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ABSTRACT: In deep reinforcement learning, experience replay buffers are used to reduce the effects of 
sequential data and make better use of past experiences. Prioritized Experience Replay (PER) improves 
upon random sampling by selecting transitions based on their temporal difference (TD) error. However, 
PER does not consider how important each transition is or how many times it has been used during 
training. In this paper, we propose a new method for adaptive prioritization that takes into account three 
additional transition-level factors: reward, usage count (counter), and policy probability—collectively 
referred to as RCP values. These values are normalized and used alongside the TD error to calculate 
the probability of selecting each transition from the replay buffer. We evaluate our method on several 
Atari environments and show that using any of the RCP values individually can improve performance 
compared to standard PER. To combine all three RCP components, we explore three aggregation 
functions: minimum, maximum, and mean. Experimental results show that the best aggregation method 
depends on the environment. However, the mean function generally provides stable improvements 
across tasks, as it balances all RCP signals and avoids over-relying on any single factor.
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1- Introduction
In recent years, deep reinforcement learning (DRL) has 

garnered significant attention as a powerful framework for 
training agents to make sequential decisions in complex and 
dynamic environments. By integrating deep neural networks 
with reinforcement learning algorithms, DRL has achieved 
remarkable success across a wide range of applications, 
including game playing, robotics, and autonomous systems.

One of the foundational models in this field is the Deep 
Q-Network (DQN) [1], which introduced the use of neural 
networks to approximate the action-value function. DQN 
enables agents to estimate the optimal action in a given state 
by learning a value function Q(s, a), thereby playing a pivotal 
role in the advancement of deep reinforcement learning.

In online reinforcement learning, agents interact with the 
environment incrementally, generating a continuous stream 
of experience data. A key challenge in this setting is the 
strong temporal correlation between successive data samples, 
which violates the assumption of independent and identically 
distributed (i.i.d.) inputs typically required for stable neural 
network training. Moreover, important past experiences may 
be rapidly overwritten, limiting opportunities for efficient 
reuse.

To mitigate these issues, the technique of experience 
replay was introduced [2]. In which transitions collected 

during interactions are stored in a replay buffer and later 
sampled randomly for training. This approach decorrelates 
the data, enhances stability, and improves sample efficiency, 
particularly in environments where data acquisition is 
expensive or limited.

Traditional experience replay employs uniform random 
sampling, treating all stored transitions equally. However, 
this assumption neglects the fact that not all experiences are 
equally informative. Some transitions carry richer learning 
signals than others and can be more beneficial if sampled 
more frequently.

To address this, the Prioritized Experience Replay (PER) 
method was proposed as an improvement over uniform 
sampling3[  ]. PER assigns higher sampling probabilities to 
transitions with larger temporal-difference (TD) errors, which 
reflect a greater discrepancy between predicted and actual 
values. Transitions with higher TD-errors are considered 
more surprising and informative, suggesting that revisiting 
them can yield larger updates and accelerate the learning 
process.

Although Prioritized Experience Replay (PER) has 
improved learning by prioritizing transitions with large TD 
errors, it suffers from several limitations. PER solely relies 
on the TD error for prioritization, which may overlook other 
meaningful signals, such as the actual reward received, 
the frequency with which a transition is replayed, or the 
significance of an action as indicated by the policy. Moreover, 
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it uses a fixed exponent for prioritization throughout training, 
which may not be optimal as the learning progresses.

To address these limitations, we propose an Adaptive 
Prioritized Experience Replay method that augments the 
traditional PER framework by introducing three additional 
features for each transition: reward, transition usage counter, 
and policy probability—collectively termed RCP values. 
These values are normalized and used to dynamically adjust 
the prioritization of transitions, leading to more informative 
sampling and potentially improved learning stability and 
efficiency. Our method also allows for various aggregation 
strategies over RCP values, providing flexibility to adapt 
across different environments.

The next sections first provide a review of related research 
in the field of experience replay and deep reinforcement 
learning. Based on insights from previous studies, we then 
introduce our proposed method. Finally, the effectiveness 
of the approach is evaluated through experiments on several 
Atari environments.

2- Related Works
In both human cognition and real-world decision-making, 

experiences that involve significant outcomes—such as 
large rewards or noticeable errors—tend to be recalled 
and processed more frequently [4-7]. This observation has 
inspired the development of mechanisms in reinforcement 
learning that aim to mimic such prioritization by replaying 
past transitions based on their potential contribution to 
learning [8]. Rather than treating all experiences equally, 
these methods emphasize the most informative ones, 
thereby enabling agents to focus computational resources on 
transitions that are expected to yield greater improvements in 
policy or value estimation.

Building on this intuition, experience replay has become 
a foundational technique in deep reinforcement learning 
(DRL), particularly in off-policy settings where data 
efficiency is critical. By allowing agents to store and reuse 
past experiences, replay buffers have significantly improved 
training stability and sample efficiency. One of the most 
influential advancements in this area is the introduction of 
prioritized experience replay (PER)3[ ], which proposes that 
not all experiences are equally valuable for learning. Instead of 
sampling transitions uniformly, PER assigns higher sampling 
probabilities to transitions with larger temporal-difference 
(TD) errors, under the hypothesis that such transitions 
contribute more to updating the value function effectively.

This notion has not only improved the performance of 
standard Deep Q-Networks (DQN) but has also proven 
effective when scaled to distributed settings, where multiple 
actors generate experiences concurrently and a centralized 
learner selectively samples from a shared prioritized buffer 
[9]. Such distributed architectures have highlighted the 
scalability and adaptability of PER in high-throughput 
reinforcement learning environments.

Despite the success of PER in value-based methods like 
DQN, its direct application to actor-critic architectures—
particularly in continuous control tasks—has shown 

limitations. Empirical and theoretical investigations suggest 
that high TD-error transitions, which are typically favored by 
PER, may not always align with the learning needs of the 
actor component. Specifically, such transitions may introduce 
instability in policy gradients, leading to divergence from 
the optimal policy direction [10]. To address this, various 
adaptations of PER have been proposed for actor-critic 
settings, including mechanisms that balance the prioritization 
between actor and critic objectives to ensure more stable and 
effective policy updates.

Further enhancements to PER have explored augmenting 
the priority computation with additional features beyond TD-
error alone. For instance, several studies propose combining 
model-free and model-based elements, using predictive 
signals from learned environment models to enrich the 
prioritization criteria [11]. This hybrid approach introduces 
auxiliary indicators that can act as proxies for sample 
informativeness, leading to more balanced and curriculum-
like sampling strategies. By leveraging both learned dynamics 
and value approximations, such model-augmented techniques 
aim to improve generalization and accelerate convergence 
without significantly increasing computational overhead.

To overcome the limitations of relying solely on TD-error, 
some approaches have proposed correcting or complementing 
the priority scores using adaptive mechanisms. These include 
self-adjusting schemes that estimate the discrepancy between 
actual and stored priorities over time, thereby reducing bias 
introduced by stale or outdated samples. [12]. In parallel, 
other methods have introduced value-theoretic perspectives, 
interpreting TD-error as a proxy for the marginal value of 
each experience. Such interpretations have led to theoretical 
bounds that relate the priority of a transition to its potential 
contribution to the cumulative reward, thereby offering 
more principled ways to guide replay sampling [13]. 
Together, these efforts address the challenge of maintaining 
meaningful and up-to-date prioritization throughout training. 
Another line of research has focused on incorporating 
uncertainty into the prioritization process. Traditional PER 
may inadvertently prioritize transitions with high TD-errors 
arising from noise rather than from actual learning potential. 
To mitigate this, uncertainty-aware variants of PER have been 
proposed, which leverage epistemic uncertainty estimates to 
distinguish informative transitions from stochastic outliers 
[14]. These approaches aim to reduce the impact of noisy 
experiences that could mislead learning. Similarly, uncertainty-
based filtering has been employed in continual learning settings 
to retain only experiences that are both uncertain and diverse, 
thereby optimizing memory usage and preventing catastrophic 
forgetting over task sequences [15].

Beyond uncertainty, reward-based signals have also 
been explored as alternative or complementary cues 
for prioritization. Drawing inspiration from cognitive 
neuroscience, some methods incorporate reward prediction 
error (RPE) as a prioritization metric, arguing that 
discrepancies between predicted and actual rewards reflect 
transitions with high learning potential [16]. By integrating 
RPE into the prioritization scheme—alongside or instead of 
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TD-error—these methods aim to better align sampling with 
policy improvement objectives, particularly in environments 
where value estimation may be unreliable or delayed. 
The role of PER has also been re-examined in multi-task and 
multi-agent reinforcement learning contexts, where naive 
sampling strategies often lead to performance imbalances 
across tasks or agents. In such settings, task-aware prioritization 
mechanisms have been developed to dynamically allocate 
sampling attention to underperforming tasks or agents, thereby 
promoting balanced learning [17]. Moreover, integrating 
shared and task-specific feature representations within the 
replay mechanism further enhances the effectiveness of such 
prioritization by enabling better generalization across related 
tasks. These approaches highlight the growing need for context-
sensitive prioritization strategies in complex RL environments. 
In parallel with algorithmic innovations, several studies have 
explored the interplay between experience prioritization and 
broader training paradigms such as curriculum learning. By 
viewing the replay buffer as a mechanism for structuring the 
order of experience exposure, some approaches implicitly adopt 
curriculum-like strategies, where simpler or more informative 
samples are presented earlier in training [11, 18]. This 
perspective aligns with findings that structured sampling—not 
just random replay—can accelerate convergence and improve 
final policy quality. The integration of curriculum principles 
into experience replay thus opens avenues for more adaptive 
and staged learning strategies.

The effectiveness of PER also depends heavily on the 
operational characteristics of the replay buffer itself, such 
as its capacity, update frequency, and the ratio of learning 
to data collection. Recent empirical studies have shown 
that increasing buffer size or adjusting the replay ratio can 
have non-trivial and sometimes counterintuitive effects on 
learning dynamics [19]. For instance, uncorrected multi-step 
returns—though theoretically inconsistent—may yield better 
empirical performance when combined with large replay 
memories. These insights suggest that prioritized sampling 
must be considered in conjunction with the broader design of 
the experience replay mechanism to achieve optimal results.

The versatility of prioritized experience replay has also 
been demonstrated through its application in domain-specific 
problems beyond standard benchmark environments. For 
instance, in financial decision-making tasks such as optimal 
trade execution, PER has been employed alongside heuristic 
policies to enhance learning efficiency in noisy market 
conditions [20]. In robotics and communication-constrained 
multi-agent systems, PER-inspired scheduling strategies have 
been used to prioritize information that maximizes utility 
under bandwidth limitations [21]. These applications confirm 
that the principles of PER can be effectively extended to 
structured real-world problems where sample efficiency and 
relevance are critical.

Taken together, these advancements reveal a clear 
trajectory in the evolution of experience replay—from 
uniform random sampling toward more intelligent, context-
aware, and adaptive prioritization schemes. Whether through 
theoretical formulations, hybrid value-model integrations, 

uncertainty-driven sampling, or task-specific strategies, the 
field continues to refine the criteria by which past experiences 
are deemed valuable. These developments underscore the 
central role of experience replay in modern reinforcement 
learning and motivate continued exploration into how the 
structure and content of the replay buffer can be optimized 
for different learning objectives and domains.

Building on these prior advancements, we propose an 
adaptive experience replay mechanism that enhances the 
original PER framework. Our method introduces three 
transition-specific signals—reward, usage counter, and policy 
probability—and combines them to dynamically determine 
the importance of each transition. This approach aims to 
provide a more flexible and informative sampling strategy 
for training deep RL models.

3- Adaptive Prioritized Replay Buffer
3- 1- Prioritized Experience Replay

If data ( ), , , s a s r′  exists for each transition in the replay 
buffer, the DQN method attempts to predict the Q-value for 
the state 1s  and action a  using a neural network θ . The 
target Q-value is obtained using a target model θ ′ , which is a 
copied version of the model θ .
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In this equation, δ  is the magnitude of the temporal-
difference (TD) error and γ  is a discount factor.

The prioritized experience replay (PER) method utilizes 
the TD error and assigns a probability to each data point in 
the buffer so that data with higher errors are more likely to 
be selected.
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Based on the PER paper [3], the exponent α  is set to 
a fixed value of 0.6. To address bias in high-error data, 
importance sampling weight is applied to reduce the impact 
of model updates on data with higher priority. 
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Which N  is the replay buffer size and exponent β  is 
scheduled from the initial value 0 0.4β =  to 1 linearly [3]. 
By employing this method, higher-error data can contribute 
more to the training, ensuring their valuable information 
is effectively learned. This method can improve learning, 
increasing the return value in many environments compared 
to the DQN method with uniform random sampling from the 
replay buffer.

3- 2- Prioritization with RCP Values
In this research, we consider the PER method as the 

baseline and propose a novel method for calculating the 
priority of each data. In this method, in addition to the TD 
error, we incorporate three additional values, including 
the reward of the transition, the number of times that each 
transition has been used in training the model, and the 
probability of the action in the current state ( )( )|a sπ , in 
the calculation of the priority of that data. We will refer to 
these three values as RCP (Reward, Counter, Policy). 

Reward: Assume two transitions have been used in 
training the model, both having the same TD error. However, 
if the reward obtained from the first transition is significantly 
higher than that of the second, learning valuable information 
in the first transition will be more important. This is in contrast 
to the PER method, which considers equal probabilities for 
these two data due to their identical TD errors.

Because of the variety of reward values defined in 
different environments and transitions, the reward value in 
each transition is normalized to have a number between 0 to 
1 as the reward of any transition (see Algorithm 1).

Counter: In cases where two data points have the same 
TD error but one has been used 10 times in training while 
the other only once, it is better to assign higher priority to 

the less frequently used data. Additionally, if a data point is 
noisy and consistently has a high error, without considering 
the frequency of its contribution to the training, it can be 
consistently utilized, posing challenges to the training 
process. We know that the PER method does not account for 
these factors.

To use this value in calculating the priority of the 
transitions, the sigmoid function is used to obtain the 
normalized counter, which is a number between 0 to 1 (see 
Algorithm 1).

In this sigmoid-based normalization, we use a scaling 
factor of -4 in the exponent to control the steepness of the 
curve. This value ensures that transitions which have been 
used frequently in training quickly receive lower normalized 
scores, thereby reducing their sampling probability and 
helping the model focus on less-reused but potentially 
informative transitions. (Fig. 1)

Policy ( )( )π a | s : A higher probability of selecting 
action a in state s, denoted as π(s, a), indicates that the 
Q-value for this state-action pair is relatively higher than 
for other actions in the same state. This reflects the agent’s 
confidence in choosing this action under its current policy. 
While this aspect is not considered in the original PER 
method, incorporating π(s, a) into the prioritization process 
helps emphasize transitions that are more aligned with the 
agent’s learned behavior.

In methods like DQN, where the policy is not explicitly 
modeled, π(s, a) can be estimated using a softmax function 
over Q-values. Unlike raw Q-values, which are unbounded 
and often unstable early in training, the policy probability 
is normalized and bounded between 0 and 1, making it a 
more stable signal for prioritization. Moreover, it introduces 
a probabilistic perspective on policy alignment, which 

ALGORITHM 1:  CALCULATE  RCP  VALUES 
1 m 0eanr  ; 1stdr   

2 Procedure Normalize Reward ( batchr ) 
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complements the TD error and reward signals by highlighting 
transitions that reinforce the agent’s consistent decision-
making patterns. This can improve learning stability and 
policy convergence.
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In the proposed method, ( )|a sπ  is first calculated using 
this relationship, and then it is used in a new prioritization 
process (see Algorithm 1).

3- 3- Adaptive Prioritization
We have utilized RCP values to enhance the prioritization 

of each transition in the buffer more effectively. As seen in 
the equation (3), parameter α  is the exponent of TD error 
and determines how much prioritization is used. If we set this 
parameter to zero, the probabilities of all transitions become 
equal, and sampling will be uniform at random. However, as 
this parameter increases, we move further away from random 
sampling.

Despite the importance of the value of this parameter, the 
PER method sets a constant value for it and does not change 
it during training. In the proposed prioritization method, this 
parameter is defined based on the information associated with 
each data. So, the priority value for each data is determined 
using TD error and data dependent parameter α .
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Where the parameter α  is dependent on the values of 
the normalized reward, normalized counter, and probability 
of action in the current state ( )( )|a sπ  (RCP values), or a 
combination of them.
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The training algorithm for Double DQN using the 
proposed prioritized replay buffer will be like the PER except 
that parameter α  is based on RCP values (Algorithm 2).

In the next section, the impact of utilizing each of the 
three values of RCP and various combinations of them will 
be examined.

4- Experiments and Results
In this study, the Double DQN (D2QN) model has been 

employed using Prioritized Experience Replay (PER) as 
our baseline, referred to as PER-DQN. The neural network 
architecture follows the design introduced by Mnih et al. [1], 
consisting of three convolutional layers with ReLU activation 
functions, followed by two fully connected layers. The input 

 
Fig. 1. Normalizing transition replay counter using the Sigmoid function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Normalizing transition replay counter using the Sigmoid function.
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to the network is a stack of four consecutive grayscale frames 
of size 84×84 pixels. The final layer outputs Q-values for 
each possible action in the environment.

Multiple Atari environments are utilized for training the 
models. Each model is trained for up to 10 million steps using 
a mini-batch size of 32 and a replay buffer with a capacity of 
one million transitions. We use the Adam optimizer with a 
learning rate of 0.00025. The target network is updated every 
10,000 steps. The epsilon-greedy strategy is employed for 
exploration, with epsilon decaying exponentially from 1.0 to 
0.001 (Fig. 2).

To evaluate the models during training, the agent 
undergoes five evaluation episodes every 100,000 training 
steps using the current policy, and the average and standard 
deviation of the return values across these 5 episodes are 
recorded and plotted to visualize performance trends over 
time.

All implementations were carried out in Python 3.8 using 
PyTorch 1.12.1. The Atari environments were obtained using 
OpenAI Gym along with the Arcade Learning Environment 
(ALE).

4- 1- Impact of RCP Values
Initially, we investigate the influence of each of the three 

RCP values on the episodic returns. To achieve this, we 
employ four Atari environments: Seaquest, AirRoad, Qbert, 

and Breakout. PER-DQN is trained on these environments as 
the baseline model.

For each of the three RCP values, the training of DQN 
with adaptive prioritized experience replay (APER) is 
performed, incorporating only one of these values at a time. 
The variations in the returns of evaluation episodes for each 
model and environment are observed in the plots depicted in 
Fig. 3.

Based on these plots, it is evident that using each of the 
RCP values in the calculation of the priority of each data 
has significantly enhanced the model compared to the PER 
method. After a detailed examination, we can find out that 
the impact of using any value of RCP varies across different 
environments. However, in general, it can be observed that the 
effects of the two methods, policy and reward, are closer to 
each other, while the counter method has generally achieved 
a greater improvement.

This improvement is particularly noticeable in 
environments with high reward variance, such as Seaquest 
and AirRaid, where our method exhibited smoother and more 
stable learning curves. This indicates that incorporating RCP 
values can enhance robustness against stochasticity in the 
reward signal by diversifying the prioritization mechanism 
beyond noisy TD errors.

After identifying the beneficial effects of these values 
on improving model training, we will explore different 

ALGORITHM 2:  DOUBLE DQN WITH ADAPTIVE PRIORITIZED EXPERIENCE REPLAY 
 Input: minibatch k , step-size  , replay period K and size N , exponents   and  , budget T  

1 Initialize replay memory H =∅, ∆=0, 1 1p  , 0.99   

2 Observe 0S and choose 0 0( )a s  

3 for 1t   to T  do 
4  Observe ts , tr  

5  Store transition ( 1ts  , 1ta  , tr , ts ) in H with maximum priority ( )t i t ip max p  

6  if 0t  mod K then 
7   For  j=1 to k do: 
8    1 1 1 1( , ( | ), ( , , ))j j j j j j jf R a s counter s a s      

9    Sample transition  ( ) /j i
j ii

j P j p p    

10    Compute importance-sampling weight    · /  ( )j i iN P j max
 


  

11    Compute TD-error     1 1=r + , , ,j j target j a j j jQ s argmax Q s a Q s a     

12    Update transition priority | |j jp   

13    Accumulate weight-change 1 1( , ). . j jj j Q s a      

14   Update weights .     , reset 0   

15   From time to time, copy weights into the target network argt et   

16  Choose action ( )t ta s  
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aggregation functions in the next experiment to achieve the 
optimal configuration.

4- 2- RCP Values Aggregation
To utilize all three RCP values, three functions have 

been considered for their aggregation. In each of these 
three methods, the RCP values are combined, resulting in 
a single value that is the exponent of TD error (equation 
(9)) To combine these three values, minimum, maximum, 
and average, have been employed to achieve the optimal 
aggregation function. Practically, in the Algorithm 2, the 
function f  is defined to minimize, maximize, or average 
three RCP values.

To evaluate the three mentioned combination methods, the 
same four Atari environments are used. The proposed model 
(APER-DQN) is trained with each aggregation function on 
these environments and is compared with the results of PER-
DQN. The results of this experiment are illustrated in the 
plots of Fig. 4.

According to the obtained results, it is evident that the 
use of each aggregation method can increase episode return 
values in various environments. Additionally, it is observed 
that the impact of each aggregation method varies depending 
on the environment, and an appropriate aggregation function 
must be selected based on the specific characteristics of the 
task.

Despite this variability, the mean aggregation method 
demonstrated consistently stable performance across 
all tested environments. Unlike min or max, which can 
overemphasize a single component of the RCP values, the 

mean method ensures a balanced contribution from all three 
signals—reward, counter, and policy probability—reducing 
the risk of bias toward any individual factor.

Considering both its stable empirical performance and 
its balanced nature, the mean function can be regarded as 
a strong default choice for aggregation when environment-
specific tuning is not available.

While the proposed aggregation functions (min, max, 
mean) offer effective ways to integrate RCP values, their 
performance may vary across different types of environments. 
In particular, environments with sparse rewards pose unique 
challenges, as the reward component of RCP may lack 
sufficient informative value. In such cases, direct reliance 
on immediate rewards may lead to unstable prioritization or 
even ineffective sampling.

To address this, the adaptive prioritization mechanism can 
be adjusted to reduce the influence of the reward component 
and instead place more emphasis on the counter and policy 
components, which remain informative regardless of reward 
sparsity. Additionally, smoothing techniques such as moving 
averages or simple reward shaping can be applied to create 
a more useful reward signal. This flexibility allows the 
proposed method to maintain robust performance even in 
environments with highly sparse or delayed rewards.

One potential concern with prioritization strategies is 
the risk of overfitting due to repeatedly sampling a narrow 
subset of transitions. Our method mitigates this by integrating 
multiple signals—reward, usage frequency, and policy 
probability—each of which is normalized and aggregated 
in a way that smooths prioritization. The use of the counter 
component, in particular, penalizes overused transitions, 

 

Fig. 2. Scheduling epsilon from 1 to 0.001 exponentially 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Scheduling epsilon from 1 to 0.001 exponentially.
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Fig. 3. Comparison of episode returns in DQN with prioritized experience replay (PER-DQN) and Adaptive prioritized 
experience replay (APER-DQN) using RCP values in prioritization. 

 

 

 

 

 

 

 

Fig. 3. Comparison of episode returns in DQN with prioritized experience replay (PER-DQN) and 
Adaptive prioritized experience replay (APER-DQN) using RCP values in prioritization.

promoting diversity in sampling. Furthermore, the flexibility 
in aggregation allows tuning the prioritization aggressiveness 
depending on the environment. These mechanisms 
collectively help prevent overfitting to noisy or sparse reward 
patterns.

In addition to mitigating overfitting, our adaptive 
prioritization approach also encourages exploration 
throughout training. The counter component reduces the 
likelihood of repeatedly selecting the same transitions, thus 
promoting exposure to underutilized experiences. This allows 

the agent to explore a wider variety of state-action pairs, 
particularly those that may have been initially overlooked. 
Furthermore, the inclusion of policy probability in the 
prioritization scheme promotes sampling transitions where 
the agent has low confidence in its actions, further supporting 
exploration of less certain regions of the state space. While 
regret-based analysis is beyond the scope of this study, 
qualitative results in stochastic environments like Qbert and 
Breakout suggest that the proposed method enhances both 
exploration and learning stability.
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5- Conclusion
In the DQN method, to address the issue of temporal 

data dependencies and reusing previously generated data, 
an experience replay buffer is employed that stores the 
constructed transitions, and training samples are randomly 
selected from this buffer.

The prioritized experience replay method introduces 
an approach where sampling from this buffer is no longer 
uniformly random, and each data point has a probability of 
being selected based on its TD error.

In this paper, we tried to enhance the prioritized experience 
replay method by modifying the prioritization process. In 
the proposed approach, the calculation of the probability for 
selecting data is not solely based on the TD error but also 
incorporates three additional values: reward, the number of 

times that each transition has been selected, and ( )|a sπ .
Through designed experiments, the impact of using each of 

these three values in prioritizing data was examined, revealing 
that all three values can bring significant improvements. 
Subsequently, three aggregation methods, including min, 
max, and mean, were suggested for these three values, 
allowing the utilization of all three values in calculating the 
probability of selecting each data point. It was found that the 
aggregation function should be determined based on each 
environment, but the ‘mean’ aggregation function can be a 
preferred choice as it exhibits acceptable performance across 
various environments and also incorporates all three RCP 
values. 

Although our experiments focused on the Double DQN 
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Fig. 4. Comparison of episode returns in DQN with prioritized experience replay (PER-DQN) and Adaptive prioritized 
experience replay (APER-DQN) using different aggregation functions 
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Adaptive prioritized experience replay (APER-DQN) using different aggregation functions.
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architecture, the proposed adaptive prioritization strategy is 
model-agnostic and can be applied to other Q-learning-based 
algorithms, such as Dueling DQN. We leave the evaluation 
of our method in these frameworks as part of future research.
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