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ABSTRACT: This paper aims to model and sliding mode control of a roll-yaw seeker. In the roll-yaw 
seeker, a singularity occurs when the seeker is directed precisely to a target, and the seeker will lose 
the target. Thus, the Controller design should contain a tracking strategy to deal with the singularity. In 
this paper, Newton-Euler’s method is applied to the dynamic model of a roll-yaw seeker’s roll and yaw 
gimbals. The dynamics of the roll-yaw seeker are highly nonlinear. Also, unmodeled uncertainties and 
perturbations reduce the model’s reliability. A two-input, two-output integral sliding mode controller 
is designed to control the nonlinear dynamics of the seeker and deal with uncertainties. The numerical 
simulation results show that all three stabilization, tracking, and guidance loops in both roll and yaw 
channels have acceptable performance. Also, it is shown that the controller has good robustness. 
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1- Introduction
In some air-to-air flying vehicles, an optical seeker detects 

and tracks the target and moves toward it. After positioning 
the seeker towards the target, the control commands of the 
servos are calculated and applied based on the tracking error. 
With the development of optics and electronics, the optic 
seeker is used in many flying vehicles, especially air-to-air 
ones.

Gimbaled seekers are structurally divided into three-axis 
and two-axis seekers. A three-axis seeker is used where a wide 
field of regard is required. This type of seeker needs a large 
installation space, so it has been used in large-diameter flying 
vehicles, while the two-axis seeker requires less space to be 
installed and used in smaller-diameter vehicles. However, 
due to the rotational limitation, the two-axis seeker provides 
less field of regard than the three-axis type. Tow-axis seekers 
are divided into “pitch-yaw” and “roll-pitch” seekers.

The conventional type in most flying vehicles is the pitch-
yaw seeker [1]. Two independent control channels control this 
type of seeker (pitch and yaw), which have less coupling and 
easier control but have a limited field of regard. Therefore, 
high-maneuver targets get out of sight faster, and the target 
is missed. Instead, the roll-yaw seeker has a wide field of 
regard, demonstrating its superiority over the pitch-yaw 
seeker. The roll-yaw seeker structure consists of a roll gimbal 

and a yaw gimbal mounted on the flying vehicle’s body. The 
outer gimbal rolls relative to the body, and the inner gimbal 
yaws relative to the outer gimbal. Detectors and rate gyros are 
positioned on the inner gimbal.

To track and detect the target, the outer gimbal rolls, and 
then the inner gimbal yaws toward the target. Therefore, the 
outer gimbal dynamic should be faster than the inner gimbal. 
The dynamics of these two channels are coupled, and their 
equations of motion are hardly nonlinear. In addition, there 
are uncertainties due to the connection of cables to each 
of the gimbals, modeling errors, frictional moments, and 
disturbances such as the target maneuver.

The outer gimbal rotates to 360 degrees, and the inner 
gimbal rotates to about 90 degrees, resulting in a wide field of 
regard. The seeker’s goal is stabilizing the line of sight (LOS) 
rate in the inertial space, and this requires placing the x-axis 
of the seeker’s inner frame toward the target. However, when 
the tracking error is about zero, the roll rate (outer gimbal 
angular rate) becomes infinite, and a singularity occurs. In 
other words, the Singularity occurs in the roll-yaw seeker 
when is directed to a target. The singularity, or the so-called 
“zenith-past problem,” occurs when the yaw error becomes 
zero. As this angle becomes zero, the term 1 0  appears in the 
roll frame kinematic equation, which ultimately causes the 
roll rate to become infinite. This issue is fully explained in 
the following sections. The singularity of the roll-yaw seeker 
is its disadvantage that must be eliminated. Figure 1 shows a 
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schematic of a roll-yaw seeker.
In most references discussed in the following, the outer 

gimbal rolls and the inner gimbal yaws are named a “roll-
pitch” seeker. It should be noted that the singularity in the 
roll-yaw seeker is usually named the “zenith pass problem” 
in previous research. According to Authers’ knowledge, there 
needs to be more research on the LOS estimation of Roll-
Pitch seekers.

In reference [2], the target tracking using a roll-pitch seeker 
is investigated. The tracking errors of angular frames (roll 
and pitch frames) are modeled according to the coordinates 
of the target in the detector, the geometry of the roll-pitch 
seeker, and the seeker’s position relative to the flying vehicle. 
This model is used to design the closed-loop controller for 
the roll-pitch seeker. In reference [3], a method is presented 
to solve the zenith pass problem in a roll-pitch seeker. 
In this paper, based on the relation between the seeker’s 
performances and the design parameters, the seeker’s work 
area is divided into three parts, and the control strategy of 
each section is formulated separately. The simulation results 
show this strategy prevents the zenith pass problem in seeker 
performance.

Reference [4] focuses on solving the roll-pitch seeker 
singularity problem. In this paper, to prevent the infinite roll 
rate, according to the roll and pitch angles, the LOS rate, 
and the derivation from the center of the image plane, the 
roll angle control strategy is divided into three areas with 
the minimum, medium, and maximum rotation rates. With 
this segmentation, the control is performed so that when 
the target appears in the area around the singularity point, it 
remains on the screen and does not miss. In the reference [5], 
according to Lee’s algebra theory, the kinematics of the roll-
pitch seeker is investigated by the product of the exponential 
(POE) multiplication method, and the LOS stability equation 
of motion is written. Then, different schemes of configuration 
and gyroscope installation on the outer gimbal are represented, 
and the advantages and disadvantages of each configuration 

are stated.
In the reference [6], four optimal control methods have been 

designed to minimize the roll angle, and the effectiveness of 
these algorithms has been shown. In reference [7], an optimal 
control method is used to control the roll-pitch seeker. This 
method’s cost function includes the seeker’s control energy 
vector and tracking error vector. When the target is far from 
the singularity point, the seeker’s outer gimbal must rotate 
fast to track the target. On the other hand, the sensitivity of the 
outer gimbal to the target position should be minimized near 
the areas around the singularity point. In this case, singularity 
does not occur. In the cost function, the weight functions of 
the control energy vector and the error vector are selected to 
accomplish the proposed control scenario.

In reference [8], an estimator is initially used to predict 
the area where the singularity occurs and to obtain the angular 
error between the gimbals frames and the LOS. The model 
parameters are updated using the least square method and with 
the information obtained from consecutive measurements. 
Then, a Predictive Functional Control is designed for the 
outer frame to reduce tracking error. Reference [9] examines 
a method for obtaining roll-pitch seeker data in anti-infrared 
decoy state conditions. Kalman filter is used to estimate 
the rotation rate of the LOS rate. The proposed method has 
been validated using numerical simulations in the presence 
of various maneuvers. Reference [10] uses a fuzzy PID 
controller considering gyros noise. The fuzzy PID controller 
is compared to a PI controller.

In reference [11], the usage of a roll-pitch seeker on 
a flying vehicle is investigated. This paper focused on 
the effect of a parasitical loop of a roll-pitch seeker on the 
dynamic stability of a spinning vehicle. The results indicate 
that the stability of the spinning vehicle is closely related 
to the disturbance rejection rate and rolling rate of the roll-
pitch seeker and the design indices of autopilot. In reference 
[12], a roll-pitch seeker’s tensorial modeling and simulation 
are studied. The singularity problem of the roll-pitch seeker 
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Fig. 1. Roll-yaw seeker
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needs to be investigated in these papers.
Reference [13] proposes a novel snake-hot-eye-assisted 

multi-process-fusion target tracking method for roll-pitch 
semi-strap-down infrared imaging seekers. The proposed 
method overcomes the drawbacks of traditional methods, 
such as the need for more calculation accuracy of the line-
of-sight angular rate and the inability to measure the flying 
vehicle-target distance directly. The proposed method consists 
of two main parts: a snake-hot-eye visual bionic imaging 
guidance method and a multi-process-fusion integrated filter 
model of relative motion and angle tracking. The snake-
hot-eye visual bionic imaging guidance method estimates 
the flying vehicle-target relative distance from the infrared 
images by imitating the snake-hot-eye visual mechanism. 
It improves the observability of the filter model. The multi-
process-fusion integrated filter model of relative motion and 
angle tracking integrates the information from the snake-hot-
eye visual bionic imaging guidance method and the inertial 
measurement unit (IMU) to track the target accurately.

Simulation results show that the proposed method can 
track the target accurately even in the presence of large 
maneuvering targets and high background noise. The proposed 
method has the potential to improve the performance of 
guidance systems.

Reference [14] investigates the influence of the roll-pitch 
seeker’s parasitic loop on the guidance system’s stability. The 
scale deviation between the detector causes the parasitic loop, 
the frame angle sensor, and the angular rate gyroscope. The 
authors first establish a mathematical model of the parasitic 
loop. Then, they analyze the stability of the guidance system 
with the parasitic loop using the Routh-Hurwitz criterion. The 
results show that the parasitic loop can significantly impact 
the guidance system’s stability. 

The positive feedback characteristics of the parasitic 
loop can lead to instability, while the negative feedback 
characteristics can improve stability. Using a feedback 
controller, the authors also propose a method to compensate 
for the parasitic loop. The simulation results show that the 
proposed method can effectively improve the stability of 
the guidance system. The paper’s findings have important 
implications for designing and analyzing guidance systems 
for roll-pitch seekers.

Reference [15] introduces an Extended State Observer-
based Disturbance Rejection Rat compensation method 
for the roll-pitch seeker. Roll-pitch seeker specifications 
and DRR limits are analyzed. Also, the effect of different 
perturbation torques has been investigated. The modeling 
and simulation of the guidance loop using a roll-pitch seeker 
are presented with the proposed compensation method and 
then compared with existing methods, such as the Kalman 
filter. The simulation results confirm the better results of the 
proposed method. 

[16] introduced an ESO-based Disturbance Rejection 
Rate (DRR) compensation method for roll-pitch seekers. It 
analyzed seeker characteristics and defined DRR for its two 
frames, examining the method’s influence on dimensionless 
miss distance. Results highlight the method’s precision, 

applicability, and adjustability, demonstrating its efficacy in 
reducing miss distance across various input error types.

Reference [17] explores how disturbance rejection rate 
(DRR) and parasitic loop parameters impact the stability 
of roll-pitch seeker guidance systems. It establishes DRR 
models for various disturbances and proposes an optimal 
model considering sensor scale deviations. By employing 
Lyapunov stability criteria, simplifies the guidance system 
model and identifies three stability conditions. Simulation 
results, including Nyquist plots, analyze the effects of DRR 
parameters on system stability, providing insights for related 
analyses.

[18] proposes a solution to the over-tracking problem 
of roll-pitch seekers, which hampers their engineering 
applications despite their wide field of view. By calculating 
the roll frame angle using the angular rate of the projectile 
line of sight when the pitch frame angle is small, the method 
effectively improves overhead tracking control, as shown in 
simulation results.

In reference [19] to simplify the tracking process of the 
roll-pitch seeker, By analyzing the working principle and 
characteristics of the roll-pitch seeker, a new method for 
tracking targets based on the resolution rotation mechanism is 
proposed which can applied in engineering practice. According 
to Dynamic experiments, the image rotation method is still 
applicable in the presence of carrier disturbances; compared 
with traditional coordinate conversion methods, the resolution 
rotation method significantly improves tracking accuracy.

[20] explores how disturbance rejection rate (DRR) 
affects the stable tracking of a maneuvering target with roll-
pitch seekers. It analyzes the seeker’s tracking principle, 
establishes a control scheme, and derives DRR transfer 
functions using different torque models. Simulations reveal 
that spring torque DRR greatly impacts tracking under low-
frequency disturbances while damping torque DRR mainly 
affects tracking accuracy.

[21] investigates disturbance rejection rate (DRR) in 
roll-pitch seekers, impacting aircraft attitude and guidance 
accuracy. It analyzes seeker tracking principles, devises a 
control scheme, and finds that DRR significantly affects 
tracking angle and accuracy, especially spring torque DRR 
under low-frequency disturbances or maneuvering targets 
while damping torque DRR influences overall tracking 
accuracy.

Reference [22] tackles singularity challenges in terminal 
guidance using roll-pitch seekers near a projectile’s 
longitudinal axis. It suggests a control strategy to mitigate 
zenith-pass singularity problems under an oblique scheme, 
ensuring stable target tracking while avoiding singularity 
areas by adjusting the projectile’s roll motion based on the 
seeker’s pitch frame angle. This approach, superior to adding 
a third axis, maintains seeker compactness and lightness. 
It also outperforms sub-region variable parameter control 
methods, resolving tracking failures during static and 
deceleration control, as evidenced by simulations showcasing 
high accuracy and system stability.

According to previous research, the integral sliding mode 
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control approach has yet to be used to control roll-pitch 
seekers. In this paper, after accurate modeling of the seeker 
dynamic, a new method is proposed to eliminate zenith-pass 
singularity. In the seeker under study, the outer gimbal rolls 
and the inner yaws. The name roll-yaw seeker is used to 
match the wording and physics of the seeker. 

First, the accurate mathematical modeling of the seeker 
is derived. Then, the roll-yaw control for an air-to-air flying 
vehicle was designed so that it was resistant to disturbances 
and uncertainties. Given this seeker’s nonlinear and coupled 
dynamics, as well as model uncertainties, a multi-input, multi-
output integral sliding mode control approach is used. It is also 
suggested that when the seeker is directed to a target, singularity 
does not occur; according to the authors’ knowledge, this 
control approach and singularity avoidance method have yet to 
be used in the control of the roll-yaw seeker.

The structure of the present paper is as follows: In section 
 2, after defining the coordinate systems in the present problem, 
the seeker kinematic equations of motion will be driven. 
Section  3 introduces the structure of the roll-yaw seeker 
control loops, including the stabilization and tracking loops. 
After that, the sliding mode control method is introduced, 
and it will be designed for the two roll and yaw channels of 
the stabilization loop. In section 4, the simulation results of 
the stabilization and tracking loop will be presented, and in 
section 5, a conclusion will be made.

2- The Roll-yaw Seeker Modeling
In this section, the mathematical modeling of the roll-yaw 

seeker is presented by introducing the frames and coordinate 
systems. Newton-Euler’s method has been used to drive the 
dynamic model.

2- 1- Frames and coordinate systems definitions
To drive the kinematic and dynamic equations of motion 

for the seeker, inertial, body, outer, and inner frames are used. 
In this research, the flat-earth frame is considered as the 
inertial reference frame. The center of the flat-earth frame is 
located at an arbitrary point on the earth’s surface, and its first 
axis is defined to the north, second to the east, and third is 
downward according to the right-hand rule. Body and inertial 
reference frames are linked using a transformation matrix. 
This matrix transfers the inertial reference frame to the body 
frame [23].
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In the above equation, ϕ , θ   and ψ  represent the body 
frame’s roll, pitch, and yaw angles concerning to the inertial 
frame, respectively. In Figure 2, the body frame, the inner 
and the outer frames are also shown. The coordinate center 
of all three frames is fixed and located on the center of mass 
of the flying vehicle. In this figure, BX , BY  and BZ  show 
the main axes of the body frame. The outer frame of the 
seeker (relative to the body frame) can move with one degree 
of freedom of roll. The body frame coincides with the outer 
frame by rotating as much as the angle s ϕ  around the axis

BX . RX , RY and RZ represent the main axes of the outer frame 
(roll frame). By rotating the outer frame by sψ  angle around 
the axes RZ , the inner frame (yaw frame) is obtained with 
axes YX  , YY  and YZ . The inner frame is also called the line 
of sight frame. The transfer matrix from the body frame to 
the outer frame and the transfer matrix from the outer frame 
to the inner frame is calculated using the following equations.
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When the target is not in line with the axis of the seeker 
detector ( YX ), to express the error angle between the inner 
frame’s first axis and the target’s line of sight, it is necessary 
to define two interior frames. The roll interior frame (denoted 
by the axes RX∆  , RY∆  and RZ∆ ) is obtained from the line-
of-sight frame rotation around the YX  axis of size sϕ∆ . The 
yaw interior frame is obtained from the rotation around the 

RZ∆ axis of size sψ∆ . This frame is shown in Figure 2 with 
the axes YX∆ , YY∆  and RZ∆ . sϕ∆  And sψ∆  are the roll 
error and the yaw error respectively required by the seeker 

YX   axis to be positioned towards the target.

2- 2- Kinematic equations of motion
In order to derive the seeker’s kinematic equations, the 

target position is expressed in the LOS coordinate system. 
According to the target’s relative position, the two-degree-
of-freedom seeker must rotate so that the sensor connected to 
the inner frame (the first axis of the inner frame) is directed 
to the target with two roll and yaw movements. Figure 
3 shows the frames used in the roll-yaw seeker to express 
kinematic equations. By defining the position vector of the 
target relative to the flying vehicle, and from the following 
relations, sϕ∆ and sψ∆  are obtained in which  tx , ty  and 

tz  are the components of this vector in the inner frame.
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3- Dynamic equations of motion
In this section, the seeker’s dynamic equations of motion 

are derived. Since the outer frame of the seeker rolls and the 
inner frame yaws, we first obtain the angular velocity of each 
frame. The angular velocity vector of the body frame WRT 
the inertial frame, and expressed in the body frame is: 
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Fig. 2. Introducing frameworks used in Roll-Pitch seeker modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Introducing frameworks used in Roll-Pitch seeker modeling

 
Fig. 3. The interior frames relative to the inner frame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The interior frames relative to the inner frame
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In equation (6), the components p , q   and r  represent 
the roll, pitch and yaw rates of the flying vehicle, respectively. 
The angular velocity of the outer frame WRT the inertial 
frame, and expressed in the outer frame, and also the angular 
velocity of the inner frame WRT the inertial frame, and 
expressed in the inner frame, are also written as follows:
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By the tensor expression of the equation (9) in the inner 
frame, (10) is obtained as follows:
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where YR[T]  is the transformation matrix from the outer 
frame to the inner frame, sψ  is the rotation rate of the inner 
frame relative to the outer frame, and sφ  is the rotation rate 
of the outer frame relative to the body frame. Having YBIω  
and YYBω   , YYIω    is obtained as follows:
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Utilizing 
RBIω    and 

RRBω   , the angular velocity 
vector of the outer frame relative to the inertial frame, and 
expressed in the outer frame, is calculated as follows: 
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Using Eq.(14), Eq. (12) can be simplified as(15): 

R s

R s s

R s s

R s

R s s

R s s

1 0 0
0 0 cos sin
0 0 sin cos

cos sin
sin cos

p p
q q
r r

p p
q q r
r q r


 
 


 
 

       
               
              

  
  
   

 (14) 

 

Y R s R s

Y R s R s

Y R s

sin cos
cos sin

p q p
q q p

r r

 
 



 
  
  

 (15) 

 

I BI
B BDm l  (16) 

 

Rx
RR

R Ry

Rz

Yx
YY

Y Yy

Yz

I 0 0
0 I 0 ,
0 0 I

I 0 0
0 I 0
0 0 I

 
      
  
 
      
  

I

I

 (17) 

 

TY
Y Yx Yy Yz

YYIY Y Y YY YI Y YI
Y Y

d
dt

m m m       

 
               

 

m

ωI Ω I ω
 (18) 

 

 (15)

To obtain the equations of motion of the gimbals, Euler’s 
laws have been used. BI

Il  is the angular momentum of the 
rigid body B  WRT frame I and refers to its center of mass. 
Point I. it is calculated from the relation BI B BI

B BI I ω=  where  
B
BI is the moment of inertia tensor and BIω  the angular 

velocity vector. In this case, it can be written [23]:
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In the above equation, Bm  is the external torque vector 
applied to the center of mass B. In an ideal condition, the 
seeker’s moment of inertia matrix is diagonal and there is no 
mass imbalance. The torque components, required to rotate 
the gimbals are also expressed by  and Rm  represent the 
torques required for the rotation of the inner gimbal and the 
outer gimbal, respectively. 

YY
Y  I  is the moment of inertia 

matrix of the inner gimbal and RR
R  I is the moment of inertia 

matrix of the outer gimbal. These matrices are considered to 
be diagonal in ideal conditions:
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In the following, the dynamic equations of the inner and 
outer gimbal are obtained by assuming the center of P and R 
frames to be the same. For the rotational dynamics governing 
the inner gimbal, the Euler’s law is written as [23]:
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In above equation, YIΩ  is the angular velocity tensor of 
frame Y relative to frame I. The expansion of this relationship 
is as follows: 
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Since the inner gimbal only rotates around the z-axis, the 
third component of Eq. (19) is used as the equation governing 
the rotation of the inner gimbal. 
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As a result:
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By defining 
Yawd Y Y Yx YyT (I -I )p q= , Eq. (21) is rewritten 

in the following form:
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For the rotational dynamics governing the outer gimbal, it 

can be written according to Euler’s law:
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The angular momentum of the outer gimbal consists of 
two parts. One part is related to the angular momentum of the 
outer gimbal, and the other is due to the angular momentum 
of the inner gimbal. The angular momentum of the outer 
gimbal is expressed using the transformation matrix RP[T]  
in the inner frame.  
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By inserting Eq. (25) into Eq. (24), external torques 
applied on the center of mass R are obtained. Since the outer 
gimbal only rotates around the X-axis, the first component of 
Eq.  (23) is used as the outer gimbal equation of motion.
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Both Yp  and Yq  are obtained from the derivative of the 
first and second components of Eq. (15):
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The component Rq   is calculated by the  derivative of the 
second component of Eq. (14): 



M. Ghasemi et al., AUT J. Model. Simul., 56(2) (2024) 235-256, DOI: 10.22060/miscj.2025.23515.5380

242

 
Rx

RYRI R RI R YI Y
R Ry R Y

Rz

R R Y YR RI RY Y YI
R Y

[ ] [ ] T [ ]

[T]

l
l
l

 
     
  

              I ω I ω

l l l
 (25) 

 

Rx Y Yx s Y Yy s

Rx R Y Yx s s Y Yy s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

( I cos I sin
I I sin I cos )

( I sin I cos I )
+ ( I I )

m p q
p p q

r p q q
q r r

 
   

 

 

  

  



 (26) 

 

Y R s R s

R s s R s s

Y R s R s

R s s R s s

sin cos
cos sin

cos sin
sin cos

p q p
q p

q q p
q p

 
   

 
   

 
 

  
 

 (27) 

 

R s s

s s s s

cos sin
sin cos

q q r
q r

 
   

 
 

 (28) 

 

Rx Yx s s s s

s s s s

R s R s s R s s

Yy s s s s

s s s s

R s R s s R s s

Rx R Y Yx s s Y Yy

I cos [sin ( cos sin
sin cos )
cos cos sin ]

I sin [cos ( cos sin

sin cos )
sin sin cos ]

I I sin I co

m q r
q r

p q p
q r

q r
p q p

p p q

   

   
    
   

   
    

 

 

  
 

 

 
  
   s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

s
( I sin I cos I )

+ ( I I )
r p q q
q r r

 
   



 (29) 

 

 (28)

By substituting Eqs. (27) and (28) into Eq.(26) we have: 

 
Rx

RYRI R RI R YI Y
R Ry R Y

Rz

R R Y YR RI RY Y YI
R Y

[ ] [ ] T [ ]

[T]

l
l
l

 
     
  

              I ω I ω

l l l
 (25) 

 

Rx Y Yx s Y Yy s

Rx R Y Yx s s Y Yy s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

( I cos I sin
I I sin I cos )

( I sin I cos I )
+ ( I I )

m p q
p p q

r p q q
q r r

 
   

 

 

  

  



 (26) 

 

Y R s R s

R s s R s s

Y R s R s

R s s R s s

sin cos
cos sin

cos sin
sin cos

p q p
q p

q q p
q p

 
   

 
   

 
 

  
 

 (27) 

 

R s s

s s s s

cos sin
sin cos

q q r
q r

 
   

 
 

 (28) 

 

Rx Yx s s s s

s s s s

R s R s s R s s

Yy s s s s

s s s s

R s R s s R s s

Rx R Y Yx s s Y Yy

I cos [sin ( cos sin
sin cos )
cos cos sin ]

I sin [cos ( cos sin

sin cos )
sin sin cos ]

I I sin I co

m q r
q r

p q p
q r

q r
p q p

p p q

   

   
    
   

   
    

 

 

  
 

 

 
  
   s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

s
( I sin I cos I )

+ ( I I )
r p q q
q r r

 
   



 (29) 

 

 (29)

Considering the Rp  coefficients as the equivalent 
moment of inertia, we would have:

2 2
eq Rx Yx s Yy sI I I cos I sin     (30) 

 

d1 Yx s R s R s

Yy s R s R s

Y Yx s Y Yy s

T I cos ( cos sin )
+I sin ( sin cos )

I sin I cos

q p
q p

p q

  
  

 

  
 

 

 (31) 

 

d2 Yx s s s s

s s s s

Yy s s s s

s s s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

T I cos [sin ( cos sin
sin cos ]

+I sin [cos ( cos sin

sin cos ]
( I sin I cos I )
( I I )

q r
q r

q r

q r
r p q q
q r r

   

   
   

   
 

  

 


 
  

 

 (32) 

 

eq R Rx d1 s d2I T Tp m     (33) 

d1
R P R Rx d2

eq eq

T 1( ) ( T )
I I

p r r m     (34) 

 

 Y R s R s Y scos ( sin )p p q q       (35) 

 

Rolld s d1 s d2

eq R s Y Y R

T cos (T T )
I ( sin ( ))q q r r

 



 

   
 (36) 

 

Rolls Rx d
Y

eq

cos T
I

m
p

 
  (37) 

 

 (30)

Now define d1T  and d2T  as follows: 

2 2
eq Rx Yx s Yy sI I I cos I sin     (30) 

 

d1 Yx s R s R s

Yy s R s R s

Y Yx s Y Yy s

T I cos ( cos sin )
+I sin ( sin cos )

I sin I cos

q p
q p

p q

  
  

 

  
 

 

 (31) 

 

d2 Yx s s s s

s s s s

Yy s s s s

s s s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

T I cos [sin ( cos sin
sin cos ]

+I sin [cos ( cos sin

sin cos ]
( I sin I cos I )
( I I )

q r
q r

q r

q r
r p q q
q r r

   

   
   

   
 

  

 


 
  

 

 (32) 

 

eq R Rx d1 s d2I T Tp m     (33) 

d1
R P R Rx d2

eq eq

T 1( ) ( T )
I I

p r r m     (34) 

 

 Y R s R s Y scos ( sin )p p q q       (35) 

 

Rolld s d1 s d2

eq R s Y Y R

T cos (T T )
I ( sin ( ))q q r r

 



 

   
 (36) 

 

Rolls Rx d
Y

eq

cos T
I

m
p

 
  (37) 

 

 (31)

2 2
eq Rx Yx s Yy sI I I cos I sin     (30) 

 

d1 Yx s R s R s

Yy s R s R s

Y Yx s Y Yy s

T I cos ( cos sin )
+I sin ( sin cos )

I sin I cos

q p
q p

p q

  
  

 

  
 

 

 (31) 

 

d2 Yx s s s s

s s s s

Yy s s s s

s s s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

T I cos [sin ( cos sin
sin cos ]

+I sin [cos ( cos sin

sin cos ]
( I sin I cos I )
( I I )

q r
q r

q r

q r
r p q q
q r r

   

   
   

   
 

  

 


 
  

 

 (32) 

 

eq R Rx d1 s d2I T Tp m     (33) 

d1
R P R Rx d2

eq eq

T 1( ) ( T )
I I

p r r m     (34) 

 

 Y R s R s Y scos ( sin )p p q q       (35) 

 

Rolld s d1 s d2

eq R s Y Y R

T cos (T T )
I ( sin ( ))q q r r

 



 

   
 (36) 

 

Rolls Rx d
Y

eq

cos T
I

m
p

 
  (37) 

 

 (32)

Substituting Eq. (30-32) into Eq. (31), we would have:

2 2
eq Rx Yx s Yy sI I I cos I sin     (30) 

 

d1 Yx s R s R s

Yy s R s R s

Y Yx s Y Yy s

T I cos ( cos sin )
+I sin ( sin cos )

I sin I cos

q p
q p

p q

  
  

 

  
 

 

 (31) 

 

d2 Yx s s s s

s s s s

Yy s s s s

s s s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

T I cos [sin ( cos sin
sin cos ]

+I sin [cos ( cos sin

sin cos ]
( I sin I cos I )
( I I )

q r
q r

q r

q r
r p q q
q r r

   

   
   

   
 

  

 


 
  

 

 (32) 

 

eq R Rx d1 s d2I T Tp m     (33) 

d1
R P R Rx d2

eq eq

T 1( ) ( T )
I I

p r r m     (34) 

 

 Y R s R s Y scos ( sin )p p q q       (35) 

 

Rolld s d1 s d2

eq R s Y Y R

T cos (T T )
I ( sin ( ))q q r r

 



 

   
 (36) 

 

Rolls Rx d
Y

eq

cos T
I

m
p

 
  (37) 

 

 (33)

2 2
eq Rx Yx s Yy sI I I cos I sin     (30) 

 

d1 Yx s R s R s

Yy s R s R s

Y Yx s Y Yy s

T I cos ( cos sin )
+I sin ( sin cos )

I sin I cos

q p
q p

p q

  
  

 

  
 

 

 (31) 

 

d2 Yx s s s s

s s s s

Yy s s s s

s s s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

T I cos [sin ( cos sin
sin cos ]

+I sin [cos ( cos sin

sin cos ]
( I sin I cos I )
( I I )

q r
q r

q r

q r
r p q q
q r r

   

   
   

   
 

  

 


 
  

 

 (32) 

 

eq R Rx d1 s d2I T Tp m     (33) 

d1
R P R Rx d2

eq eq

T 1( ) ( T )
I I

p r r m     (34) 

 

 Y R s R s Y scos ( sin )p p q q       (35) 

 

Rolld s d1 s d2

eq R s Y Y R

T cos (T T )
I ( sin ( ))q q r r

 



 

   
 (36) 

 

Rolls Rx d
Y

eq

cos T
I

m
p

 
  (37) 

 

 (34)

If a rate gyro is mounted along the Yx  axis of the inner 
gimbal, it measures the Yp . According to the first component 
of Eq. (27), Eq. (28) is rewritten as follows:

2 2
eq Rx Yx s Yy sI I I cos I sin     (30) 

 

d1 Yx s R s R s

Yy s R s R s

Y Yx s Y Yy s

T I cos ( cos sin )
+I sin ( sin cos )

I sin I cos

q p
q p

p q

  
  

 

  
 

 

 (31) 

 

d2 Yx s s s s

s s s s

Yy s s s s

s s s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

T I cos [sin ( cos sin
sin cos ]

+I sin [cos ( cos sin

sin cos ]
( I sin I cos I )
( I I )

q r
q r

q r

q r
r p q q
q r r

   

   
   

   
 

  

 


 
  

 

 (32) 

 

eq R Rx d1 s d2I T Tp m     (33) 

d1
R P R Rx d2

eq eq

T 1( ) ( T )
I I

p r r m     (34) 

 

 Y R s R s Y scos ( sin )p p q q       (35) 

 

Rolld s d1 s d2

eq R s Y Y R

T cos (T T )
I ( sin ( ))q q r r

 



 

   
 (36) 

 

Rolls Rx d
Y

eq

cos T
I

m
p

 
  (37) 

 

 (35)

Now define 
RolldT as:

2 2
eq Rx Yx s Yy sI I I cos I sin     (30) 

 

d1 Yx s R s R s

Yy s R s R s

Y Yx s Y Yy s

T I cos ( cos sin )
+I sin ( sin cos )

I sin I cos

q p
q p

p q

  
  

 

  
 

 

 (31) 

 

d2 Yx s s s s

s s s s

Yy s s s s

s s s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

T I cos [sin ( cos sin
sin cos ]

+I sin [cos ( cos sin

sin cos ]
( I sin I cos I )
( I I )

q r
q r

q r

q r
r p q q
q r r

   

   
   

   
 

  

 


 
  

 

 (32) 

 

eq R Rx d1 s d2I T Tp m     (33) 

d1
R P R Rx d2

eq eq

T 1( ) ( T )
I I

p r r m     (34) 

 

 Y R s R s Y scos ( sin )p p q q       (35) 

 

Rolld s d1 s d2

eq R s Y Y R

T cos (T T )
I ( sin ( ))q q r r

 



 

   
 (36) 

 

Rolls Rx d
Y

eq

cos T
I

m
p

 
  (37) 

 

 (36)

According to Eq. (35) is rewritten as follows: 

2 2
eq Rx Yx s Yy sI I I cos I sin     (30) 

 

d1 Yx s R s R s

Yy s R s R s

Y Yx s Y Yy s

T I cos ( cos sin )
+I sin ( sin cos )

I sin I cos

q p
q p

p q

  
  

 

  
 

 

 (31) 

 

d2 Yx s s s s

s s s s

Yy s s s s

s s s s

R Y Yx s Y Yy s Ry R

R Y Yz Rz R

T I cos [sin ( cos sin
sin cos ]

+I sin [cos ( cos sin

sin cos ]
( I sin I cos I )
( I I )

q r
q r

q r

q r
r p q q
q r r

   

   
   

   
 

  

 


 
  

 

 (32) 

 

eq R Rx d1 s d2I T Tp m     (33) 

d1
R P R Rx d2

eq eq

T 1( ) ( T )
I I

p r r m     (34) 

 

 Y R s R s Y scos ( sin )p p q q       (35) 

 

Rolld s d1 s d2

eq R s Y Y R

T cos (T T )
I ( sin ( ))q q r r

 



 

   
 (36) 

 

Rolls Rx d
Y

eq

cos T
I

m
p

 
  (37) 

 

 (37)

The block diagram of  Figure 4 shows the seeker’s roll and 
yaw channels, in which Eq. (22) is used in the yaw channel 
and Eq. (37) in the roll channel. It should be noted that the roll 
channel, after calculating Yp , Rp  is calculated according to 
the first component of relation (15).

4- Sliding Mode Control of Roll-yaw Seeker
The Roll-yaw seeker dynamic derived in Section  2 

is a nonlinear dynamic with strong coupling. Also, mass 
unbalances and disturbances lead to uncertainty in the model. 
Uncertainty can cause undesirable system performance. In 
this part, the sliding mode controller controls this nonlinear 
uncertain system. In the following, the control structure of 
the roll-yaw seeker, which includes the stabilization loop and 
the tracking loop, is introduced and analyzed by separating 
the roll and yaw channels. A method is presented to solve the 
singularity problem in the tracking loop by analyzing it. Then, 
the sliding mode controller is introduced and used to control 
the roll-yaw seeker nonlinear system. In a roll-yaw seeker, 
model uncertainties (e.g., gimbal inertia mismatches, cross-
axis coupling, unmodeled actuator dynamics) and frictional 
moments (e.g., static, Coulomb, and viscous friction) 
significantly impact performance by causing tracking errors, 
instability, and mechanical wear. Integral Sliding Mode 
Control (ISMC) effectively addresses these challenges by 
combining robust disturbance rejection with integral action 
to eliminate steady-state errors caused by uncertainties or 
friction. The control law incorporates switching terms to 
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handle bounded disturbances and a boundary layer (e.g., 
saturation function) to reduce chattering and mitigate 
stick-slip effects. Independent sliding surfaces for roll and 
pitch axes ensure robustness against cross-coupling, while 
adaptive compensation and simulation-based tuning improve 
reliability under varying conditions. ISMC’s robustness and 
smooth control make it ideal for precise and reliable target 
tracking in roll-yaw seekers.

4- 1- Stabilization loop
In the stabilization loop, there are two main control 

objectives. The first goal is to stabilize the inner frame in the 
inertial space. Sensors are also installed on the inner frame 
of the seeker. The sensors being fixed in the inertial space 
calculate the error angles independently of the disturbance 
moments. The second purpose is to track the desired roll and 
yaw angular velocities produced in the tracking loop by the 
inner frame. The controller designed for the stabilization loop 
is the integral sliding mode control, which is also designed in 
this section.

4- 2- Tracking loop
In the tracking loop, the tracking error should reach zero. 

In other words, in this loop, the seeker’s head is placed along 
the LOS vector expressed in the inner frame. For this purpose, 
first, the roll error and yaw error required by the axes of the 
seeker must be positioned toward the target. These errors 
are calculated from Eqs. (4) and (5). Then, the rotation rate 
command is required to regulate the angular error in the roll 
and yaw channels, which are sent to the stabilization loop. In 
the stabilization loop, for the PX  axis of the seeker to face 
the target, the desired torque is generated and applied to the 
frames to rotate the roll and yaw frames, and then the target 
is tracked. It should be considered that the tracking error is 
proportional to the detector output. The detector’s task is to 
identify and express the target’s position. The detector output 
is the elevation and azimuth angles of the target relative to the 
seeker and is expressed in its inner frame. The roll and yaw 
errors are calculated according to the elevation and azimuth 
angles by converting from the Cartesian coordinate system to 
the polar one. The roll and yaw errors are the control inputs of 
the roll and yaw channels of the tracking loop, respectively. 

 
Fig. 4. Block diagram of roll and yaw channels 
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Fig. 4. Block diagram of roll and yaw channels
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According to Figure 5, the elevation and azimuth angles are 
indicated by elθ and azθ  respectively.

Consider that always t 0x ≥ , the variables tx  , ty  and 
tz , are rewritten as follows:

t t

t t az

2
t t az el

tan

1 tan tan

x x
y x

z x



 

  


  

 (38) 

 

1
s az

2 2 2
az el az

tan (sgn(tan )

( 1 tan tan ) (tan ) )

 

  

  

  
 (39) 

 

2
az el1

s
az

1 tan tan
tan ( )

tan
 




  
   (40) 

 

t
s

t

2 2
t t

s t
t

tan

tan sgn( )

z
y

z y
y

x





  



  

 (41) 

 

t t t t
s2 2

s t

s2
s

2 2 0.5
t t t t t t t

2 2 0.5
t t t

t2
t

1
cos

1
cos
( ) ( )

( ) sgn( )

z y y z
y

z y z z y y x
z y x y

x









   


   
  

 



 (42) 

 

 (38)

According to Eq. (38), the roll and yaw error values are 
obtained according to the elevation and azimuth errors. The 
block diagram of the tracking loop considering the roll and 
yaw channels is shown in Figure 6:

Yaw channel
Using Eq. (5) and (38) and noting that tx   is positive, the 

seeker yaw error is proportional to the information received 
from the detector as follows:

t t

t t az

2
t t az el

tan

1 tan tan

x x
y x

z x



 

  


  

 (38) 

 

1
s az

2 2 2
az el az

tan (sgn(tan )

( 1 tan tan ) (tan ) )

 

  

  

  
 (39) 

 

2
az el1

s
az

1 tan tan
tan ( )

tan
 




  
   (40) 

 

t
s

t

2 2
t t

s t
t

tan

tan sgn( )

z
y

z y
y

x





  



  

 (41) 

 

t t t t
s2 2

s t

s2
s

2 2 0.5
t t t t t t t

2 2 0.5
t t t

t2
t

1
cos

1
cos
( ) ( )

( ) sgn( )

z y y z
y

z y z z y y x
z y x y

x









   


   
  

 



 (42) 

 

 (39)

Using a proportional controller by gain 
1Pk , the desired 

yaw rate command is generated and input to the yaw channel 
stabilization loop.

 
Fig. 5. The position of the target relative to the inner frame expressed by elevation and azimuth angles 
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Fig. 5. The position of the target relative to the inner frame expressed by elevation and azimuth angles

 
Fig. 6. The block diagram of the tracking loop 
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Fig. 6. The block diagram of the tracking loop
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Roll channel
using relations (4) and (38), the seeker roll error is 

proportional to the elevation and azimuth angles as follows:

t t

t t az

2
t t az el

tan

1 tan tan

x x
y x

z x



 

  


  

 (38) 

 

1
s az

2 2 2
az el az

tan (sgn(tan )

( 1 tan tan ) (tan ) )

 

  

  

  
 (39) 

 

2
az el1

s
az

1 tan tan
tan ( )

tan
 




  
   (40) 

 

t
s

t

2 2
t t

s t
t

tan

tan sgn( )

z
y

z y
y

x





  



  

 (41) 

 

t t t t
s2 2

s t

s2
s

2 2 0.5
t t t t t t t

2 2 0.5
t t t

t2
t

1
cos

1
cos
( ) ( )

( ) sgn( )

z y y z
y

z y z z y y x
z y x y

x









   


   
  

 



 (42) 

 

 (40)

Designing a proportional controller by gain 
2Pk , the 

roll rate command is generated and fed into the roll channel 
stabilization loop.  In the roll channel, when the X axis of 
the inner frame ( YX ) faces the target, the roll rate becomes 
infinite and a singularity occurs. The following will discuss 
the investigation and solution to remove this singularity.

Roll channel singularity
To obtain the roll and pitch rate according to Eqs. (4) and 

(5), we can write:

t t

t t az

2
t t az el

tan

1 tan tan

x x
y x

z x



 

  


  

 (38) 

 

1
s az

2 2 2
az el az

tan (sgn(tan )

( 1 tan tan ) (tan ) )

 

  

  

  
 (39) 

 

2
az el1

s
az

1 tan tan
tan ( )

tan
 




  
   (40) 

 

t
s

t

2 2
t t

s t
t

tan

tan sgn( )

z
y

z y
y

x





  



  

 (41) 

 

t t t t
s2 2

s t

s2
s

2 2 0.5
t t t t t t t

2 2 0.5
t t t

t2
t

1
cos

1
cos
( ) ( )

( ) sgn( )

z y y z
y

z y z z y y x
z y x y

x









   


   
  

 



 (42) 

 

 (41)

By differentiation from the Eq. (41), the following 
equation will be obtained:

t t

t t az

2
t t az el

tan

1 tan tan

x x
y x

z x



 

  


  

 (38) 

 

1
s az

2 2 2
az el az

tan (sgn(tan )

( 1 tan tan ) (tan ) )

 

  

  

  
 (39) 

 

2
az el1

s
az

1 tan tan
tan ( )

tan
 




  
   (40) 

 

t
s

t

2 2
t t

s t
t

tan

tan sgn( )

z
y

z y
y

x





  



  

 (41) 

 

t t t t
s2 2

s t

s2
s

2 2 0.5
t t t t t t t

2 2 0.5
t t t

t2
t

1
cos

1
cos
( ) ( )

( ) sgn( )

z y y z
y

z y z z y y x
z y x y

x









   


   
  

 



 (42) 

 

 (42)

In Eq. (42) the tsgn( )y  derivative at the point t 0y =  is 
undefined. According to Eq. (42), the relations of roll rate and 
pitch rate is as follows:

2t t t t
s s2

t

s
2 2 0.5

t t t t t t
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t
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x
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(45) 

 

 (43)

According to Figure 3, the trigonometric functions are 
obtained in the following equations:

2t t t t
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Replacing Eq. (44) in Eq. (43) we would have:
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Considering t 0y →  , t 0z →  and t 0x ≠ ; It is clear 
that the sϕ∆   coefficients (the first row of the matrix k  in 
Eq. (46) become infinite. Also, with the assumption that the 
distance between the target and the seeker is large, the limit of 
the matrix k  as  t 0y →  ، tx →∞   and t 0z →  is obtained 
as follows:
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Due to Eq. (47), when the seeker’s head is facing the 
target, the rotation roll rate becomes infinite and causes a 
singularity.

4- 3- Roll channel singularity avoidance
As stated in the previous section, singularity occurs when 

the x-axis of the seeker’s inner frame is facing the target. This 
means the target position with the values t 0y →  , t 0z →  

and t 0x ≠  in the inner frame. The origin of the singularity 
is Eq. (40), which expresses the roll kinematics in terms of 
the detector output. According to Figure 6 and Eq. (40), it is 
clear that the singularity problem occurs in the cartesian to 
polar transfer function block. Eqs. (39) and (40), which are 
embedded in this block are roll and yaw errors proportional 
to elevation and azimuth errors, respectively.

Since the error values in both roll and yaw channels in the 
tracking loop are small (because the seeker starts working in 
the final phase of the flight and after locking on the target), 
the detector outputs can be considered directly as the input 
of the tracking loop controller. For this purpose, the azimuth 
error is considered the input command of the yaw control 
loop, and the elevation error is considered the input command 
of the roll control loop. This idea is inspired by the bank-to-
turn model of an aircraft, where a roll command is issued if 
there is an azimuth error. In this way, there is no singularity in 
the proposed method due to not using Eq. (40).

In Figure 7, (a) shows the tracking error in the presence 
of elevation and azimuth error, and (b) shows the tracking 
error after regulating the elevation error by rotating around 

 
(a)                                                                               (b ) 

Fig. 7. The position of the target relative to the inner frame expressed by elevation and azimuth angles 
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Fig. 7. The position of the target relative to the inner frame expressed by elevation and azimuth angles
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the Xp axis.
In the roll-yaw seeker, to reduce the pitch error to zero, 

the seeker rolls proportional to the elevation error. As a result, 
the LOS vector is placed in the X-Y plane (Figure 7). If the 
elevation error is small enough, the azimuth error will equal 
the seeker’s yaw error. In this way, the tracking error becomes 
zero. The block diagram of the tracking loop with singularity 
correction is shown in Figure 8.

4- 4- Integrated sliding mode
The sliding mode controller design is done in two steps. 

The first step is to define the stable sliding surface. So, if the 
system’s state is placed on the sliding surface, it remains on 
it and tends to the equilibrium state by moving on the sliding 
surface. There are sliding surfaces as many as control inputs. 
The second step is to design the control law that directs the 
system’s state toward the sliding surface ( , ) 0s t =x  at any 
moment.

The roll-yaw seeker has two control inputs. Therefore, 
the sliding mode controller design is done for a multi-input-
multi-output system. On the other hand, the chattering in 
this control method is undesirable for a seeker and should be 
removed. To remove the chattering, an optional error must 
be considered for the system. This error is eliminated by 
using the integral sliding mode controller. In the following, 
the integral sliding mode controller, a two-input-two-output 
system, is designed for roll-yaw seeker stabilization loops. 

The coupling between the roll and yaw channels is 
described in the second section under the names 

RolldT  and 

YawdT . This coupling is described in the controller design as 
Roll ( )d x  and Yaw ( )d x  which is entered into the controller 

equation as a disturbance. In this way, the coupling between 
the two roll and yaw channels is already provided in the 
controller design and this robust controller greatly reduces 
the effect of the coupling. According to Eqs. (22) and (37), 

YawdT and 
RolldT  are considered as disturbance inputs. The 

dynamic equations are rewritten as follows:
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To design the control signal, the uncertainty limit is 
assumed as follows:
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 in which β  is the gain margin and ( , )x tδ  is the 
disturbances limit. Since the control variable is the integral 
error, the equation increases by one order.
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The order for the system is 2. The sliding surface is 
defined as follows:

 
Fig. 8. Block diagram of the tracking loop with singularity avoidance 
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Fig. 8. Block diagram of the tracking loop with singularity avoidance
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By solving the s  in terms of control input, the equivalent 
control is obtained which is shown by equ . It is a continuous 
control law that maintains ( , ) 0s t =x  when the exact 
dynamics are known. The sliding mode control signal is as 
the following [25]:
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where k  is the coefficient of the sign function obtained 
from the sliding condition. The sliding condition is as follows 
[25]:
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Putting s  in the sliding condition, the allowable interval 
for k is obtained:
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Factoring from 1ˆ(1 )bb −− −  and considering | |sgn( ) ss
s

=
, we would have:
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Using the triangle inequality leads to:
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Considering d δ≤  and also Eq. (49), the second 
expression on the right side of Eq. (56) can be written as:
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Also, for the first term on the right-hand side of the 
inequality of Eq. (56), it can be said that:
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Inequality (56) is rewritten as follows:
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Using the sliding condition, the proper interval for K is 
obtained:
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The parameter K has a direct effect on the chattering. To 
remove chattering, tanh( )s

φ
  is used instead of sgn( )s  where 

φ  is the boundary layer thickness. The control signal of two 
roll and yaw channels is rewritten as follows:
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5- Numerical Simulation
In this section, the tracking loop simulation results are 

presented. In the tracking loop, the seeker is controlled so that 
its XY axis is directed towards the target. In this test, the target 
is assumed at 10000x = , 500y = , and 500z = , and the error 
of sϕ∆  and sψ∆  is expected to be zero. To determine the 
control gains, first, using equation (60), the gain selection 
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range for the system was calculated. Then, by considering 
the upper limit of the control gains and applying a trial and 
error approach, the lowest gain value that would ensure the 
desired performance of the system and prevent excessive 
control effort was selected. Since the presence of chattering 
in highly sensitive systems, such as seekers, is undesirable, 
its elimination is necessary. For this purpose, a boundary 
layer was defined in which the chattering is limited and will 
not be visible in the controller output. Since the application 
of this layer can lead to systematic error, its thickness was 
chosen in such a way that it eliminates chattering and creates 
the minimum possible error. All the simulation parameters 
are presented in the Appendix.

To clarify the singularity, the tracking loop simulation 
has been implemented despite the singularity and without 
considering the saturation limit of the input voltage and 
output current of the motor. Figure 9 shows the time response 
graphs of the angular error of the target and the seeker XY 
axis. 

Figure 9 shows the angular error of the target and the 
seeker XY axis in the tracking loop, despite the singularity and 
without considering the saturations on the motor simulation. 
(a) is the roll error, and (b) is the yaw error.

To show the singularity in different scenarios, four 
different target positions were chosen and simulation has 
been implemented. Figure 10 shows the time response graphs 
of the angular error of the target and the seeker XY axis.

Figure 10 shows the angular error of the target and the 
seeker XY axis in the tracking loop, despite the singularity and 
without considering the saturations on the motor simulation. 
As is clear in these scenarios, wherever the target position 
is, the seeker axis rotates towards the target, and as soon as 

the yaw error becomes zero and the seeker axis is positioned 
opposite the target, the roll angle becomes infinite and the 
singularity occurs. In this figure, in scenario (1) target is 
assumed at 10000x = , 0y = , and 500z = − , in scenario 
(2) target is assumed at 10000x = , 500y = , and 500z = −
, in scenario (3) target is assumed at 10000x = , 500y = − , 
and 500z = − , in scenario (4) target is assumed at 10000x =
, 500y = − , and 500z = ,  and the error of sϕ∆  and sψ∆  are 
expected to be zero. And in all of the scenarios (a) is the roll 
error, and (b) is the yaw error.

In the following, the tracking loop simulation has been 
implemented after the singularity avoidance. Figure 11 shows 
the time response graphs of the angular error of the target and 
the seeker XY axis. According to the graphs, the singularity 
problem has been entirely resolved, and with zero error, the 
seeker’s head has turned towards the assumed target.

Figure 11 shows the angular error of the target and the 
seeker XY axis in the tracking loop, by singularity avoidance. 
(a) is the elevation error, and (b) is the azimuth error.

The tracking loop simulation after the singularity 
avoidance in the presence of [ 50% 100%]−  uncertainty in 
the moment of inertia is shown in Figure 12. As can be seen, 
the designed sliding mode controller tracks the desired values 
very well in the presence of uncertainty. Also, according to the 
uncertainty interval, it is clear that the controller’s sensitivity 
to this parameter is very low, and the controller is resistant to 
the uncertainty in the moment of inertia matrix.

Figure 12 shows the angular error of the target and the 
seeker XY axis in the tracking loop, by singularity avoidance 
in the presence of [ ]50% 100%−  uncertainty. (a) is the 
elevation error, and (b) is the azimuth error.

     In order to further validate the controller, the seeker 

 

Figure 9. The angular error of the target and the seeker XY axis despite the singularity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 9. The angular error of the target and the seeker XY axis despite the singularity 
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(1) 

 
(2) 

 
(3) 

 

(4) 

(b) (a) 

(b) (a) 

(b) (a) 

(b) (a) 

Fig. 10. The angular error of the target and the seeker XY axis despite the singularity  in other scenarios
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Fig. 10. The angular error of the target and the seeker by singularity avoidance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 11. The angular error of the target and the seeker by singularity avoidance

 

Fig. 11. The angular error of the target and the seeker in the presence of uncertainty 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 12. The angular error of the target and the seeker in the presence of uncertainty
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attached to the vehicle is simulated in the guidance loop with 
the PN guidance law. Figure 13 shows the line of sight rotation 
rate and the trajectory of the target and the vehicle during the 
simulation. In this simulation, a highly maneuverable target 
is used in which the acceleration of the target along  YB axis 
is 3ya g=  and along ZB axis is 5za g= .According to Figure 13, The simulation results 
demonstrate that the control system can to maintain stability 
and tracking accuracy even under challenging conditions.

6- Conclusion
This article modeled the dynamics of the two-degree-of-

freedom roll-pitch seeker using the Newton-Euler method. 
The seeker exhibited strong coupling and nonlinear behavior, 
making it a challenging system to control. To address the 
singularity problem in this seeker, a method for removing 
the singularity condition was proposed, and a sliding mode 
controller was designed for the two-input, two-output system. 
The simulation results demonstrate that the controller and the 
method used to eliminate singularity conditions produced a 
suitable response with zero tracking error. As sliding mode 
control is known for its robustness, the presence of uncertainty 
was further simulated to show that the controller is resistant 
to such conditions.

Nomenclature
p   flying vehicle’s roll rate, expressed in the body frame.
q   flying vehicle’s pitch rate, expressed in the body frame.
r   flying vehicle’s yaw rate, expressed in the body frame.

Rp    roll rate of the outer frame, expressed in the outer 
frame.

Rq    pitch rate of the outer frame, expressed in the outer 
frame.

Rr    yaw rate of the outer frame, expressed in the outer 
frame.

Yp    roll rate of the inner frame, expressed in the inner 
frame.

Yq    pitch rate of the inner frame, expressed in the inner 
frame.

Yr    yaw rate of the inner frame, expressed in the inner 
frame.
RR

R  I  the moment of inertia matrix of the outer gimbal, 
expressed in the outer frame.
YY

Y  I  the moment of inertia matrix of the inner gimbal, 
expressed in the inner frame.

( )u t   control input.
l    angular momentum.
ϕ    flying vehicle’s roll angle.
θ    flying vehicle’s pitch angle.
ψ    flying vehicle’s yaw angle.

Sϕ    the angle between the body frame and the outer frame.

Sψ   the angle between the outer frame and the inner frame.

Sϕ∆   the roll error required by the seeker to be positioned 

 

 

 

Fig. 12. Line of sight rotation rate and tracking geometry when using a roll-yaw seeker: a) Line of sight 

rotation rate, b) Target and vehicle trajectory. 

(a) (b) 

Fig. 13. Line of sight rotation rate and tracking geometry when using a roll-yaw seeker: a) Line of 
sight rotation rate, b) Target and vehicle trajectory.



M. Ghasemi et al., AUT J. Model. Simul., 56(2) (2024) 235-256, DOI: 10.22060/miscj.2025.23515.5380

253

towards the target.

Sψ∆   the yaw error required by the seeker to be positioned 
towards the target.

ω   angular velocity vector.

elθ    elevation angle.

azθ   azimuth angle.
η   sliding mode control gain.
λ   sliding mode control gain.
φ   boundary layer thickness.
B  Body frame.
I  Inertial frame.
Y  Inner frame of the seeker.
R  Outer frame of the seeker.
B  related to the body frame. 
I  related to the inertial frame.
Y  related to the inner frame of the seeker.
R  related to the outer frame of the seeker 
S   related to the seeker.
d   desired value.

Appendix: Simulation Parameter Values
In this research, moment of inertia matrix values in the 

roll-pitch seeker are considered as follows:

1 1

1

1 1

1 1

ˆ|1 | |1 |

1 0 1

|1 | 1

ˆ|1 | 1

bb

b
b

bb



 

 



 






 

 

   


 

    

   

  

 

(58) 

 

1 1ˆ| | (|1 || | )ss s u k        (59) 

 

1 1ˆ| | (|1 || | ) | |
ˆ( 1) | | ( )

s u k s
k u

   
   

     
    

 (60) 

 

Yaw

Roll

1 Yaw
Yaw eq Yaw Yaw

1 Yaw
Yaw Yaw Yaw

1 Roll
Roll eq Roll Roll

1 Roll
Roll Roll Roll

ˆ tanh( )

ˆ ˆ( tanh( ))

ˆ tanh( )

ˆ ˆ( tanh( ))

su u k b

sb u k

su u k b

sb u k

















   

 



   


 


 (61) 

 

RR
R

PP
P

0.001 0 0
0 0.0001 0
0 0 0.001

0.001 0 0
0 0.0001 0
0 0 0.001

 
      
  
 
      
  

I

I

 (62) 

 

 (62)

To generate the torque, the information of a direct current 
motor produced by Northrup Grumman Company was used, 
which is shown in Table 1 [24].

The proportional controller parameters in the tracking 
loop are listed in Table 2. The parameter 

1pk is the yaw 
channel control gain and 

2pk  is the roll channel control gain 
for the tracking loop proportional controller; The selection 
criteria of these control gains is to minimize the tracking error.

Also the values of the controller parameters are presented 
in Table 3.

Table 1. DC motor specifications.
Table 1. DC motor specifications. 

 
Parameter Value Unit description 

aR 4.5  Terminal resistance 

aL 0.003  Terminal inductance 

TMK 0.85 .m  Torque constant 

ek 0.85 v Rad s Back EMF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Proportional controller parameters for roll-
pitch seeker tracing loop

Table 2. Proportional controller parameters for roll-pitch seeker tracing loop 

 
Parameter Value 

1pk 50 

2pk 200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Sliding mode controller parameters for the roll-pitch seeker stabilization loop.
Table 3. Sliding mode controller parameters for the roll-pitch seeker stabilization loop. 

 
parameter value description 

1 200 Pitch channel gain control 

1 20000 The slope of the sliding surface in pitch channel 

2 150 Roll channel control gain 

2 12000 The slope of the sliding surface in roll channel 

1 0.4 Pitch channel boundary layer thickness 

2 0.4 Roll channel boundary layer thickness 

1b  0.51b Pitch channel uncertainty upper limit 

1b  0.5-1b Pitch channel uncertainty lower limit 

2b  0.52b Roll channel uncertainty upper limit 

2b  0.5-2b Roll channel uncertainty lower limit 
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The engine transfer function is as follows:

   
TM

* *
a a m m e TM

K( ) 5
L s+R × J s+a +K K

G s   (63) 

 

 (63)

In which *
ma 0=  and *

m m LJ =J +J . In the block diagram 
of the tracking and stabilization loops, the DC-motor block 
means the motor transfer function. Also, in the simulation, 
the saturation limit of input voltage and output current is 
considered as 20V±  and 2A±  respectivly.
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