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ABSTRACT: Monitoring healthcare processes poses unique challenges due to the substantial variability 
in patient risk profiles, which can significantly influence surgical outcomes. Traditional control charts 
often neglect these individual differences, leading to potentially biased and misleading performance 
assessments. To overcome these limitations, risk-adjusted control charts have been developed to 
incorporate patient-specific covariates for more equitable monitoring. This study extends previous 
approaches by proposing a risk-adjusted cumulative sum (RA-CUSUM) control chart that accommodates 
ordinal surgical outcomes and incorporates random effects to model unobserved heterogeneity among 
healthcare providers. The proposed RA-CUSUM chart employs dynamic probability control limits 
(DPCLs) to maintain a constant conditional false alarm rate, enabling consistent performance across 
heterogeneous patient populations. Through extensive simulation studies, we demonstrate its efficacy 
in detecting shifts in surgical performance stability, particularly in response to changes in location and 
scale. A real-world case study using cardiac surgery data demonstrates the practical applicability of the 
method. This work provides a more refined and fair framework for evaluating surgical quality and lays 
the groundwork for integrating adaptive techniques in future healthcare monitoring systems. In addition 
to healthcare monitoring, the method can be extended to other domains where ordinal outcomes and case 
heterogeneity are relevant, such as education and finance. This adaptability makes it a valuable decision-
support tool for quality improvement programs and real-time risk management.
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1- Introduction
Online monitoring of healthcare systems plays a pivotal 

role in safeguarding patient well-being and maintaining 
high standards of care. In particular, undetected declines in 
clinical performance can lead to severe consequences for 
both patients and healthcare institutions. At the hospital level, 
performance indicators such as infection rates, postoperative 
mortality, and recovery times are critical metrics that warrant 
continuous surveillance (Bersimis and Sachlas, 2022). 

Statistical process monitoring (SPM) provides a framework 
for issuing timely alerts when performance deviates from 
expected baselines. However, applying SPM in healthcare 
presents unique challenges compared to industrial settings. 
Unlike manufactured products, patients vary significantly 
in their risk profiles due to pre-existing conditions, age, and 
other clinical factors. These risk factors are typically beyond 
the provider’s control but must be accounted for to ensure fair 
performance evaluations (Grigg, 2019). 

Control charts, a fundamental tool in SPM, have been 
extensively adopted in surgical monitoring. However, in such 
applications, patient heterogeneity can obscure true shifts 

in surgical quality. Risk-adjusted control charts (RA charts) 
address this issue by conditioning the monitoring process 
on patient-specific covariates. These models estimate the 
probability of adverse outcomes using logistic or survival 
regression, providing a more accurate and fair basis for 
comparing provider performance. For example, an adverse 
outcome for a low-risk patient is a stronger signal of poor 
care quality than the same outcome for a high-risk patient 
(Steiner et al., 2000).

RA-CUSUM charts have been developed for binary 
and continuous outcomes. The seminal work by Steiner et 
al. (2000) introduced a risk-adjusted CUSUM for binary 
outcomes (e.g., survival within 30 days), while Sego et al. 
(2009) extended the approach to continuous survival times. 
Later advancements incorporated both continuous and 
categorical covariates (Paynabar et al., 2012) and emphasized 
the importance of accounting for additional factors such as 
surgeon experience and procedure type.

Despite these advances, two critical limitations remain. 
First, the reliance on binary classifications ignores the 
ordinal nature of many clinical outcomes, such as partial 
versus full recovery. Researchers including Tang et al. (2015) 
and Khosravi et al. (2018), addressed this limitation by *Corresponding author’s email: khosravi.r@gonabad.ac.ir
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developing RA-CUSUM charts for ordinal outcomes using 
proportional odds logistic models. Second, conventional 
control limits assume a homogeneous patient stream, yet 
real-world clinical settings often deal with fluctuating patient 
risks. Fixed control limits may lead to inconsistent false 
alarm rates across risk profiles. To resolve this, Zhang and 
Woodall (2015) proposed using dynamic probability control 
limits (DPCLs) to ensure a fixed conditional false alarm rate 
(CFAR) across varying patient populations. Aminnayeri and 
Sogandi (2016) extended this to a self-starting Bernoulli 
CUSUM chart with dynamic limits.

While previous studies have made important advances 
in risk-adjusted monitoring, they leave key challenges 
unaddressed in settings involving ordinal outcomes and 
heterogeneous patient populations. To address these 
limitations, this study is guided by three main research 
questions:

 (1) How can we design a risk-adjusted control chart that 
captures multiple ordered levels of surgical outcomes, rather 
than binary success/failure metrics? 

(2) How can we account for both systematic shifts in 
performance and variability across providers using a unified 
framework? 

(3) How can we ensure fair signaling across heterogeneous 
patient populations through adaptive control limits? 

To address these questions, this paper aims to develop 
and evaluate a novel (RA-CUSUM control chart for ordinal 
outcomes that incorporates a random effect term to monitor 
provider-specific variability and uses DPCLs to maintain 
a consistent false alarm rate across varying patient risk 
profiles. Building upon prior literature, the proposed method 
integrates ordinal outcome modeling with random effects to 
more accurately reflect clinical realities where both outcome 
severity and provider heterogeneity influence performance. 
The adoption of DPCLs further ensures equitable and robust 

monitoring in diverse patient populations.
To clarify the methodological contributions of this study, 

Table 1 summarizes and compares selected works on risk-
adjusted control charts, focusing on key modeling components 
such as the type of outcome modeled, the incorporation of 
random effects, and the structure of the control limits. 

As illustrated, prior studies have addressed specific aspects 
of the monitoring problem, but none have simultaneously 
incorporated all three dimensions. The proposed method 
is the first to combine ordinal outcome modeling, random 
effects for provider-specific variability, and DPCLs within a 
unified RA-CUSUM framework. This integration improves 
the relevance, fairness, and responsiveness of performance 
monitoring in clinical settings.

The remainder of the paper is structured as follows: Section 
2 formulates the risk-adjusted ordinal regression model with 
random effects. Section 3 describes the CUSUM chart and 
its dynamic control limits. Section 4 evaluates performance 
using simulation studies. Section 5 applies the methodology 
to a real-world surgical dataset. Section 6 concludes with a 
discussion on implications and future directions.

2- Risk-adjusted ordinal modeling 
Let Yi denote the surgical outcome for patient i, which 

falls into one of J ordered categories. For instance, in a three-
category case, Yi=0 may indicate full recovery, Yi =1 partial 
recovery, and Yi=2 death. The ordering reflects the increasing 
severity of the  outcome. This classification enables a more 
detailed evaluation of surgical performance compared to 
binary outcomes, which only distinguish between survival 
and death.

We assume that ( )1 iJi iY Multinomial 1;p ,...,p , where 
( )Prij ip Y j= =  denotes the probability that patient i’s 

outcome falls into category j. These probabilities are modeled 
as functions of   continuous risk factors xi (e.g., Parsonnet 

Table 1. The contribution of the present study in the literature of RA control chars.

Table 1- The contribution of the present study in the literature of RA control chars. 

 

Study Outcome Type Random Effects Control Limits Contribution Summary 

Steiner et al. (2000) Binary No Fixed Classical RA-CUSUM for binary 
outcomes 

Sego et al. (2009) Continuous No Fixed Risk-adjusted CUSUM for survival 
outcomes 

Tang et al. (2015) Ordinal No Fixed RA-CUSUM for ordinal outcomes using 
cumulative logit model 

Aminnayeri and 
Sogandi (2016) Binary No Dynamic Self-starting RA-CUSUM with 

simulation-based dynamic thresholds 

Li et al. (2023) Binary Yes Dynamic Novel performance evaluation by 
considering random effects  

This study Ordinal Yes Dynamic First RA-CUSUM with ordinal outcomes, 
random effects, and DPCLs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



R. Khosravi et al., AUT J. Model. Simul., 57(1) (2025) 17-28, DOI: 10.22060/miscj.2025.23841.5400

19

score) and categorical covariates di (e.g., type of surgery, 
surgeon identity).

To relate the covariates to the outcome probabilities, we 
use the proportional odds logistic regression model, a special 
case of the cumulative link model (Agresti, 2010). This 
model is well-suited to ordinal outcomes because it leverages 
the ordering information, improving estimation efficiency 
and interpretability. Cumulative link models are widely used 
for modeling ordinal response variables due to their ability to 
incorporate the ordered nature of responses and their flexible 
regression framework. 

2- 1- Cumulative Link Model
Instead of modeling each category probability pij  directly, 

the model estimates the cumulative probabilities:
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These are related to the covariates via the logit link 
function:
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where jα  is the intercept (cutpoint) for category j 
and 

 
,...,β β β= 1[ ]p  is a parameter vector for regression 

coefficients shared across categories. The negative sign 
ensures that higher values of xi​​β​shift​the​response​distribution​
toward worse outcomes (i.e., higher category indices), which 
aligns with clinical intuition when xi  encodes patient risk.

2- 2- Latent Variable Interpretation
This model can be interpreted in terms of a continuous 

latent health score Si such that:
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where​ τ0,…,τJ−1  are thresholds corresponding to the 

intercepts​αj , and β ε= +i i iS x ,​with​εi  Logistic(0,1).
This framework connects the ordinal regression to an 

underlying severity continuum (Christensen, 2015).

2- 3- Categorical Covariates
The linear predictor is extended to incorporate categorical 

variables (e.g., procedure type, surgeon) using dummy 
coding.
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where id is a vector of dummy variables for the 
categorical covariates and γ is the corresponding coefficient 

vector. If a covariate (e.g., surgery type) has three levels, two 
dummy variables are introduced, and one category is treated 
as the baseline. 

3- The proposed RA-CUSUM control chart
Let us assume that surgical performance remains in 

control up to a certain point in the monitoring process and 
then​undergoes​a​change​at​patient​τ.​This​change​may​affect​
the central tendency or the variability of outcomes. We model 
this situation using the following change-point formulation:
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Here,​ θi  represents the parameter vector at time i, and 
the change may occur in the location or scale parameters (or 
both) of the ordinal logistic model.

3- 1- Incorporating Random Effects to Capture Variability
In real clinical settings, variability among surgeons, due 

to skill levels, techniques, or case complexity, can affect 
surgical outcomes. To model this unobserved heterogeneity, 
we introduce a random effect into the linear predictor:
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where:
• ( )0,1i Nδ   is a random effect associated with patient 

i’s surgery,
• θ​ is​ the​ variance​ of​ the​ random​ effect,​ used​ to​ monitor​stability in performance.

When​θ=0,​the​process​is​considered​stable​(in-control).​
A​positive​θ​indicates​excess​variation,​which​may​reflect​a​
decline in surgical consistency.

To formally monitor performance, we test the following 
hypotheses:
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3- 2- Derivation of the Score Statistic
To evaluate evidence against the null hypothesis, we use a 

score statistic, denoted by Wi , which is derived from the first 
derivative​of​the​log-likelihood​function​with​respect​to​θ.​Let​
yi  denote the observed outcome for patient i, Fj(.) denote the 
cumulative distribution function corresponding to category 
j, and I(.) be the indicator function. The log-likelihood 
contribution for observation i,​conditional​on​δi , is:
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The score statistic Wi  is then given by:
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The intuition is that Wi  captures how sensitive the 
likelihood is to variability at each patient’s outcome. A larger 
Wi  implies greater evidence of instability.

 The details of the computation are provided in Appendix 
A.

3- 3- CUSUM Statistic and Monitoring Procedure
We now integrate the score statistics into a CUSUM 

chart, which accumulates small changes over time to detect 
sustained shifts. The one-sided CUSUM statistic is defined 
recursively as:
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where iC +

 is cumulative sum of the score statistics up to 
patient i. The process signals an alarm if iC + exceeds a control 
limit.

3- 4- Dynamic Probability Control Limits
Unlike industrial settings, patient covariates in healthcare 

vary significantly over time. Consequently, fixed control 
limits may produce inconsistent false alarm rates. To address 
this, we adopt dynamic probability control limits (DPCLs), 
which are individualized for each patient (Zhang, Loda, and 
Woodall, 2017; Zhang and Woodall, 2015).

The core idea is to maintain a fixed conditional false alarm 
rate (CFAR) α,​such​that​(Aytaçoğlu,​Driscoll,​and​Woodall,​
2023):
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where ( )ih α is the dynamic control limit for patient i, 
estimated via simulation. 

These control limits are calculated using the following 
procedure:
1) Estimate in-control parameters: Use the historical patient 

data to fit the risk-adjusted ordinal logistic regression 
model.​Obtain​estimates​of​the​intercepts​αj , coefficients β, 
and γ under the assumption that the process is stable.

2) Simulate in-control outcomes: Generate a large number of 
synthetic patient outcomes (e.g., N=100,000) under the in-
control model. 

a) For each simulated patient, use the estimated regression 
model to compute category probabilities (e.g., 
probability of full recovery, partial recovery, or death).

b) Randomly assign an outcome by drawing from a 
multinomial distribution with these probabilities.

c) These simulated outcomes mimic how the process 

would behave if it remained stable, providing a 
reference distribution for comparison.

3) Compute simulated CUSUM values: For each simulated 
outcome, calculate the corresponding score statistic Wi  and 
update the CUSUM statistic iC +  using Eq. (8).

4) Determine control limit hi : Sort the N simulated CUSUM 
values​ in​ ascending​ order.​ Select​ the​ (1−α)-quantile​ of​
this empirical distribution as the control limit for patient i, 
denoted by hi .

5) Decision rule: Compare the observed CUSUM statistic for 
patient i with the computed hi . If i iC h+ >  , issue an out-
of-control signal, otherwise, continue monitoring with the 
next observation.

This simulation-based procedure ensures that the control 
chart adjusts to individual patient characteristics while 
maintaining a consistent false alarm rate across varying 
risk levels. DPCLs are particularly beneficial during the 
early stages of monitoring or when patient populations are 
heterogeneous.

4- Performance evaluation
This section presents simulation studies designed to 

evaluate the performance of the proposed RA-CUSUM chart 
in detecting changes in both the location and scale parameters 
of surgical performance. The primary performance measures 
are:
• ARL0 (in-control average run length): the expected number 

of observations until a false alarm occurs when the process 
is stable.

• SDRL: standard deviation of the run length under the in-
control condition.

• ARL0 (out-of-control average run length): the expected 
number of observations to signal after a shift has occurred.

• CFAR (conditional false alarm rate): used in DPCL design 
to maintain control over false signal probabilities.

We define a baseline RA-CUSUM model using the 
ordinal logistic regression structure discussed in Section 2. 
The model parameters for the in-control state are:
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( ) : continuous patient risk score,ix Exponential λ

1 2d ,d : i i dummy variables identifying the surgery type, 
drawn from a multinomial distribution over three categories.

Each patient’s ordinal outcome is generated based on 
their covariate profile, with categories indicating different 
recovery levels (e.g., full recovery, partial recovery, death).

4- 1- In-Control Performance under Fixed vs. Dynamic 
Limits

First, we compare the in-control performance of the RA-
CUSUM chart under fixed control limits and DPCLs. For the 
fixed-limit case, we select h=4.06 to target an ARL0 of 400.

Table 2 shows that the achieved ARL0  varies substantially 
across different risk distributions, indicating the sensitivity of 
fixed-limit charts to changes in patient risk profiles.
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In contrast, when using DPCLs with N=100,000 Monte 
Carlo​replications​and​false​alarm​probabilities​α=0.0025​and​
α=0.005,​ the​ chart​ consistently​ achieves​ the​ desired​ARL0 
values across all distributions.

Tables 3 and 4 report the in-control ARL0  and SDRL 
values, along with selected percentiles of the run length 
distribution (Q10–Q90) and the estimated CFAR. The results 
show that the DPCL-based chart consistently achieves the 

nominal in-control performance across varying patient risk 
profiles. The empirical run length distribution closely aligns 
with the theoretical geometric distribution, and CFAR values 
remain near the target levels. These findings confirm that the 
proposed method is both statistically reliable and well-suited 
to heterogeneous clinical settings.

To visualize how DPCLs adapt during the monitoring 
process, Fig. 1 compares the individualized control limits 

Table 2. In-control performance of the proposed control chart based on the fixed control limit .Table 2- In-control performance of the proposed control chart based on the fixed control limit  

Index Risk distribution ARL0 SDRL 

1 
 

 d
 370.2 348.1 

2 
 

 d
 430.5 339.6 

3 
 

 d
 384.1 320.4 

4 
 

 d
 395.9 359.2 

5 
 

 
 415.3 357.9 

6 
 

 
 401.3 329.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. In-control performance of the proposed control chart using DPCLs (α=0.0025).Table 3- In-control performance of the proposed control chart using DPCLs (α=0.0025) 

  ARL0 SDRL Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 i  i   

1 
 

 d
 399.4 384.6 45.1 117.7 278.0 553.5 916.4 2.4969E-03 2.5063E-03 

2 
 

 d
 398.3 387.5 44.2 116.4 279.9 552.9 917.2 2.4996E-03 2.5011E-03 

3 
 

 d
 398.5 383.5 42.4 117.2 279.4 553.7 919.0 2.4932E-03 2.5085E-03 

4 
 

 d
 401.0 387.6 42.6 116.2 277.6 554.4 916.4 2.4996E-03 2.5037E-03 

5 
 

 d
 400.5 383.4 43.7 115.3 279.5 554.2 916.9 2.4911E-03 2.5038E-03 

6 
 

 d
 398.8 386.8 44.3 115.5 277.5 552.0 917.1 2.4982E-03 2.5013E-03 

 Geometric 400.0 399.49 42 115 277 552 916 - - 
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Table 4. In-control performance of the proposed control chart using DPCLs (α=0.005).
Table 4- In-control performance of the proposed control chart using DPCLs (α=0.005) 

  ARL0 SDRL Q0.10 Q0.25 Q0.50 Q0.75 Q0.90 i  i   

1 
 

 d
 200.7 193.2 23.0 58.9 139.1 276.8 458.3 4.994E-03 5.013E-03 

2 
 

 d
 199.5 194.4 22.2 58.5 140.8 277.0 458.7 4.999E-03 5.002E-03 

3 
 

 d
 199.4 191.8 21.8 59.6 140.6 277.0 460.3 4.986E-03 5.017E-03 

4 
 

 d
 200.6 194.2 21.7 58.5 139.5 277.9 458.6 4.999E-03 5.007E-03 

5 
 

 d
 200.8 191.7 22.0 58.1 140.3 277.5 458.8 4.982E-03 5.008E-03 

6 
 

 d
 200.0 194.1 22.3 58.4 139.1 276.5 458.7 4.996E-03 5.003E-03 

 Geometric 200 199.5 21 57 139 276 459 - - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. The DPCLs for the first 400 patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The DPCLs for the first 400 patients

for the first 400 patients to the constant fixed control limit. 
The DPCLs start more conservatively in early stages (due 
to higher variability) but converge toward the fixed limit 
over time as more information accumulates. This adaptive 
behavior reduces early-stage false alarms and ensures fairness 
in the presence of diverse risk profiles.

4- 2- Out-of-Control Performance and Robustness
To evaluate the chart’s detection capability, shifts were 

introduced in both the location and scale parameters of the 
baseline model at various change points Let lε  and sε  
denote the magnitudes of changes in the location and scale 
parameters, respectively. 
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The results, summarized in Table 5, indicate that the 
proposed RA-CUSUM chart effectively detects both types 
of shifts, with faster detection occurring as the magnitude 
of change increases. The method demonstrates sensitivity 
not only to shifts in the average performance but also to 
increased variability, highlighting its strength in monitoring 
both systematic and unstable behavior. Moreover, the time 
at which the change occurs has a minimal effect on detection 
speed, suggesting that the chart maintains stable performance 
across different monitoring horizons. These findings confirm 
the method’s utility for real-time surveillance in dynamic 
clinical environments. 

5- Illustrative example
To demonstrate the practical application of the proposed 

RA-CUSUM control chart, we analyze a real-world dataset 
of surgical outcomes from cardiac procedures performed in 
UK hospitals between 1992 and 1998. The dataset includes 
information on 6,994 patients, along with demographic and 
preoperative clinical characteristics. These characteristics 
have been combined into the widely used Parsonnet score, 
which ranges from 0 to 71 and provides a composite measure 
of patient-specific surgical risk, with higher values indicating 
higher risk.

To define the ordinal response variable, we categorized 
surgical outcomes into three ordered levels based on 
postoperative survival duration: Y=0 was assigned to patients 
who survived more than 30 days, representing full recovery; 
Y=1 indicated partial recovery and was assigned to those 
who died between days 15 and 30; and Y=2 was used to 
denote mortality within the first 14 days after surgery. This 
ordering reflects increasing severity of outcome and allows 
the monitoring procedure to distinguish between varying 
degrees of recovery, rather than relying on a simple binary 
classification. 

We used proportional odds logistic regression to estimate 
the cumulative category probabilities as functions of the 

Parsonnet score and type of surgery. The estimation was 
carried out using the polr function in the MASS package in R.

To evaluate the responsiveness of the proposed control 
chart to changes in surgical performance, we artificially 
introduced shifts in both the location and scale parameters 
of the model. For the location shift, a constant was added to 
the linear predictor, representing a deterioration in average 
performance. For the scale shift, a random effect term with 
increased variance was added, reflecting greater variability 
in performance stability (e.g., inconsistent surgical outcomes 
across patients). In both cases, the modified model was used 
to generate a sequence of observations, and the RA-CUSUM 
chart with DPCLs was applied for monitoring.

Figure 2 shows the resulting CUSUM trajectories under 
location and scale shifts, along with the corresponding 
dynamic control limits. The control chart successfully 
detected the changes in both scenarios. As expected, shifts 
in the location parameter resulted in earlier signals, whereas 
shifts in scale led to more gradual increases in the CUSUM 
statistic. These results are consistent with the simulation 
findings and confirm that the proposed method is capable of 
identifying both systematic and irregular changes in surgical 
outcomes.

From a managerial perspective, the ability to detect 
both average shifts and increased variability is of particular 
importance. Changes in the average outcome may signal 
systemic issues such as deteriorating surgical technique 
or process drift, while increased variability may reflect 
inconsistent performance among surgical teams or procedural 
complexity. Timely identification of such deviations enables 
hospital administrators to investigate root causes, initiate 
targeted interventions (e.g., training, standardization), and 
prevent further adverse events. Furthermore, the use of 
dynamic control limits ensures that performance evaluations 
are adjusted fairly based on each patient’s risk profile, making 
the approach suitable for high-stakes clinical environments 
where equitable monitoring is essential.

Table 5. ARL1 (SDRL) values of the proposed control charts with the shifts of different sizes and change points.Table 5- ARL1 (SDRL) values of the proposed control charts with the shifts of different sizes and change points  

τ 
ε  in φ  ε  in θ  

0.05 0.1 0.2 0.5 1 2 0.5 0.7 0.9 1 2 3 

25 286.7 
(40.5) 

227.3 
(35.4) 

132.1 
(25.1) 

63.2 
(13.1) 

25.7 
(5.6) 

6.8 
(1.3) 

285.3 
(40.6) 

220.0 
(36.6) 

170.7 
(26.3) 

160.3 
(22.1) 

34.2 
(6.8) 

13.5 
(1.9) 

50 283.9 
(40.4) 

224.6 
(36.3) 

130.6 
(24.8) 

62.5 
(12.8) 

25.1 
(5.1) 

6.3 
(1.2) 

284.9 
(42.8) 

221.3 
(36.2) 

170.5 
(26.6) 

155.0 
(21.9) 

32.0 
(6.3) 

12.4 
(1.6) 

75 283.5 
(39.1) 

224.6 
(36.1) 

131.0 
(24.3) 

62.5 
(12.5) 

25.1 
(5.1) 

6.2 
(1.1) 

283.1 
(42.1) 

223.4 
(34.9) 

167.6 
(25.5) 

144.9 
(21.9) 

28.8 
(6.5) 

14.9 
(1.8) 

100 277.8 
(39.9) 

219.6 
(36.2) 

127.2 
(23.8) 

61.4 
(12.4) 

24.5 
(5.3) 

5.0 
(1.1) 

280.9 
(40.7) 

221.7 
(35.6) 

168.4 
(24.9) 

147.8 
(22.8) 

28.7 
(6.2) 

10.9 
(1.7) 
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In addition to surgical monitoring, the method can be 
extended to other healthcare domains where ordinal outcomes 
and patient heterogeneity are relevant, such as intensive 
care monitoring, readmission analysis, or rehabilitation 
assessment. Its adaptability makes it a valuable decision-
support tool for quality improvement programs and real-time 
risk management.

6- Conclusion
Traditional control charts often overlook the variability 

introduced by patient-specific risk factors, which can lead to 
biased or inequitable assessments of healthcare performance. 
This paper proposed a novel RA-CUSUM control chart 
tailored to monitor surgical outcomes with ordinal structure, 
while accounting for unobserved heterogeneity through the 
inclusion of a random effect term. In contrast to binary-
outcome models, our approach enables more nuanced 
performance evaluations by distinguishing varying levels of 
postoperative recovery. Furthermore, by employing DPCLs, 
the proposed chart adapts to patient-level risk profiles and 
ensures a consistent CFAR, even in heterogeneous patient 
populations.

Extensive simulation studies demonstrated the 
effectiveness of the method in detecting both location 
shifts and increased variability, confirming its utility for 
monitoring both systematic deterioration and unstable 
surgical performance. The real-world case study illustrated its 
applicability in clinical settings and emphasized its relevance 
for quality assurance and risk management in hospitals.

Looking ahead, the integration of machine learning 
(ML) techniques offers promising avenues for enhancing the 
flexibility and predictive power of risk-adjusted monitoring 
systems. For instance, data-driven models such as neural 
networks or gradient boosting machines could be trained to 
estimate ordinal outcome probabilities more flexibly than 
traditional logistic regression. These models may also identify 

latent interactions among risk factors and dynamically adjust 
to changes in patient demographics or treatment protocols. In 
addition, incorporating real-time learning mechanisms could 
allow control charts to evolve with incoming data, enabling 
early adaptation to new patterns of variation or risk. Such 
advancements would pave the way for more intelligent and 
adaptive monitoring frameworks in healthcare.

Future research may also explore the extension of the 
proposed method to other sectors where ordinal outcomes 
and contextual heterogeneity are prevalent, such as education, 
finance, and public health. Further investigation into joint 
monitoring of multiple indicators or integrating prior clinical 
knowledge into the model structure would also be valuable 
directions for advancing the practical impact of this work.
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Appendix A. Derivation of the Score Statistic 

To monitor variability in surgical performance, we compute a score statistic that assesses whether the 
variance of the patient-specific random effect  0,i N   is greater than zero.  

The likelihood contribution of patient i, derived from the proportional odds model with random intercepts, 
for a single observation yi is: 

   
 iI y = jJ
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L = P y = j  . 
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Second Derivative of the Log-likelihood 
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