Computational Simulation of Applying Oscillatory Flow on a Stem Cell Using Fluid-Structure Interaction Method: Role of Primary Cilia and Cytoskeleton

Document Type : Research Article

Authors

Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Abstract

Load-induced fluid flow acts as a dominant biophysical signal for bone cell mechanotransduction in vivo. Oscillatory fluid flow has been used in bone tissue engineering strategies due to its similarity to the fluid dynamics within the human body. In this study, a fluid-structure interaction method was used to subject the mesenchymal cell to steady and oscillatory fluid flow. Three models were considered for a steady flow, including cytoplasm, nucleus, primary cilium, and cytoskeleton, to investigate the effects of cilium and cytoskeleton on cell mechanical responses (stress and strain). The fourth model, including cytoplasm, primary cilium, and cytoskeleton components has been considered to evaluate the stress and strain values created in the cell and its components in the oscillatory flow regime. The length and mechanical properties of the primary cilium (Young's modulus) were also varied to investigate cell responses. The results indicated that the presence of the cytoskeleton reduced the amount of stress experienced in the cell by about 35%. The presence of primary cilium, also, increased stress in the cell by about ten times in an oscillatory regime. The peak von Mises stress was 11.5 Pa in the oscillatory flow, which is three times greater than the level observed in the steady state condition. Moreover, the highest amount of strain occurred at the base of the cilium, indicating this component's importance in receiving and transmitting stress to other components. Our results revealed a direct relationship between the properties of the cilium and the stress and strain created in the cell. For a cilium with a length of 4 µm, the deflection at the tip of the cilium was 0.77 µm. This represented a 78% increase compared to a 10 µm cilium.  This research can be a basis for future numerical studies in tissue engineering and improvements in the related experimental approaches.

Keywords

Main Subjects


  1. Feng, Z.; Jin, M.; Liang, J.; Kang, J.; Yang, H.; Guo, S.; Sun, X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta biomater. 2023, 164, 1–14.
  2. García-Aznar, J. M.; Nasello, G.; Hervas-Raluy, S.; Pérez, M. Á.; Gómez-Benito,M. J. Multiscale modeling of bone tissue mechanobiology. Bone. 2021, 151
  3. Ahmadian, B.; Vahidi, B.; Mahdinezhad Asiyabi, M. Computational simulation of oscillatory flow on stem cells in a bioreactor. J. Braz. Soc. Mech. Sci. Eng. 2023, 45.
  4. Latour, M. L.; Pelling, A. E. Mechanosensitive osteogenesis on native cellulose scaffolds for bone tissue engineering. J. Biomech. 2022, 135.
  5. Wang, L.; Shi, Q.; Cai, Y.; Chen, Q.; Guo, X.; Li, Z. Mechanical–chemical coupled modeling of bone regeneration within a biodegradable polymer scaffold loaded with VEGF. BMMB. 2020, 19, 2285–2306.
  6. Yong, K. W.; Choi, J. R.; Choi, J. Y.; Cowie, A. C. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int. J. Mol. Sci. 2020 21.
  7. Lou, S.; Duan, Y.; Nie, H.; Cui, X.; Du, J.; Yao, Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochim. 2021, 185, 9-21.
  8. Rekabgardan, M.; Parandakh, A.; Shahriari, S.; Khazaei Koohpar, Z.; Rahmani, M.; Ganjouri, C.; Ramezani Sarbandi, R.; Khani, M.-M. An electrospun PGS/PU fibrous scaffold to support and promote endothelial differentiation of mesenchymal stem cells under dynamic culture conditions. J. Drug Deliv. Sci. Technol. 2022, 72.
  9. Hu, K.; Sun, H.; Gui, B.; Sui, C. TRPV4 functions in flow shear stress-induced early osteogenic differentiation of human bone marrow mesenchymal stem cells. B Biomed. Pharmacother. 2017, 91, 841-848.
  10. Moradkhani, M.; Vahidi, B.; Ahmadian, B. Finite element study of stem cells under fluid flow for mechanoregulation toward osteochondral cells. J. Mater. Sci.: Mater. Med. 2021, 32.
  11. Stavenschi, E.; Labour, M.-N.; Hoey, D. A. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration. Biomech. 2017, 55, pp. 99-106.
  12. Mohseni, M.; Vahidi. B.; Azizi, H. Computational simulation of applying mechanical vibration to mesenchymal stem cells for mechanical modulation toward bone tissue engineering. J. Med. Eng. 2023, 237, p. 1377–1389.
  13. Khan, A. U. R.; Fan, Qu.; Ouyang, T. J.; Dai , J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res. Ther. 2020, 11.
  14. McColloch, A.;Rabiei, M.; Rabbani, P.; Bowling, A.; Cho, M. Correlation between Nuclear Morphology and Adipogenic Differentiation: Application of a Combined Experimental and Computational Modeling Approach. Sci. Rep. 2019, 9.
  15. Ohashi K.; Fujiwara, S.; Mizuno, K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J. biochem. 2017, 161, 245-254.
  16. Hawkins, T.; Mirigian, M.; Yasar, M. S.; Ross, J. L. Mechanics of microtubules. J. Biomech. 2010, 43, pp. 2330.
  17. Lammerding, J. Mechanics of the nucleus. Compr. Physiol. 2011, 1, 783-807.
  18. Peng, Z.; Resnick, A.; Young, Y.-N.; Primary cilium: a paradigm for integrating mathematical modeling with experiments and numerical simulations in mechanobiology. M Math Biosci. Eng. 2021, 18, 12151237.
  19. Ahmadian, B.; Vahidi, B. Response analysis of primary cilia of the cell to the oscillatory fluid flow by using fluidstructure interaction method. Amirkabir J. Mech. Eng. 2021, 53, 3293-3306.
  20. Page, M. I.; Linde P. E.; Puttlitz, C. M. Computational modeling to predict the micromechanical environment in tissue engineering scaffolds. J. Biomech. 2021, 120.
  21. Pires, T.; Dunlop, J. W. C.; Fernandes, P. R.; Castro, A. P. G. Challenges in computational fluid dynamics applications for bone tissue engineering. Proc. R. Soc. A. 2022, 478.
  22. Barreto, S.; Clausen, C. H.; Perrault, C. M.; Fletcher, D. A.; and Lacroix, D. A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomater. 2013, 34, 6119-6126.
  23. Barreto, S.; Perrault, C. M.; Lacroix, D. Structural finite element analysis to explain cell mechanics variability. J. Mech. Behav. Biomed. Mater. 2014, 38, 219-231.
  24. Long, M.; Sato, M.; Lim, C. T.; Wu, J.; Adachi, T.; Inoue, Y. Advances in Experiments and Modeling in Micro- and Nano-Biomechanics: A Mini Review. Cell Mol. Bioeng. 2011, 327-239.
  25. Vaez Ghaemi, R.; Vahidi, B.; Sabour, M. H.; Haghighipour, N.; Alihemmati, Z. Fluid-Structure Interactions Analysis of Shear-Induced Modulation of a Mesenchymal Stem Cell: An Image-Based Study. Artif. Organs. 2016, 40, 278-287.
  26. Spasic, M.; Duffy, M. P.; Jacobs, C. R. Fenoldopam Sensitizes Primary Cilia-Mediated Mechanosensing to Promote Osteogenic Intercellular Signaling and Whole Bone Adaptation. J. Bone Miner. 2022, 37, 972-982.
  27. Rydholm, S.; Zwartz, G.; Kowalewski, J. M.; KamaliZare, P.; Frisk, T.; Brismar, H. Mechanical properties of primary cilia regulate the response to fluid flow. Am. J. Physiol. Renal. Physiol. 2010, 298.
  28. Putra, V. D. L.; Kilian, K. A.; Tate, M. L. K. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun. Biol. 2023, 6.
  29. Barreto, S. Biomechanical study of the mechanical and structural properties of adherent cells. PhD thesis, University of Sheffield, England, 2013.
  30. JANMEY, P. A. The Cytoskeleton and Cell Signaling: Component Localization and Mechanical Coupling. Physiol. Rev. 1998, 78.
  31. Wang, N.; Stamenović, D. Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am. J. Physiol. Cell Physiol. 2000, 279, 188-194.
  32. Durate, F.; Gormaz , R.;Natesan, S. Arbitrary Lagrangian–Eulerian method for Navier–Stokes equations with moving boundaries. Comput. Methods Appl. Mech. Eng. 2003, 193, 4819-4836.
  33. Wang, L.; Wang, J.; Chen, Q.; Li, Q.; Mendieta, J. B.; Li, Z. How getting twisted in scaffold design can promote bone regeneration: A fluid–structure interaction evaluation. J. Biomech. 2022, 145.
  34. Moradkhani, M.; Vahidi,B. Effect of Collagen Substrate Stiffness and Thickness on the response of a Mesenchymal Stem Cell in Cell Culture Environment: A Computational Study. Iran J. Biomed. Eng. 2015, 9, 179-190.
  35. Zhao, F.; Vaughan, T. J.; M. Mcnamara, L. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold. Biomech. model. mechanobiol. 2015, 14, 231243,.
  36. Vaughan, T. J.; Haugh, M. G.; McNamara, L. M. A fluid-structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems. J. R. Soc. Interface. 2013, 10.
  37. Corrigan, M. A.; Johnson, G. P.; Stavenschi, E.; Riffault, M.; Labour, M.-N.; Hoey, D. A. TRPV4mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium. Sci. Rep. 2018, 8.
  38. Riddle, R . C.; Hippe, K. R.; Donahue, H. J. Chemotransport contributes to the effect of oscillatory fluid flow on human bone marrow stromal cell proliferation.” Orthop. Res. 2008, 26, 918-924.
  39. Vaughan, T. J.; Mullen, C. A.; Verbruggen, S. W.; McNamara, L. M. Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia. B Biomech. Model Mechanobiol. 2015, 14, 703– 718.
  40. Mehrian, M.; Lambrechts, T.; Papantoniou, I.; Geris, L. Computational Modeling of Human Mesenchymal Stromal Cell Proliferation and Extra-Cellular Matrix Production in 3D Porous Scaffolds in a Perfusion Bioreactor: The Effect of Growth Factors. Front bioeng. biotechnol. 2020, 8.
  41. Haase, K.; Macadangdang, J. K. L.; Edrington, C. H.; Cuerrier, C. M.; Hadjiantoniou, S.; Harden, J. L.; Skerjanc, I. . S.; Pelling, A. E. Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner. Sci. Rep. 2016, 6.
  42. Chinipardaz, Z.; Liu, M.; Graves, D.; Yang, S. Role of Primary Cilia in Bone and Cartilage. J Dent Res. 2022, 101, 253-260.
  43. Wang, Y.; Akintoye, S. O. Primary Cilia Enhance Osteogenic Response of Jaw Mesenchymal Stem Cells to Hypoxia and Bisphosphonate. J. Oral Maxillofac. Surg. 2021, 79, 2487–2498.
  44. Ma, R.; Kutchy, N. A.; Chen, L. D.; Meigs, D.; Hu,G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol. Dis. 2022, 163.
  45. Gould, N. R.; Torre, O. M.; Leser, J. M.; Stains,J. P. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone. 2021, 149.
  46. Li, Y. J.; Batra, N. N.; You, L.; Meier, S. C.; Coe, I. A.; Yellowley, C. E.; Jacobs,C. R. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J. Orthop. 2004, 22, 1283–1289.
  47. Lee, D. A.; Knight, M. M.; Campbell, J. J.; Bader, D. L. Stem cell mechanobiology,” J Cell Biochem. 2011, 112 , pp. 1-9.
  48. Li, D.; Tang,T.; Lu, J.; Dai, K. Effects of flow shear stress and mass transport on the construction of a largescale tissue-engineered bone in a perfusion bioreactor Tissue Eng. 2009, 15, 2773-2783.
  49. Lau, E.; Lee,D.; Li, J.; Xiao, A.; Davies, J. E.; Wu, Q.; Wang, L.; You, L. Effect of low-magnitude, highfrequency vibration on osteogenic differentiation of rat mesenchymal stromal cells. J. Orthop. Res. 2011.
  50. Stewart, S.; Darwood, A.; Masouros, S.; Higgins, C.; Ramasamy, A. Mechanotransduction in osteogenesis. Bone Joint Res. 2020, 9, pp. 1-14.
  51. Khayyeri, H.; Barreto, S.; Lacroix, D. Primary cilia mechanics affects cell mechanosensation: A computational study. J. Theor. Biol. 2015, 379, 38–46.
  52. Malone, A. M. D.; Anderson, C . T.; Tummala, P.; Kwon, R. Y. T.; Johnston, R.; Stearns, T.; Jacobs, C. R. Primary cilia mediate mechanosensing in bone cells by a calciumindependent mechanism. P Proc. Natl. Acad. Sci. 2007, 104, p. 13325–13330.
  53. Spasic, M.; Jacobs, C. R. Lengthening primary cilia enhances cellular mechanosensitivity. Eur. Cells Mater. 2017, 33, 158-168.
  54. Jacobs, C. R.; Yellowley, C. E.; Davis, B. R.; Zhou, Z.; Cimbala, J. M.;  Donahue, H. J. Differential effect of steady versus oscillating flow on bone cells. J. biomech. 1998, 31, 969-976.