size or adjusting the replay ratio can
have non-trivial and sometimes counterintuitive effects on
learning dynamics [19]. For instance, uncorrected multi-step
returns—though theoretically inconsistent—may yield better
empirical performance when combined with large replay
memories. These insights suggest that prioritized sampling
must be considered in conjunction with the broader design of
the experience replay mechanism to achieve optimal results.

The versatility of prioritized experience replay has also
been demonstrated through its application in domain-specific
problems beyond standard benchmark environments. For
instance, in financial decision-making tasks such as optimal
trade execution, PER has been employed alongside heuristic
policies to enhance learning efficiency in noisy market
conditions [20]. In robotics and communication-constrained
multi-agent systems, PER-inspired scheduling strategies have
been used to prioritize information that maximizes utility
under bandwidth limitations [21]. These applications confirm
that the principles of PER can be effectively extended to
structured real-world problems where sample efficiency and
relevance are critical.

Taken together, these advancements reveal a clear
trajectory in the evolution of experience replay—from
uniform random sampling toward more intelligent, context-
aware, and adaptive prioritization schemes. Whether through
theoretical formulations, hybrid value-model integrations,

55

uncertainty-driven sampling, or task-specific strategies, the
field continues to refine the criteria by which past experiences
are deemed valuable. These developments underscore the
central role of experience replay in modern reinforcement
learning and motivate continued exploration into how the
structure and content of the replay buffer can be optimized
for different learning objectives and domains.

Building on these prior advancements, we propose an
adaptive experience replay mechanism that enhances the
original PER framework. Our method introduces three
transition-specific signals—reward, usage counter, and policy
probability—and combines them to dynamically determine
the importance of each transition. This approach aims to
provide a more flexible and informative sampling strategy
for training deep RL models.

3- Adaptive Prioritized Replay Buffer
3- 1- Prioritized Experience Replay

If data (S ,a,s ',r) exists for each transition in the replay
buffer, the DQN method attempts to predict the Q-value for
the state S, and action @ using a neural network €. The
target Q-value is obtained using a target model €', which is a
copied version of the model 6.

0'(s.0)=r+ 70, (shargmas, (0,(+%)) (1)

16]=|0" (s,a) -0, (s,a)| @)

In this equation, |§| is the magnitude of the temporal-
difference (TD) error and ¥ is a discount factor.

The prioritized experience replay (PER) method utilizes
the TD error and assigns a probability to each data point in
the buffer so that data with higher errors are more likely to
be selected.

P(j) _ |5J'|0Y

2. 1f

Based on the PER paper [3], the exponent & is set to
a fixed value of 0.6. To address bias in high-error data,
importance sampling weight is applied to reduce the impact
of model updates on data with higher priority.

€)

B
o =| o)
: N P(])

A=A+0,.6,.V,0(s,a) ®)

0=0+nA (6)

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

Which N is the replay buffer size and exponent £ is
scheduled from the initial value g, =0.4 to 1 linearly [3].
By employing this method, higher-error data can contribute
more to the training, ensuring their valuable information
is effectively learned. This method can improve learning,
increasing the return value in many environments compared
to the DQN method with uniform random sampling from the
replay buffer.

3- 2- Prioritization with RCP Values

In this research, we consider the PER method as the
baseline and propose a novel method for calculating the
priority of each data. In this method, in addition to the TD
error, we incorporate three additional values, including
the reward of the transition, the number of times that each
transition has been used in training the model, and the
probability of the action in the current state (ﬁ(a |'s)), in
the calculation of the priority of that data. We will refer to
these three values as RCP (Reward, Counter, Policy).

Reward: Assume two transitions have been used in
training the model, both having the same TD error. However,
if the reward obtained from the first transition is significantly
higher than that of the second, learning valuable information
in the first transition will be more important. This is in contrast
to the PER method, which considers equal probabilities for
these two data due to their identical TD errors.

Because of the variety of reward values defined in
different environments and transitions, the reward value in
each transition is normalized to have a number between 0 to
1 as the reward of any transition (see Algorithm 1).

Counter: In cases where two data points have the same
TD error but one has been used 10 times in training while
the other only once, it is better to assign higher priority to

the less frequently used data. Additionally, if a data point is
noisy and consistently has a high error, without considering
the frequency of its contribution to the training, it can be
consistently utilized, posing challenges to the training
process. We know that the PER method does not account for
these factors.

To use this value in calculating the priority of the
transitions, the sigmoid function is used to obtain the
normalized counter, which is a number between 0 to 1 (see
Algorithm 1).

In this sigmoid-based normalization, we use a scaling
factor of -4 in the exponent to control the steepness of the
curve. This value ensures that transitions which have been
used frequently in training quickly receive lower normalized
scores, thereby reducing their sampling probability and
helping the model focus on less-reused but potentially
informative transitions. (Fig. /)

Policy (n(a | s)): A higher probability of selecting
action «¢ in state s, denoted as n(s, a), indicates that the
Q-value for this state-action pair is relatively higher than
for other actions in the same state. This reflects the agent’s
confidence in choosing this action under its current policy.
While this aspect is not considered in the original PER
method, incorporating n(s, a) into the prioritization process
helps emphasize transitions that are more aligned with the
agent’s learned behavior.

In methods like DQN, where the policy is not explicitly
modeled, (s, a) can be estimated using a softmax function
over Q-values. Unlike raw Q-values, which are unbounded
and often unstable early in training, the policy probability
is normalized and bounded between 0 and 1, making it a
more stable signal for prioritization. Moreover, it introduces
a probabilistic perspective on policy alignment, which

ALGORITHM 1: CALCULATE RCP VALUES

- 2rstd

1l <057, <1

2 Procedure Normalize Reward (7.,)

3 T oan < Amean(v, .,).(1-A).r, .

4 Vo < AStA (1) (1=) 1y

5 upper < Ar,, . +2r,;lower < Ar,

6 Ve <— min(max(r, ., ,lower),upper)

7 Return (R, ., —lower)/ (upper —lower)
8 Procedure Get Policy (QO(s,a), a,)

9 7(s,a,) < e?>%] Z; 2

10 Return 7Z(S, al.)

11 Procedure Normalize Counter (S, a.s,)

12 c (_1/(1+ec0unter(s] ,a,sz)—4)
13 Return ¢

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

Transition replay counter normalization

1.0

0.8 1

0.6 1

0.4 1

Normalized Counter

0.2 1

0.0 1

5 6

7

T T

8

9 10 11 12 13 14 15

Replay Counter

Fig. 1. Normalizing transition replay counter using the Sigmoid function.

complements the TD error and reward signals by highlighting
transitions that reinforce the agent’s consistent decision-
making patterns. This can improve learning stability and
policy convergence.

O(s.a;)

_ €
”(ai|S)—W)
J

In the proposed method, 77 (a |'s) is first calculated using
this relationship, and then it is used in a new prioritization
process (see Algorithm 1).

3- 3- Adaptive Prioritization

We have utilized RCP values to enhance the prioritization
of each transition in the buffer more effectively. As seen in
the equation (3), parameter & is the exponent of TD error
and determines how much prioritization is used. If we set this
parameter to zero, the probabilities of all transitions become
equal, and sampling will be uniform at random. However, as
this parameter increases, we move further away from random
sampling.

Despite the importance of the value of this parameter, the
PER method sets a constant value for it and does not change
it during training. In the proposed prioritization method, this
parameter is defined based on the information associated with
each data. So, the priority value for each data is determined
using TD error and data dependent parameter ¢ .

57

a;
J
9

2.l

Where the parameter @ is dependent on the values of
the normalized reward, normalized counter, and probability
of action in the current state (ﬁ(a |s)) (RCP values), or a
combination of them.

P(j)= ®)

a;

_f(rj’ﬂ'(aj |sj),c0unter(sj,aj,s})))

The training algorithm for Double DQN using the
proposed prioritized replay buffer will be like the PER except
that parameter & is based on RCP values (Algorithm 2).

In the next section, the impact of utilizing each of the
three values of RCP and various combinations of them will
be examined.

4- Experiments and Results

In this study, the Double DQN (D2QN) model has been
employed using Prioritized Experience Replay (PER) as
our baseline, referred to as PER-DQN. The neural network
architecture follows the design introduced by Mnih et al. [1],
consisting of three convolutional layers with ReLU activation
functions, followed by two fully connected layers. The input

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

ALGORITHM 2: DOUBLE DQN WITH ADAPTIVE PRIORITIZED EXPERIENCE REPLAY

Input: minibatch k, step-size 1, replay period K and size N , exponents o and [, budget T

1 Initialize replay memory H =@, A=0, p, = I, »=0.99

2 Observe S,and choose a, ~ 7,(S,)

3 fort=1t T do

4 Observe s,, T,

5 Store transition (S, ,,a, ,, 1,, S,) in H with maximum priority p, =max,_,(p;)
6 if t =0mod K then

7 For j=1to kdo:

8 a,=f(R, ,7(a,|s,), counter(s;,a; ,s;))

9 Sample transition j~ P(j)= pff / Zi p/

10 Compute importance-sampling weight @, =(N 'P(j))_ﬂ/ max,(@,)
11 Compute TD-error 6,=1,%y0, .., (s ,argmax, Q(Sj , a)) — Q(Sj_1 ,a;)
12 Update transition priority p; <0, |

13 Accumulate weight-change A <~ A+ ®,.6,.V ,0(s, ,a; ,)

14 Update weights 0 <— 0 +n.A, reset A=0

15 From time to time, copy weights into the target network Qargel 40

16 Choose action a, ~ 77,(s,)

to the network is a stack of four consecutive grayscale frames
of size 84x84 pixels. The final layer outputs Q-values for
each possible action in the environment.

Multiple Atari environments are utilized for training the
models. Each model is trained for up to 10 million steps using
a mini-batch size of 32 and a replay buffer with a capacity of
one million transitions. We use the Adam optimizer with a
learning rate of 0.00025. The target network is updated every
10,000 steps. The epsilon-greedy strategy is employed for
exploration, with epsilon decaying exponentially from 1.0 to
0.001 (Fig. 2).

To evaluate the models during training, the agent
undergoes five evaluation episodes every 100,000 training
steps using the current policy, and the average and standard
deviation of the return values across these 5 episodes are
recorded and plotted to visualize performance trends over
time.

All implementations were carried out in Python 3.8 using
PyTorch 1.12.1. The Atari environments were obtained using
OpenAl Gym along with the Arcade Learning Environment
(ALE).

4- 1- Impact of RCP Values

Initially, we investigate the influence of each of the three
RCP values on the episodic returns. To achieve this, we
employ four Atari environments: Seaquest, AirRoad, Qbert,

58

and Breakout. PER-DQN is trained on these environments as
the baseline model.

For each of the three RCP values, the training of DQN
with adaptive prioritized experience replay (APER) is
performed, incorporating only one of these values at a time.
The variations in the returns of evaluation episodes for each
model and environment are observed in the plots depicted in
Fig. 3.

Based on these plots, it is evident that using each of the
RCP values in the calculation of the priority of each data
has significantly enhanced the model compared to the PER
method. After a detailed examination, we can find out that
the impact of using any value of RCP varies across different
environments. However, in general, it can be observed that the
effects of the two methods, policy and reward, are closer to
each other, while the counter method has generally achieved
a greater improvement.

This improvement is particularly noticeable in
environments with high reward variance, such as Seaquest
and AirRaid, where our method exhibited smoother and more
stable learning curves. This indicates that incorporating RCP
values can enhance robustness against stochasticity in the
reward signal by diversifying the prioritization mechanism
beyond noisy TD errors.

After identifying the beneficial effects of these values
on improving model training, we will explore different

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

Epsilon Schedule

1.0 A

0.8 A

0.6

Epsilon

0.4 A

0.2 1

0.0 A

T

0 1 2 3 4

5

6 7 8 9

10

Train Steps (milion)

Fig. 2. Scheduling epsilon from 1 to 0.001 exponentially.

aggregation functions in the next experiment to achieve the
optimal configuration.

4- 2- RCP Values Aggregation

To utilize all three RCP values, three functions have
been considered for their aggregation. In each of these
three methods, the RCP values are combined, resulting in
a single value that is the exponent of TD error (equation
(9)) To combine these three values, minimum, maximum,
and average, have been employed to achieve the optimal
aggregation function. Practically, in the Algorithm 2, the
function f is defined to minimize, maximize, or average
three RCP values.

To evaluate the three mentioned combination methods, the
same four Atari environments are used. The proposed model
(APER-DQN) is trained with each aggregation function on
these environments and is compared with the results of PER-
DQN. The results of this experiment are illustrated in the
plots of Fig. 4.

According to the obtained results, it is evident that the
use of each aggregation method can increase episode return
values in various environments. Additionally, it is observed
that the impact of each aggregation method varies depending
on the environment, and an appropriate aggregation function
must be selected based on the specific characteristics of the
task.

Despite this variability, the mean aggregation method
demonstrated consistently stable performance across
all tested environments. Unlike min or max, which can
overemphasize a single component of the RCP values, the

59

mean method ensures a balanced contribution from all three
signals—reward, counter, and policy probability—reducing
the risk of bias toward any individual factor.

Considering both its stable empirical performance and
its balanced nature, the mean function can be regarded as
a strong default choice for aggregation when environment-
specific tuning is not available.

While the proposed aggregation functions (min, max,
mean) offer effective ways to integrate RCP values, their
performance may vary across different types of environments.
In particular, environments with sparse rewards pose unique
challenges, as the reward component of RCP may lack
sufficient informative value. In such cases, direct reliance
on immediate rewards may lead to unstable prioritization or
even ineffective sampling.

To address this, the adaptive prioritization mechanism can
be adjusted to reduce the influence of the reward component
and instead place more emphasis on the counter and policy
components, which remain informative regardless of reward
sparsity. Additionally, smoothing techniques such as moving
averages or simple reward shaping can be applied to create
a more useful reward signal. This flexibility allows the
proposed method to maintain robust performance even in
environments with highly sparse or delayed rewards.

One potential concern with prioritization strategies is
the risk of overfitting due to repeatedly sampling a narrow
subset of transitions. Our method mitigates this by integrating
multiple signals—reward, usage frequency, and policy
probability—each of which is normalized and aggregated
in a way that smooths prioritization. The use of the counter
component, in particular, penalizes overused transitions,

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

AirRaid-v4 environment

-~ PER-DQN
7000 1 — APER-DQN-Counter
—— APER-DQN-Reward
6000 4 APER-DQN-Policy
c 5000 -
=3
@
& 4000
e
o
o
& 3000
2000 A
1000 4
0 L % ¥ X 3 ¥ T T T T T T
o 1 2 3 4 5 6 7 8 9 10
Train Step (milion)
(a)
Qbert-v4 environment
12000
-~ PER-DQN
—— APER-DQN-Counter
10000 1 = APER-DQN-Reward
APER-DQN-Policy
8000
E
2
i
& 6000 A
°
o
]
o
w
b 2
APAENNAR
, ¥ MJVK-" W
2000 A, }
/rmh v
0 B

o 1 2 3 4 5 6 7 8 9 10
Train Step (milion)

(©)

Breakout-v4 environment

200 A

—— PER-DQN
——— APER-DQN-Counter
1759 —— APER-DQN-Reward
APER-DQN-Policy
150 -
£:7125:
3
k]
< 100
=
o
a
S 751
50
25 A
0 .

Train Step (milion)

(b)

Seaquest-v4 environment

2500: ‘M "M(\ & .

£
2 2000+
U
o
o
& 1500
[=}
w

1000

—— PER-DQN
500 4 ~ APER-DQN-Counter

—— APER-DQN-Reward
APER-DQN-Policy

0 1 2 3 4 5 6 7 8 9 10
Train Step (milion)

(d)

Fig. 3. Comparison of episode returns in DQN with prioritized experience replay (PER-DQN) and
Adaptive prioritized experience replay (APER-DQN) using RCP values in prioritization.

promoting diversity in sampling. Furthermore, the flexibility
in aggregation allows tuning the prioritization aggressiveness
depending on the environment. These mechanisms
collectively help prevent overfitting to noisy or sparse reward

patterns.
In addition to mitigating overfitting, our adaptive
prioritization —approach also encourages exploration

throughout training. The counter component reduces the
likelihood of repeatedly selecting the same transitions, thus
promoting exposure to underutilized experiences. This allows

60

the agent to explore a wider variety of state-action pairs,
particularly those that may have been initially overlooked.
Furthermore, the inclusion of policy probability in the
prioritization scheme promotes sampling transitions where
the agent has low confidence in its actions, further supporting
exploration of less certain regions of the state space. While
regret-based analysis is beyond the scope of this study,
qualitative results in stochastic environments like Qbert and
Breakout suggest that the proposed method enhances both
exploration and learning stability.

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

AirRaid-v4 environment

6000
e
5000 |j ‘
= ﬁ ‘
5 4000
T
-4
el
@ 3000
Q
w
2000
—— PER-DQN
1000 - —— APER-DQN-Mean
—— APER-DQN-Min
APER-DQN-Max
01 : - - - - - : : - -
0 1) 3 4 5 6 7 8 9 10
Train Step (milion)
(a)
Qbert-v4 environment
—— PER-DQN
—— APER-DQN-Mean
8000 { —— APER-DQN-Min
APER-DQN-Max
£ 6000
2
Q
o
e
2 4000
& §
2000 A M "V
1
AN nﬁ‘J}/‘)‘JJ
P s
04

Train Step (milion)

(©)

Breakout-v4 environment

175 1

—— PER-DQN

—— APER-DQN-Mean

—— APER-DQN-Min
APER-DQN-Max

150 1

125 1

100 A

754

Episod Return

50 1

254

0 1 2 3 4 5 6 7 8 9 10
Train Step (milion)

(b)

Seaquest-v4 environment

30001 __ per-pon

—— APER-DQN-Mean
——— APER-DQN-Min
APER-DQN-Max

2500 4

2000 1

1500 1

Episod Return

1000

500 1

0 1 2 3 4 5 6 7§ 8 9 10
Train Step (milion)

(d)

Fig. 4. Comparison of episode returns in DQN with prioritized experience replay (PER-DQN) and
Adaptive prioritized experience replay (APER-DQN) using different aggregation functions.

5- Conclusion

In the DQN method, to address the issue of temporal
data dependencies and reusing previously generated data,
an experience replay buffer is employed that stores the
constructed transitions, and training samples are randomly
selected from this buffer.

The prioritized experience replay method introduces
an approach where sampling from this buffer is no longer
uniformly random, and each data point has a probability of
being selected based on its TD error.

In this paper, we tried to enhance the prioritized experience
replay method by modifying the prioritization process. In
the proposed approach, the calculation of the probability for
selecting data is not solely based on the TD error but also
incorporates three additional values: reward, the number of

61

times that each transition has been selected, and 7 (a |s) .

Through designed experiments, the impact of using each of
these three values in prioritizing data was examined, revealing
that all three values can bring significant improvements.
Subsequently, three aggregation methods, including min,
max, and mean, were suggested for these three values,
allowing the utilization of all three values in calculating the
probability of selecting each data point. It was found that the
aggregation function should be determined based on each
environment, but the ‘mean’ aggregation function can be a
preferred choice as it exhibits acceptable performance across
various environments and also incorporates all three RCP
values.

Although our experiments focused on the Double DQN

M. Adibian and M. M. Ebadzadeh, AUT J. Model. Simul., 57(1) (2025) 53-62, DOI: 10.22060/miscj.2025.23426.5373

architecture, the proposed adaptive prioritization strategy is
model-agnostic and can be applied to other Q-learning-based
algorithms, such as Dueling DQN. We leave the evaluation
of our method in these frameworks as part of future research.

References

[1] Mnih, V., et al., Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

[2] Lin, L.-J., Self-improving reactive agents based on
reinforcement learning, planning, and teaching. Machine
learning, 1992. 8: p. 293-321.

[3] Schaul, T., et al., Prioritized Experience Replay. CoRR,
2015. abs/1511.05952.

[4] Atherton, L.A., D. Dupret, and J.R. Mellor, Memory
trace replay: the shaping of memory consolidation by
neuromodulation. Trends in Neurosciences, 2015. 38(9):
p. 560-570.

[5] Olafsdottir, H.F., et al., Hippocampal place cells construct
reward related sequences through unexplored space.
Elife, 2015. 4: p. e06063.

[6] Foster, D.J. and M.A. Wilson, Reverse replay of
behavioural sequences in hippocampal place cells during
the awake state. Nature, 2006. 440(7084): p. 680—683.

[7] McNamara, C.G., et al., Dopaminergic neurons promote
hippocampal reactivation and spatial memory persistence.
Nature neuroscience, 2014. 17(12): p. 1658—1660.

[8] Van Seijen, H. and R. Sutton. Planning by prioritized
sweeping with small backups. in International Conference
on Machine Learning. 2013. PMLR.

[9] Han, S. and Y. Sung. Diversity actor-critic: Sample-aware
entropy regularization for sample-efficient exploration.
in International Conference on Machine Learning. 2021.
PMLR.

[10] Saglam, B., et al., Actor prioritized experience replay.
Journal of Artificial Intelligence Research, 2023. 78: p.
639-672.

[11]Oh, Y., et al. Model-augmented prioritized experience
replay. in International Conference on Learning
Representations (ICLR). 2021.

[12] Zhang, H., et al., Self-adaptive priority correction for
prioritized experience replay. Applied sciences, 2020.
10(19): p. 6925.

[13]1Li, A.A., Z. Lu, and C. Miao, Revisiting prioritized
experience replay: A value perspective. arXiv preprint
arXiv:2102.03261, 2021.

[14] Carrasco-Davis, R.A., et al. Uncertainty Prioritized
Experience Replay. in Reinforcement Learning
Conference.

[15] Remonda, A., et al., Uncertainty-Based Experience
Replay for Task-Agnostic Continual Reinforcement
Learning. Transactions on Machine Learning Research,
2025.

[16] Yamani, H., et al., Reward Prediction Error Prioritisation
in Experience Replay: The RPE-PER Method. arXiv
preprint arXiv:2501.18093, 2025.

[17]Lin, P-S., et al., Shared-unique Features and Task-
aware Prioritized Sampling on Multi-task Reinforcement
Learning. arXiv preprint arXiv:2406.00761, 2024.

[18] Soviany, P., et al., Curriculum learning: A survey.
International Journal of Computer Vision, 2022. 130(6):
p. 1526-1565.

[19] Fedus, W., et al. Revisiting fundamentals of experience
replay. in International conference on machine learning.
2020. PMLR.

[20] Ogawa, T., K. Nakagawa, and K. Ikeda. Optimal
execution strategy using Deep Q-Network with heuristics
policy. in 2024 16th IIAI International Congress on
Advanced Applied Informatics (IIAI-AAI). 2024. IEEE.

[21] Zhao, X., et al., A Novel Indicator for Quantifying and
Minimizing Information Utility Loss of Robot Teams.
IEEE Journal on Selected Areas in Communications,
2025.

HOW TO CITE THIS ARTICLE
Replay, AUT J. Model. Simul., 57(1) (2025) 53-62.

DOI: 10.22060/miscj.2025.23426.5373

M. Adibian, M. M. Ebadzadeh, Double Deep Q Network with Adaptive Prioritized Experience

62

https://dx.doi.org/10.22060/miscj.2025.23426.5373

