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ABSTRACT 

In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct 

control model is designed to control the speed and exhaust temperature of the gas turbine in a combined 

cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust 

temperature of the gas turbine should be simultaneously controlled by fuel command signal and inlet guide 

vane position. Also practical limitations are applied to system inputs. In addition, demand power and 

ambient temperature are considered as disturbance. Simulation results show the effectiveness of proposed 

controller in comparison with other conventional methods such as Model Predictive Control (MPC) and H∞ 

control in a same operating condition. 
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1. INTRODUCTION 

Today, gas turbines play an important role in various 

industries, including power generation plants. Advantages 

such as low emission of greenhouse gases compared to 

other energy sources in the same capacity, fast startup 

within 30 seconds to 30 minutes [1], that has enabled the 

gas turbines to be used at times of emergency or 

maximum power consumption of the system. One of the 

biggest disadvantages of gas turbines is their low 

efficiency because of loss of large amount of energy as 

heat from the turbine exhaust. To increase the efficiency, 

the exhaust gas from the turbine can be used in steam 

turbine after it passes through the heat recovery steam 

generator (HRSG). Hence the construction of combined 

cycle power plants has found a growing trend to benefit 

from the steam and gas turbines simultaneously in order to 

increase efficiency and productivity. 

Main subjects of researches in the field of gas turbines 

can be divided into modeling and control. One of the first 

models that were developed by Rowen in 1983for gas 

turbine was a simple mathematical model of single shaft 

gas turbine [2]. Tavakoli et al. achieved Rowen model 

parameters according to a new mathematical method [3]. 

IEEE model for gas turbine was developed in 1991 and 

1992 [4, 5] and in 1994, taking into account of gas turbine 

in combined cycle power plant was completed [6]. 

Among the works conducted on controlling the gas 

turbine, a fuzzy PI gain scheduling approach for speed 

control of gas turbine in power plant at the moment of 

startup, in which the rotor speed has been used as the 

scheduling variable has been proposed in [7]. In [8], a PID 

controller with two degrees of freedom is proposed for the 

Gun-San power plant turbine in which coefficients has 

been adjusted based on fuzzy-neural structure. In [9], 

using Rowen model, a PID controller is designed using 

genetic algorithm, neural network controller as well as 

fuzzy controller in order to control speed of gas turbine 

and make a comparison between them. In [10] by using 

IGV loop, a state feedback controller is designed for speed 

control based on input fuel and temperature control. In 

[11], a PID controller is designed to control the exhaust 

temperature using input fuel in which the PID coefficients 

are set by the particle swarm optimization (PSO) 

algorithm. In [12], to control the speed by the input fuel 

and exhaust temperature by the IGV, the Incremental PI 

fuzzy controller is designed. In [13, 14] design of 

predictive and robust controller is discussed to control the 

speed and exhaust temperature based on IGV loop. In [15, 

16], new modeling and control schemes based on optimal 

control and adaptive neural networks has been proposed.  

In this paper, a new recurrent fuzzy-neural network 

(RFNN) controller with neural identifier is designed to 

control the speed and exhaust temperature of the gas 

turbine. In order to study its performance, the identified 

linear model of gas turbine in Montezer Ghaem power 

plant is used, that is based on Rowen modeling and ARX 

technique. The novelty of the proposed control structure 

can be summarized as: 1- using direct adaptive control 

structure for both temperature and speed loop in gas 

turbine system 2- proposing a new recurrent fuzzy neural 

network controller in order to control both exhaust 

temperature and turbine speed simultaneously 3- 

considering practical limitation on control signals in 

design phase 4- considering demand power and ambient 

temperature as external disturbances and modifying the 

proposed control structure for attenuation of their effects. 

The obtained simulation results are compared with both 

model predictive and H∞ controllers under the same 

operating conditions and it is shown that the proposed 

control method can guarantee the performance in the 

different operating conditions in comparison with former 

approaches. As a result, the proposed approach has fewer 

limitation on the model and system’s operating conditions 

and its implementation is very simpler than both model 

predictive and H∞ controllers. Also, in this approach, it is 

not necessary to have a precise model of gas turbine while 

both model predictive and H∞ controller need a precise 

explicit model of the system in design phase.  

The rest of the paper is organized as follows. In 

section II, model of the gas turbine are described. In 

section III, structure of the RFNN and learning algorithm 

is introduced, and structure of the direct control model and 

sensitivity of the system using neural identifier is 

described. In section IV the controller design and the 

simulation results are discussed. Finally, Section V 

concludes the paper.  

2. THE MODEL OF GAS TURBINE 

In general, heavy duty gas turbines (HDGT) are used 

in electricity industry that have longer life and higher 

performance than other models of the gas turbines. 

Usually, a gas turbine is composed of the three main 

components: compressor, combustion chamber and 

turbine. Fig. 1shows an example of HDGT with its 

components [3]. In gas-turbines, air with atmospheric 

conditions after passing through air filters and IGV is 

drawn into the compressor. In compressor, pressure and 

temperature of air increase before reaching the combustor. 

Compressed air continues its path to the combustion 

chamber and approximately one-third of the compressor 

discharged air is combined with fuel in the combustion 
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chamber and Burns and the remaining is mixed with 

chamber’s products and go into 

 

Fig. 1. HDGT with its components 

the turbine [3]. This hot gas expands in the turbine and 

gives its energy to the turbine. A part of the energy in 

turbine is passed to the compressor by an axis which 

connects the turbine to the compressor, and again is used 

in the air compression process. The remaining part of the 

energy is used to rotate the load (such as generators). 

Finally, the hot gas is passed through the output tube into 

the second environment which may be the air in the 

simple cycle, or heat recovery steam generator (HRSG) in 

combined cycle power plants. In order to describe how 

gas turbines work in changed parameters, various models 

have been proposed by researchers. In this paper, the 

identified linear model of gas turbine in Montezer Ghaem 

power plant (fig. 2) is used, in which the relevant transfer 

functions are as follows [13, 14]: 

T1 =
𝑃(𝑠)

𝐹(𝑠)
 =

0.3827s2 +  0.8935s + 0.2562

𝑠2  +  1.3331𝑠 +  0.2015
 (1) 

T2 =
𝑃(𝑠)

𝑁(𝑠)
 =

−0.212s2 −  0.4496s − 0.05068

𝑠2  +  1.3331𝑠 +  0.2015
 (2) 

T3 =
𝑇𝑥(𝑠)

𝑁(𝑠)
 =

21.98s2  +  207.6s + 327.2

𝑠2  +  3.266𝑠 +  0.9384
 (3) 

T4 =
𝑇𝑥(𝑠)

𝑇𝑎𝑚𝑏(𝑠)
=

0.7975s2  +  0.8849s − 1.42

𝑠2  +  3.266𝑠 +  0.9384
 (4) 

T5 =
𝑇𝑥(𝑠)

𝐹(𝑠)
=

79.19s2  + 344.5s +  372.3

𝑠2  +  3.266𝑠 +  0.9384
 (5) 

T6 =
𝑇𝑥(𝑠)

𝐼𝐺𝑉(𝑠)
=

−119s2  + 312.3s −  148.6

𝑠2  +  3.266𝑠 +  0.9384
 (6) 

T7 =
1

18.5𝑠 
 (7) 

According to (1) to (7), N (rotor speed), F (fuel flow), 

P (power produce), Tx (exhaust gas temperature), Tamb 

(ambient temperature), IGV (inlet guide vane) are defined 

based on [14]. 

 

Fig. 2. Block diagram of gas turbine 

 

 

Fig. 3. Structure of RFNN 

3. RECURRENT FUZZY NEURAL NETWORKS 

A. Structure Of Rfnn 

Recurrent fuzzy-neural networks, for having memory 

in their layers are better than the conventional fuzzy-

neural networks for control of dynamic systems. In 

practice, these networks by creating memory in their 

structure, use past information in order to make decisions 

in the present moment, and store current data for use in 

future. Various structures have been proposed by 

researchers for recurrent fuzzy-neural networks [17-19]. 

In this paper, an RFNN that is presented in [3] is used 

which has memory in its membership functions. 

According to fig.3, the layers defined in the structure are 

as in the following (ui
k
 is used to express the ith entry of 

the kth layer and Oi
k
 is used to express the ithoutput of the 

kth layer) 

Layer1: nodes in this layer are only to transmit input 

values to the next layer and the weights of the neurons in 

this layer are considered to be 1. 

𝑂𝑖
1 = 𝑢𝑖

1 (8) 

where, ui1are inputs to the recurrent fuzzy-neural 

network. 

Layer 2: Membership Layer: In this layer, each node 

performs a membership function and acts as a unit of 
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memory. The Gaussian function is adopted here as a 

membership function. Thus, we have 

𝑂𝑖𝑗
2 = 𝑒𝑥𝑝 {−

(𝑢𝑖𝑗
2 − 𝑚𝑖𝑗)

2

𝜎𝑖𝑗
2 } (9) 

where mij and σij are the center (or mean) and the width 

(or Standard deviation—STD) of the Gaussian 

membership function. The subscript ij indicates the jth 

term of the ith input. In addition, the inputs of this layer 

for discrete time can be denoted by 

𝑢𝑖𝑗
2 (𝑘) = 𝑂𝑖

1(𝑘) + 𝑂𝑖𝑗
2 (𝑘 − 1). Ѳ𝑖𝑗  (10) 

where Ɵij denotes the link weight of the feedback unit. 

Each node in this layer has three adjustable parameters: 

mij, σij and Ɵij 

Layer 3 (law layer): In this layer, each law has a node, 

and the nodes of this layer are called the Law nodes. 

Generally, for simple implementation and training, usually 

among the T-norms, product T-norm is used. So we can 

write: 

𝑂𝑖
3 = ∏ 𝑢𝑖

3

𝑖

 (11) 

Layer 4(output layer): This layer is the output layer. 

The link weights in this layer represent the singleton 

constituents (wi) of the output variable. 

𝑦j = 𝑂𝑗
4 = ∑ 𝑢𝑖𝑗

4

𝑚

𝑖

𝑤𝑖
4 (12) 

B. Structure Of Rfnn 

For simplicity, a single-output system is intended that 

aim to minimize the cost function as below 

𝐸(𝑘) =
1

2
(𝑦(𝑘) − ŷ(𝑘))2 (13) 

where y(k) is the desired output, and ŷ(k)=O
4
(k) is the 

system output in Kth discrete time. 

Using Back Propagation (BP) algorithm, weights of 

RFNN vectors are taught to minimize the cost function 

(13).One of the most famous structures of BP algorithm 

can be written as 

𝑤(𝑘 + 1) = 𝑤(𝑘) + 𝛥𝑤(𝑘)

= 𝑤(𝑘) + 𝜂 (−
𝜕𝐸(𝑘)

𝜕𝑤
) 

(14) 

𝑒(𝑘) =  𝑦(𝑘) − ŷ(𝑘) 

 

𝑤 = [𝑚, 𝜎, Ѳ, 𝑤]𝑇 

(15) 

Using the gradient of the error in (13) and according to 

the BP algorithm, we can write: 

𝜕𝐸(𝑘)

𝜕𝑤
= −𝑒(𝑘)

ŷ(𝑘)

𝜕𝑤
= −𝑒(𝑘)

𝜕𝑂4(𝑘)

𝜕𝑤
 (16) 

Using the chain rule, the error rate for each layer is 

calculated and the adjustable parameters in each layer are 

set. As a result, update of the parameters of the 

defuzzification part can be written: 

𝑤𝑖𝑗(𝑘 + 1) = 𝑤𝑖𝑗(𝑘) − 𝜂𝑤
𝜕𝐸

𝜕𝑤𝑖𝑗

 (17) 

where 

𝜕𝐸

𝜕𝑤𝑖𝑗

= −𝑒(𝑘). 𝑂𝑖
3 (18) 

And similarly, in order to update the parameters of 

layer2, we can write: 

𝑚𝑖𝑗(𝑘 + 1) = 𝑚𝑖𝑗(𝑘) − 𝜂𝑚
𝜕𝐸

𝜕𝑚𝑖𝑗

 (19) 

𝜎𝑖𝑗(𝑘 + 1) = 𝜎𝑖𝑗(𝑘) − 𝜂𝜎
𝜕𝐸

𝜕𝜎𝑖𝑗

 (20) 

Ѳ𝑖𝑗(𝑘 + 1) = Ѳ𝑖𝑗(𝑘) − 𝜂Ѳ
𝜕𝐸

𝜕Ѳ𝑖𝑗

 (21) 

where 

𝜕𝐸

𝜕𝑚𝑖𝑗

= − ∑ 𝑒(𝑘). 𝑤𝑖𝑘

𝑘

. 𝑂𝐾
3  

 .
2(𝑥𝑖 + 𝑂𝑖𝑗

2 (𝑘 − 1). Ѳ𝑖𝑗 − 𝑚𝑖𝑗)

(𝜎𝑖𝑗)
2  

(22) 

𝜕𝐸

𝜕𝜎𝑖𝑗

= − ∑ 𝑒(𝑘). 𝑤𝑖𝑘

𝑘

. 𝑂𝐾
3  

 .
2(𝑥𝑖 + 𝑂𝑖𝑗

2 (𝑘 − 1). Ѳ𝑖𝑗 − 𝑚𝑖𝑗)
2

(𝜎𝑖𝑗)
3  

(23) 

𝜕𝐸

𝜕Ɵ𝑖𝑗

= − ∑ 𝑒(𝑘). 𝑤𝑖𝑘

𝑘

. 𝑂𝐾
3  

−2(𝑥𝑖 + 𝑂𝑖𝑗
2 (𝑘 − 1). Ѳ𝑖𝑗 − 𝑚𝑖𝑗)𝑂𝑖𝑗

2 (𝑘 − 1)

(𝜎𝑖𝑗)
2  

(24) 

 

C. Learning Rfnn In Direct Controlstructure 

Functioning and tracking properly in controllers based 

on neural networks is frequently related to learning 

algorithms and a control structure is used. In general, two 

structures of direct control and indirect control are used 

[20]. 

Fig.4 shows direct control structure with RFNN 

controller and neural identifier. In this model, controller 

parameters are trained in order to reduce the output error 

directly. 
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Fig. 4. Schematic of direct control 

One of the problems in direct structure is that the 

output error of the RFNN that is necessary to train 

network weight, is not directly available and merely the 

general error in the output of the dynamic system is 

measurable that is not related to the RFNN. To overcome 

this problem, the cost function that was introduced in (13) 

is considered and it can be written as follows: 

𝐸𝑦(𝑘) =
1

2
(𝑦𝑑(𝑘) − 𝑦(𝑘))2 (25) 

where: 

e_y (k)=y_d (k)-y(k) (26) 

In this relation, y(k) and yd(k) respectively indicate the 

desired and current output of the system. 

For error gradient based on network parameters, we 

can write: 

𝜕𝐸𝑦

𝜕𝑤
= −𝑒𝑦

𝜕𝑦

𝜕𝑤
= −𝑒𝑦

𝜕𝑦

𝜕ŷ

𝜕ŷ

𝜕𝑤
 (27) 

where 
𝜕ŷ

𝜕𝑤
 indicates the moment gradient of network 

parameters and 𝐽(𝑘) =
𝜕𝑦

𝜕ŷ
 indicates sensitivity of system 

under control. The relation of back propagation algorithm 

can be rewrite as follows: 

𝑤(𝑘 + 1) = 𝑤(𝑘) − 𝜂𝑒𝑦(𝑘)𝐽(𝑘)
𝜕ŷ

𝜕𝑤
 (28) 

 

D. Determining The Sensitivity Of The System 

Under Control 

Sensitive signal of the system under control impacts 

on the direction of derivation in descent gradient 

algorithm to adjust the weights of the network controller 

and achieving the desired value. Also, its value can 

increase or decrease the amount of training rate, which in 

turn will lead to changes in way of convergence of 

network parameters. 

Considering the two-layer neural network structure 

according to fig.5, the relationship between input and 

output of the system can be expressed as follows. 

𝑎𝑒 = 𝑓2(𝑤2. 𝑓1(𝑤1 . ŷ + 𝑏1). 𝑏2) (29) 

where f, w and b, respectively are transformation function, 

weight vector and bias vector of each layer. With 

regarding 

 

Fig. 5. Two layers neural network structure 

𝑓2as the linear transformation function, (29) can be 

rewritten into the following form 

𝑎𝑒 = 𝑤2. 𝑓1(𝑤1. ŷ + 𝑏1) + 𝑏2 (30) 

And by deriving ae to ŷ, it can be written: 

𝜕𝑎𝑒

𝜕ŷ
= 𝑤2. 𝑓1̇(𝑤1. ŷ + 𝑏1). 𝑤1 (31) 

According to fig.4, if the neural identifier can detect 

well, ee error will move toward zero and the output of the 

identifier with a good approximation, represents the 

system output. Then it can be written as 

𝐽(𝐾) =
𝜕𝑦

𝜕ŷ
≃

𝜕𝑎𝑒

𝜕ŷ
= 𝑤2. 𝑓1̇(𝑤1. ŷ + 𝑏1). 𝑤1 (32) 

4. RESULTS AND DISCUSSION 

A. Control Parameters 

Considering the actuators working range and flame 

stability, the input constraints are applied as [
0.1935

0.67
] ≤

[
𝐹

𝐼𝐺𝑉
] ≤ [

1
1

]. The high variations of the turbine speed can 

cause defects on network frequency and exhaust 

temperature must be limited because of economical and 

physical considerations. So output constraints are taken 

into account as [
0.995
270

] ≤ [
𝑁
𝑇𝑋

] ≤ [
1

536
] [13]. 

The used control strategy is that by maintaining the 

rotor speed constant toward increased or decreased 

demanded power, prevent frequency deviation in output 

power. Figure 6 indicates schematic of gas turbine with 

neural identifier and recurrent fuzzy-neural controller. 

According to speed control of the gas turbine, the 

input vector of fuzzy-neural networks is considered as 

[𝑒𝑁 𝛥𝑒𝑁] In order to detect the system and determine the 

sensitivity of system, the neural network has been used. 

Input to the neural network speed identifier is considered 

as input fuel to the turbine (F) and input to the neural 

y 
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network exhaust temperature identifier as 

[𝐹 𝑒𝑇𝑥𝑛
𝛥𝑒𝑇𝑥𝑛]. 

 

Fig. 6. Schematic of gas turbine with neural identifier and RFNN 

controller  

Since the speed control based on input fuel has SISO 

mode, neural identifier has been trained in online mode, 

but for temperature control based on the IGV, since the 

turbine speed and fuel parameters affect the temperature 

changes, neural identifier is initially trained as offline, and 

at the time of the placement in the system will work as 

online. Since neural networks use the hyperbolic tangent 

or sigmoid functions in their middle layer, to prevent 

network saturation their input and output are considered as 

per unit (p.u). The sampling time for parameters is 

considered 0.03Sec. 

B. Simulation Results 

The proposed RFNN controller performance is 

simulated by using Simulink toolbox of MATLAB 

software. The working conditions of the system are 

assumed as follows. After 300 Sec, demand power (Pd) 

has been changed from 0.6 p.u to 0.9 p.u and after 340 

Sec, it has been changed from 0.9 p.u to 0.5 p.u, and 

ambient temperature is considered 30 ºC. The proposed 

method is compared with both model predictive and H∞ 

controllers in the same simulation conditions for better 

judgment about effectiveness of the method.  

In the figs.7, 8 and 9, produced and demanded power, 

speed changes and fuel flow are shown. Maximum speed 

deviation during load change from 0.6p.u to 0.9 p.u is 

about 0.012 p.u. In comparison with MPC [13], which has 

0.018p.u speed deviation, the fuzzy neural control shows a 

more appropriate behavior in this situation. Also, the 

maximum speed deviation of robust H∞ control [14] in 

this case is about 0.01p.u.At the time of load change from 

0.9 p.u to 0.5p.u, speed diversion is approximately 

0.0055p.u, which is better than H∞ controller, where the 

speed deviation rate is about 0.01 p.u. Furthermore, 

settling time is about 15 seconds that is better than both 

controllers. In fact, change in demanded power is slow 

and the proposed controller can control the speed of the 

turbine in the acceptable range at real conditions. 

According to figs.10 and 11 which show the exhaust 

temperature and IGV changes, RFNN controller is able to 

satisfy control objectives as well. 

In the second state, the working condition for demand 

power in the real situation is simulated. According to fig 

12, the demand power is changing slowly during 1350 

seconds and ambient temperature is considered 30 ºC. The 

obtained results are shown in figs.12 to 16. 

As shown in figs 13 and 15, the RFNN controller is 

able to control rotor speed and exhaust temperature of gas 

turbine in reasonable range. The results are summarized in 

the Table I. 

According to simulation results, it is clear that the 

proposed control structure has better response to power 

demand and ambient temperature changes and it could 

regulate both unit speed and exhaust temperature in 

acceptable range while both model predictive and H∞ 

controllers have more deviation from normal values. 

Therefore, it is very practical to use proposed approach for 

control of both parameters in real world. 

 

Fig. 7. Demand power and produced power 

 

Fig. 8. Rotor speed 
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Fig. 9. Fuel flow 

 

Fig. 10. Exhaust gas temperature 

 

Fig. 11. IGV 

 

Fig. 12. Demand power and produced power 

 

Fig. 13. Rotor speed 

 

Fig. 14. Fuel flow 

 

Fig. 15. Exhaust gas temperature 

 

Fig. 16. IGV 

TABLE 1. SUMMERIZED RESULT 

Controller Type RFNN MPC [13] H∞ [14] 

Maximum speed 

deviation during load 

change from 0.6 p.u to 

0.9 p.u 

0.012p.u 0.018p.u 0.01 p.u 

Maximum speed 

deviation during load 

change from 0.9 p.u to 

0.5 p.u 

0.0055p.u 0.02p.u 0.01p.u 

5. CONCLUSION 

In this paper, a RFNN controller is proposed to control 

the speed and exhaust temperature of the gas turbine of 

Montazer Ghaem power plant. In the design phase, a 

recurrent fuzzy-neural network controller (RFNN) is used 

in the form of direct control structure and in order to 

determine the system sensitivity, a neural identifier is 

applied. In the simulation phase, the identified linear 

model of turbine, based on Rowen model is used and air 

temperature and demanded power are considered as 

disturbance and constrains in the inputs of the system. 

Simulation results show that the maximum overshoot and 

settling time is less than both MPC and H∞ controllers 

and recurrent fuzzy-neural controller is able to express its 

eligibility to control the speed and exhaust temperature of 

gas turbine well. 
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