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ABSTRACT 

Cognitive Architectures (CAs) are the core of artificial cognitive systems. A CA is supposed to specify 

the human brain at a level of abstraction suitable for explaining how it achieves the functions of the mind. 

Over the years a number of distinct CAs have been proposed by different authors and their limitations and 

potentials were investigated. These CAs are usually classified as symbolic and sub-symbolic architectures. In 

this work, a novel hybrid architecture is proposed that encompasses a symbolic part (i.e. ACT-R) to explain 

the controlled aspects of behavior and a sub-symbolic part (i.e. Artificial Neural Networks) to describe 

automated skills. In order to demonstrate the capabilities of the proposed model, an experiment was 

conducted in which, a rather complex real life task was carried out by the model and its result were 

compared with those of human participants. Simulation results have shown promising capabilities of the new 

architecture in modeling complex human behavior. 
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1. INTRODUCTION 

In recent years computational-based modeling has 

emerged as a powerful tool for studying the complex task 

of driving which allowing many researchers to simulate 

driver behavior [1-4]. During the past decade, lots of 

efforts have been made to provide a comprehensive model 

of driver behavior [5-8]. Driving is a very common 

everyday task and yet a very complex as well as hazardous 

one [9-13]. Modeling driver behavior in a cognitive 

architecture can shed some light on the embodied 

procedures taken by drivers. On the other hand, due to big 

demands in cognitive abilities, driving is a good situation 

in which the capabilities and limitations of cognitive 

architectures can be tested [14-16]. Another benefit of 

having an integrated model capable of reproducing actions 

of drivers is utilizing this model in place of the human 

subjects in order to facilitate an evaluation process in 

designing advanced driver assistance systems [17-19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Some of ACT-R buffers and modules 

Such systems can enhance their capabilities if they 

could understand and characterize different aspects of 

driver’s behavior [20-23].A cognitive model which tries to 

explain driving must be able to answer the questions like 

how decision making or situation awareness is 

achieved,what are the importantcognitive bottlenecks 

and limitations are, how different inputs from the 

environment are perceived by drivers and how he/she can 

use his/her motor skills to manipulate the vehicle, and etc. 

[24-27]. 

A strong psychological theory is necessary for 

providing proper answers to the aforementioned issues. 

Computational models of human cognition due to 1) their 

high level of clarity and completeness, and 2) their better 

explanation and evaluations, can provide a reliable 

framework for modeling the different aspects of human 

cognition [19]. 

It should be noted that it is not all things that happen 

while driving can be explained solely through a cognitive 

architecture [20]. Much of driving is composed of lower 

level automated skills and reflexive behaviors which are 

out of the scope of cognitive architectures. Distinguishing 

these two processes is a common practice and cognitive 

architectures are usually flexible enough to allow 

execution of such tasks. It must be noted that any process 

of sufficient complexity involves a complex interplay 

between both controlled (conscious) and automatic 

processes[21]. 

Salvucci [2] has proposed an integrated driver model 

using Adaptive Control of Thought – Rational (ACT-R) 

cognitive architecture and uses a PI like controller to 

account for those reflexive behaviors. Although the PI 

controller can produce human like behavior [12] it cannot 

be stated as realistic and it lacks a biological or 

psychological explanation. Furthermore, his claim for 

modeling a skilled driver (100 references of memory 

chunks for easy retrieval) suffers from an unrealistic 

explanation.  

Mihalyi [20] used a fuzzy logic compensator instead 

of Salvucci’s PI controller. Although his model can 

explain the reason for this controller to work, in our 

opinion fuzzy logic cannot be accounted for automated 

skills. Fuzzy logic is developed to model expert’s 

knowledge and provides a means to compute with words, 

but it never claims that what really happen in the brain are 

fuzzy computations. 

In this paper, a computational driver model developed 

in the ACT-R (Adaptive Control of Thought-Rational) 

cognitive architecture and by taking advantage of an 

Artificial Neural Network (ANN)as the basis of the 

underlying control mechanism, focused on the component 

processes of control, and decision making in a multilane 

highway environment. MLPs are a fully-connected 

feedforward artificial neural network which learns a 

mapping between a set of input samples and their 

corresponding target classes. The MLPs is in fact an 

extension of the Perceptron neural network. Each node in 
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a MLPs neural network represents a neuron which is 

usually considered as a nonlinear processing element. 

We have used an (Multi-Layer perceptron) MLP for 

modeling driver’s automated skills and predict driver’s 

behavior, based on Salvocci’s simulation environment to 

acquire training data for the MLP. In our experiments, the 

drivers could see the environment via monitor screen and 

also could control the steering wheel of the vehicle using a 

cell phone device. Adding on, an application was 

developed to send the pitch angle of the phone in 

determined time steps. The participants are four graduate 

students aged between 23-32, which have trained to drive 

in our environment and used recorded data to train the 

Multilayer perceptron (MLP).  

The reminder of this paper is organized as follows: In 

Section 2, we describe the relevant ACT-R components 

which are effectively used in the proposed model for the 

integrated driver behavior. Section 3 is devoted to 

introducing ANNs and explain how they can potentially 

perform better than fuzzy logic controllers in modeling 

reflexive behavior, followed by Section 4, in which a 

realization of an ANN as well as integration of this 

controller in ACT-R are fully presented. In order to 

validate the proposed model we compare and discuss its 

behavior with that of human drivers in Section 5. Finally, 

Section 6 concludes the paper. 

2.  ACT-R COGNITIVEARCHITECTURE 

A cognitive architecture is a framework for specifying 

computational behavioral models of human cognitive 

performance. The architecture consists of the abilities and 

constraints of the human system such as memory and 

recall, learning, perception, and motor action [28-30]. A 

cognitive architecture can psychologically confirm the 

cognitive models which are developed in the framework 

[2], [14]. ACT-R (Adaptive Control of Thought-Rational), 

is a hybrid architecture based on chunks of declarative 

knowledge and condition-action production rules that 

operate on these chunks. ACT-R is a computational model 

of human brain that describes how cognitive functions are 

realized in brain and it can also be used to replicate human 

behavior. ACT-R is mainly used to explain and reproduce 

the experimental data that is obtained in psychology 

experiments [12], [14]. ACT-R contains modules 

interacting through their buffers that are organized by a 

central controller (see Fig. 1).  

The ACT-R is simultaneously a rigorous theory of 

human cognition and a working framework in which to 

build computational models of human behavior which 

posits two separate but interacting knowledge stores. The 

first type of knowledge, declarative knowledge, is made 

up of chunks, or small logical units, of symbolic 

information. Declarative chunks can encode simple facts, 

current goals, and even ephemeral situational. Chunks are 

associated with sub-symbolic parameters that encode 

continuous valued properties of each chunk [12], [14]. 

The second type of knowledge is procedural 

knowledge which is made up of rules representing 

procedural skills that manipulate declarative knowledge as 

well as the environment. When all conditions match and 

the rule fires, rule actions can add to or alter declarative 

memory, set a new current goal, and/or issue perceptual or 

motor commands. Also, ACT-R has the ability to perform 

some processes in parallel such that [2], [12] and [14]. At 

the same time, ACT-R places certain limitations and 

constraints on models that mimic the constraints of the 

human system. One of the important constraints for the 

driver model is that although perceptual and motor 

processes can run in parallel with cognition, the cognitive 

processor itself is serial and, can think just one thing at a 

time. The cognitive processor is responsible for collecting 

all information from perceptual modules and issuing all 

motor commands, and thus it serves as the central 

bottleneck for behavior. This fact is critical for 

applications such as predicting driver distraction. 

A. Goal Module 

The goal module is responsible for keeping track of 

one’s internal intentions and goals. This module can 

control the flow of thought in order to achieve a goal-

directed behavior. Consider a task of getting to work in 

your car. This task can be decomposed into several 

abstract steps like dressing, getting to your car, starting the 

engine and driving to your workplace, parking your car 

near destination, etc. The ACT-R cognitive architecture 

deploys the goal module 1) to be aware of its current task 

and 2) to know which tasks should be considered next in 

order to achieve its overall goal (see Fig. 1). 

B. Imaginal Module 

Imaginal module is used to hold the mental 

representation of the problem. When new information 

about the current task in different buffers exists (e.g. 

visual module buffers) this information is organized in the 

imaginal buffer. This organized information will later be 

saved in the declarative module for the successive 

retrievals. 

The process of information organizing in imaginal 

module is indeed time consuming. When there is a request 

to create a new chunk in the imaginal buffer or to modify 

its current contents, some amount of time should pass 
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before these requests are fulfilled. In the ACT-R 6.0 

implementation this time can be a fixed constant or a 

random variable. 

C. Declarative Module 

Declarative module is the ACT-R’s implementation of 

declarative memory. Declarative memories are the kind of 

memories that can be declared, such as the name of one’s 

fifth grade teacher or the name of the South African anti-

apartheid leader. One can view declarative module like a 

large warehouse containing a vast amount of information. 

However, since humans may need some efforts or 

struggling to retrieve past information from their memory, 

retrieving information from declarative module must also 

be able to reflect these problems (see Fig. 1). 

In ACT-R literature pieces of information are called 

chunks. Each chunk that is stored in the declarative 

module is associated with an activation value. This value 

is calculated according to (1). This equation is used in the 

proposed model of driver to retrieve memories from 

his/her past. 

(1) 
i i

A B  
 

In the above equation,   reflects the noise value in 

retrieving a memory and iB  is the Base Level Activation 

(BLA) of chunk i. This value depends on how many times 

this chunk has been practiced according to the following 

equation: 

(2) 
1

ln

n

d

i j

j

B t

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 
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 
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where jt  is the time since the jth practice of chunk i.d is 

the decay rate of the chunk which reflects how amemory 

is forgotten and almost always is set to a default value of 

0.5. In order to simplify the calculation of BLA, one can 

use an alternative formula instead of . 

(3)  ln ln
1

i i

n
B d L

d
  



 
 
   

i
L is the time passed since creation of chunk i. 

Equation3, is the default formula for calculation of BLA 

in the ACT-R 6.0 implementation and it can be set by an 

optimized learning parameter.  in[2]contains two sources 

of noise. One is a permanentnoise which is associated with 

the chunk at the time of creation and the other is an 

instantaneousnoise that is calculated on each retrieval 

attempt. Both of these noises are generated according to a 

zero-mean logistic Probability Distribution Function 

(PDF). The variance 
2

  of this PDF is related to noise 

parameter s according to the following equation: 

(4) 

2

2 2

3
s


 

 

Hence the instantaneous noise parameter s and 

permanent noise parameter s determine the variance of 

instantaneous and permanent noise, respectively.The 

activation of each chunk determines both probability and 

latency of its retrieval defined respectively in (5) and (6). 

(5) 
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In the above, Pi is the probability of retrieval of chunk, 

i is a constant called retrieval threshold and reflects the 

attempt one makes in order to retrieve a memory and s is 

the instantaneous noise parameter 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. .Probability of retrieval for different values of noise 

parameter 

If a chunk is selected for retrieval, the time it takes to 

be retrieved is also related to its activation: 

(6) i
A

i
T Fe




 

where,
i

T  is the time it takes for chunk i to be retrieved 

and F is a constant called latency factor. Anderson et al. 

[8] proposed the following rule of thumb relation between 

the latency factor and the retrieval threshold: 
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D. Motor Module 

ACT-R motor module models the basic timing 

behavior of human motor system when dealing with 

computer interface using mouse and keyboard [2], [12]. 

Note that the architecture is flexible enough to allow for 

arbitrary actions when dealing with real world interfaces 

(see Fig. 1). 

E. Visual Module 

This module is used to view objects in the visual field. 

As many researchers have shown, two buffers are 

associated with the visual module. One is responsible for 

encoding the position of objects in the visual field and the 

other one to encode the nature of it. It is assumed that the 

visual module performs a parallel process in order to 

encode the position and some basic properties of all 

objects visible but only certain objects that had been 

subject to attention are known to the system. Request to 

the where module includes a few attribute-value pairs (e.g. 

vertical down) resulting in a chunk that represents the 

exact position and some basic properties of that object. If 

further information about the object is needed, this chunk 

is used to make a request to the what buffer. This request 

shifts attention of the visual module to specified location 

and additional information about that object is retrieved. 

Due to the parallel processes in the visual module to 

encode the location of visible objects, these requests are 

fulfilled instantly though the time it takes to shift visual 

attention is related to the distance between the current 

point of the attention and the new request. 

F. Productions 

Productions constitute the procedural memory of 

ACT-R cognitive architecture. They are if-then rules that 

respond to patterns presented in different buffers. The then 

part of each rule consists of a few requests sent to various 

buffers so that the corresponding modules update those 

buffers in response to these requests. According to the 

ACT-R theory, only one rule can fire at a time and there 

must be a 50ms delay before firing of the subsequent rules 

3.  ARTIFICIAL NEURAL NETWORKS FOR AUTOMATED 

SKILLS 

ANNs are one of the earliest attempts to provide a 

computational model of human brain. Multilayer 

perceptron (MLP) networks are largely used to 

approximate unknown functions and relations among data. 

In order to answer the questions of how to model human 

reflexive behavior, two approaches seemed feasible: 

ANNs and fuzzy logic controllers[20]. In this section we 

describe the advantage of using ANNs over fuzzy logic 

computations for modeling driver’s automated skills. 

MLPs is a fully-connected artificial neural network 

which learns a mapping between a set of input samples 

and their corresponding target classes. The MLPs is in fact 

an extension of the Perceptron neural network. Each node 

in a MLPs neural network represents a neuron which is 

usually considered as a nonlinear processing element. We 

have used an (Multi-Layer perceptron) MLP for modeling 

driver’s automated skills and predict driver’s behavior, 

based on Salvocci’s simulation environment to acquire 

training data for the MLP. 

A. Advantages Of Using ANNs 

ANN’s advantage becomes obvious when one takes a 

look at how automaticity develops. According to [14] 

there are three stages in the acquisition of skills: cognitive 

stage, associative stage and automatic stage. The cognitive 

stage is seen as tightly linked to verbal descriptions. For 

instance, driving instructors usually provide some rules 

when explaining to a learner when to change gears. The 

second stage (associative stage) is characterized by 

reduction of verbal mediation.  

The final stage is when automatic and verbalization is 

no longer needed or possible. It must be pointed out that 

the automaticity is not assumed to result exclusively from 

a process of skill acquisition. 

Linguistic variables are vastly used in initial cognitive 

stage but unless a driver has reached the final stage, he/she 

is not allowed to drive without assistance of a supervisor. 

Therefore computation with words does not seem 

plausible when modeling behavior of a skilled driver. On 

the other hand, automated behavior is assumed to form a 

particular circuitry in human brain and ANNs are a simple 

computational tool to mimic the behavior of that brain 

circuit. 

There is also another reason for the proposed ANN to 

work as stated below. Michon [24] identified three classes 

of task processes for driving: operational processes that 

involve manipulating control inputs for stable driving, 

tactical processes that govern safe interactions with the 

environment and other vehicles, and strategic processes 

for higher level reasoning and planning. These operational 

processes or as we call it, automated skills, can be viewed 

as direct mapping from environment stimuli to control 

outputs. Generally speaking, if proper data is available, 

ANNs are superior over fuzzy logic computations in 

approximating unknown mappings, indisputably.  
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B. Realizing An ANN To Reproduce Human 

Steering Behavior 

In order to model automated driving skills, Salvucci 

and Gray in ref [22] suggested that human drivers use 

information of two salient points to guide their steering, 

namely near point and far point. 

In this paper we have used the time between control 

updates t  and also longitudinal speed of the vehicle 
x

v

when facing a turn in the road, as the additional 

information in which our model to be able to performs 

accurate driver behavior prediction. 

 

Fig. 3. Near point and far point when facing a turn in the road 

It must be pointed out that the curvature information of 

the turn is not explicitly included in the training data of 

ANN, since this information can be calculated using

, ,far xt v  .  

Furthermore, drivers usually do not know in advance 

about the exact properties of road curves fig.4. illustrates 

the inputs, structure and output of the proposed ANN.In 

fig.4   is the change in steering angle to compensate for 

the curve of the road. 

C. Putting It All Together 

Now that all the components of the system are 

described, it is the time to put them together to model the 

driver’s steering behavior.  

First, we describe the procedural memory of ACT-R 

cognitive architecture. Next, a brief description of the data 

acquisition system in a simulated environment is 

presented which are later have been used to train the ANN 

described in the previous section. The model can then 

drive in the same driving simulator. 

 

near

near

far

t

xv



 

Fig. 4. Structure, inputs and output of the proposed MLP 

D. Procedural Memory To Pass A Curve In The 

Road 

As discussed earlier, procedural memory of ACT-R is 

composed of condition-action pairs where conditions are 

patterns in different buffers and actions are change 

requests to those or other buffers. Fig. 5 depicts the 

flowchart of rules controlling behavior of the model. 

Table 1 is the procedural memory of the driver model 

and explains how different buffers of Fig. 1 are utilized to 

achieve the goal directed behavior. Another module, 

called Eval module, is implemented in ACT-R 6.0 to 

allow for execution of the user defined functions.  

This module is used to calculate the steering angle 

change  via the proposed ANN. The last rule of table1 

fires when no memory of past could be retrieved. This will 

happen in two situations, when the model is run for the 

first time or when the model does not try hard enough to 

remember its past for example a higher retrieval threshold 

is used. 

4. ESTIMATION OF ACT-R PARAMETERS 

Tuning various parameters of cognitive architectures 

for fitting to the collected data is usually discouraged and 

good cognitive models should have as few free parameters 

as possible [18]. In order to comply with this general rule 

of cognitive modeling, almost all parameters of our model 

are the default ones that there is a consensus in their 

values in the ACT-R community. The only parameter that 

we have changed to reflect the abilities of a skilled driver 

is the Imaginal delay parameter which due to low 

information volume that is placed in the imaginal buffer, 

we lowered this value to 35ms. In addition, as described 

before, ACT-R is not integrated with a default mechanism 

of hand movement for steering control, thus we assumed it 

takes 100ms for hands to modify the steering angle of 
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vehicle. These parameters were fixed before we gathered 

our data. 

5. SIMULATION ENVIRONMENT AND DATA GATHERING 

Salvucci has made available the source code of his 

driver model. We have extended his simulation 

environment to be able to acquire training data for our 

ANN. The drivers could see the environment via monitor 

screen and they could control the steering wheel of the 

vehicle using a cell phone device. An application was 

developed to send the pitch angle of the phone every 

20ms. The rules of table 1 were executing in training 

phase to record the near and far points and also the time 

intervals. The angle of steering wheel was sent through the 

phone. Four graduate students between ages 23 to 32 have 

been asked to drive in this environment.  

The participants were first trained in five 1 minute 

sessions to get accustomed to the driving simulator. Then 

they drove the vehicle for five minutes in the simulator at 

40, 60, 80, 100 and 120 km per hour speeds (one minute 

for each speed) and their steering profile were recorded. 

This data was later used to train the MLP shown in fig.4. 

 

Find Near

Code Near and Find 
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Update Control and 
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Situation
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Fig. 5. driver steering model flowchart 

 

 

 

TABLE 1. SAMPLES OF TIMES ROMAN TYPE SIZES AND 

STYLES USED FOR FORMATTING A PES TECHNICAL WORK 

 
Condition Action 

Goal is start 

Visual buffers are empty 

Imaginal is empty 

Set goal to code-near 

Request location of near point from 

where buffer 

Goal is start 

Visual buffers are empty 

Imaginal has a world-

representation 

Set goal to code-near 

Request location of near point from 

where buffer 

Add imaginal contents to 

declarative memory 

Goal is code-near 

Where buffer has near point 

What buffer is empty 

Set goal to control 

Create a world-representation 

chunk in imaginal buffer containing 

near
  

Request location of far point from 

where buffer 

Search declarative module for a 

world-representation 

Goal is control 

Where buffer has far point 

Imaginal buffer has 
near

 in a 

world-representation chunk 

A world-representation chunk 

exists in retrieval buffer 

Set goal to remember 

Update world-representation chunk 

in imaginal buffer to contain 
far

  

and current time information 

Request the nature of far point from 

what buffer 

Invoke the ANN to calculate 

steering angle change   

initiate a motor command via 

manual buffer to change the angle 

of steering wheel by   

Goal is remember 

Imaginal buffer has a world-

representation 

What buffer has a chunk 

representing the far point 

Set goal to start 

Add the chunk in imaginal buffer to 

declarative memory 

Goal is control 

Where buffer has far point 

Imaginal buffer has 
near

 in a 

world-representation chunk 

No memory of the past could 

be retrieved 

Set goal to start 

Add the information of current  

situation to declarative memory 

 

6. COMPARING HUMAN AND MODEL BEHAVIOR 

To validate the developed computational model, the 

comparison between the driver model’s behavior and 

human driver’s behavior is required, and since our 

proposed modelproduces variability in driversbehavior, 

like human drivers, in this experiment we averaged the 

performance of human drivers and simulated driver model 

in 5 trials to achieve more stable results. Human data were 

from four drivers. The driver model was interacted with 

the same simulation environment developed in [2] as 

human drivers used.  
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Fig. 6 indicates the steering angle used by our models 

and the drivers while driving at a constant speed of 

average 90 km per hour.  

As shown in these figures our model is quite capable 

of modeling different driving habits of our participants.  

 

Fig. 6. comparisons between model and drivers at 90 km/h driving 

In order to demonstrate the uniformity of prediction’s 

criterions, the results in Fig.7, illustrates the RMSE and 

R2 of error for various speeds. As shown in this figure, 

our simulated model has a very good ability in producing 

human-like behavior and the quality of its predictions does 

not degrade in various speeds and the model nicely 

account for the human drivers’ behavior. 

The results from experiment and simulation indicate 

that our proposed computational model can perform the 

process of driver control well and the model’s control 

process is consistent with that of drivers. 

7. CONCLUSION 

Knowing the fact that Cognitive Architectures (CAs) 

are the core of artificial cognitive systems supposedly to 

specify the human brain at an abstraction level good 

enough to have a better clue on how to understand theory 

of mind functioning.  The ACT-R cognitive architecture 

explains the interesting aspects and provides a theory of 

human attention while driving. At the same time, human 

attention during driving is a challenging task for the ACT-

R cognitive architecture. This work, besides taking 

advantage of ACT-R cognitive architecture have used 

MLPs to successfully generate human-like steering 

behavior. We suggested that using MLPs merely to model 

automated human skills and utilization of other symbolic 

ACT-R cognitive architectures for modeling higher level 

cognitive aspects of human behavior. According to the 

results, the proposed simulated model has a very good 

ability in producing human-like behavior and the quality 

of its predictions does not degrade in various speeds 

Our future research aims at further improving the 

driver computational model by using a more rigorous 

approach for modeling motor control while driving. This 

work can also be extended to model other aspects of 

driving such as lane keeping. The proposed Neuro-ACT 

cognitive architecture can also be utilized in modeling 

various human behaviors 

 

Fig. 7. Goodness of fit criterion 
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