
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 56(2) (2024) 185-198
DOI: 10.22060/miscj.2025.23344.5368

A Simplified Event-based Impulsive Control Approach for Stable, Efficient, and
Robust Locomotion Using Deep Reinforcement Learning
Bahareh Sadat Mortazavi, Rezvan Nasiri* , Majid Nili Ahmadabadi

Department of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran.

ABSTRACT: Biological evidence indicates that the actuation system in humans and legged animals
is characterized by impulsiveness rather than continuity; i.e., control actions are concentrated within a
specific phase of the motion cycle (the stance phase), while the rest of the cycle is passive. Based on this
observation, we propose a simple event-based impulsive controller to generate walking cycles for legged
robots. To improve optimization speed, we parametrize the controller-applied forces as a Gaussian
function of time and employ a deep reinforcement learning method to optimize the controller parameters.
To further enhance learning speed, an autoencoder is utilized to address the high dimensionality in
the state space. Additionally, we employ a three-phase reward-shaping approach to further improve
learning speed and achieve better results. In phase one, the reward function focuses on stability and
forward motion to learn stable locomotion. In phase two, the reward function is modified to achieve
stable locomotion with lower control effort and desired forward velocity. In phase three, the reward
function remains the same as in phase two but places more emphasis on forward velocity regulation. The
proposed controller, state encoder, and learning process can be implemented on a group of legged robots
with actuation at the leg contact point with the ground. In this paper, the proposed approach is tested on
a simulated single-legged robot. In addition, the controller robustness is analyzed considering different
types of external disturbances. The simulation results indicate the efficacy of the proposed method as a
bio-inspired control approach for legged locomotion.

Review History:

Received: Jul. 14, 2025
Revised: Nov. 25, 2024
Accepted: Nov. 26, 2024
Available Online: Dec. 24, 2024

Keywords:

Deep Reinforcement Learning

Event-based Control

 Impulsive Control

Legged Robot

185

1- Introduction
For the past several years, researchers have been studying

diverse control strategies for legged robots, aiming to
unlock their full potential in terms of adaptability, stability,
robustness, efficiency, and forward velocity. Given the
intrinsic nonlinear, hybrid, discontinuous, and uncertain
nature of legged locomotion, formulating an effective control
strategy that embodies simplicity, efficiency, stability, and
robustness is a significant challenge [1]. Consequently,
devising a comprehensive controller design methodology for
legged robots remains intricate and demanding. To achieve this
goal, researchers have explored various avenues, including
analytical approaches [2], energy-efficient controller design
[3], impedance control [4], natural dynamic exploitation [5],
and trajectory adaptation [6].

Nature has served as a wellspring of inspiration for
numerous research endeavors in this field. Accordingly,
many attempts have been made to design controllers based
on biological evidence; one notable method is using central
pattern generators (CPGs) as controllers [7-9]. For instance,
[10] proposes a controller based on the encoded activation

patterns observed in the spinal cords of salamanders. Another
avenue of exploration involves impedance controllers [4].
These controllers are designed based on findings suggesting
that humans modulate the impedance of their ankle joints to
attain stability and efficiency during walking tasks [11-13].
Furthermore, an impressive instance is the work by [14],
wherein an event-based muscle-level controller is presented.

It has been investigated that the human actuation system
is impulsive [15] and event-based [16]. [15] showed that
large cursorial animals, such as horses, rely on a catapult
mechanism for rapid acceleration and preparing for the next
stance phase. In addition, [17], [18] showed that the H-reflex
activates muscles with a 200ms time delay in response to
external disturbances. Moreover, other research has shown
that after the push-off moment, the rest of the walking cycle
(between toe-off and heel-strike) is passive [19], [20]; i.e.,
lower limb dynamics during the swing are governed by
natural dynamics. In conclusion, the control strategy for
legged animals is impulsive, event-based, and built upon the
natural dynamics of the system.

Inspired by these biological facts, in [21], we presented
a concurrent analytical design of a controller and passive
elements (i.e., spring and damper) for impulsive actuation

*Corresponding author’s email: rezvan.nasiri@ut.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/miscj.2025.23344.5368
https://orcid.org/0000-0002-7772-5371

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

186

systems to generate rhythmic walking patterns. However, the
proposed controller suffered from a lack of state feedback,
non-smooth actuation patterns, and non-optimal timing of
actuation impulses. In this paper, we address these issues by
optimizing the timing of actuation, smoothing the actuation
impulses, reducing the number of actuations to one per
motion period, and incorporating state feedback to improve
the controller’s robustness to external disturbances. This
approach results in a simple, impulsive, and event-based
controller. Due to the complex and hybrid nature of walking,
such controllers cannot be designed analytically; hence, a
deep reinforcement learning (DRL) approach is utilized to
resolve this complex and nonlinear mapping.

1- 1- Related work
Due to the complexity, non-linearity, and hybrid nature of

legged locomotion, control strategies for legged robots should
be nonlinear and phase-dependent; i.e., they should be event-
based or discontinuous. Accordingly, many attempts have
been made to enhance legged robots’ performance through
event-based controllers. For instance, event-based controllers
for bipedal robots [22], predictive and robust controllers [23],
[24], and controllers based on finite state machines (FSM)
[25] have been explored. Besides event-based controllers,
impulsive control strategies have also shown potential
in generating bio-inspired and energy-efficient legged
locomotion [21], [26], [27]. However, such controllers are
mostly designed based on the dynamical model of the system
and are not adaptive.

Some approaches benefit from both concepts (impulsive
and event-based commands) to present a nonlinear closed-
loop controller [28]. [28] proposes two types of event-
triggering algorithms to generate impulsive control
commands. The first algorithm is based on continuous event
detection, while the second updates the impulsive inputs
according to cyclic events. However, both algorithms are
developed for continuous dynamical systems, which are
not suitable for hybrid and discontinuous dynamics such
as legged locomotion. In addition, this method requires the
dynamical equations of the system which is mostly unknown
in legged locomotion tasks.

Due to the ability of deep neural networks (DNN) to
encode nonlinear complex relations between robot states
and controller commands and its adaptation capability, this
toolbox has recently been utilized in many studies involving
reinforcement learning on legged locomotion [29-31]. For
instance, [29] utilizes deep reinforcement learning (DRL)
to generate natural walking from scratch. The problem of
close-to-natural human walking is divided into three stages
of learning: standing, stepping, and then gradually improving
the gait. This strategy accelerates the learning process and
helps the bipedal model generate close-to-natural human
walking patterns. Another example is [30], which presents
a two-level continuous control strategy using DRL for a
3D bipedal robot; while the low-level controller moves the
joints over the desired trajectories, the high-level controller
generates the optimal trajectories for the low-level controller.

A similar two-level continuous control strategy is also
presented in [31], where the problem of pursuing a specific
goal in the environment is divided into two levels of training:
(1) learning basic movements such as walking and (2) learning
how to combine basic movements to achieve the final goal.
However, these proposed controllers are not event-based.

As mentioned earlier, in legged locomotion, a proper
control strategy should be energy-efficient, robust, and
adaptive to effectively enhance the locomotion task. Hence,
the controller should consume less energy, provide a high
level of uncertainty robustness, and grant adaptability.
Accordingly, many attempts have been made to enhance
legged robots’ performance by improving the control strategy
[40].

From our design perspective, controllers for legged robots
can be divided into four main categories: discontinuous
(event-based or impulsive) and continuous controllers,
each with rule-based (classic) and RL-based (data-driven)
design approaches. Each category has its own advantages
and disadvantages [41]. For instance, rule-based designs,
which often rely on detailed environment models and robot
dynamics, can deliver reliable tracking performance [42].
However, they are not robust in the face of uncertainties in
robot.

dynamics and environment models [43]. Additionally,
continuous controllers are generally associated with high
energy consumption [44].

On the other hand, discontinuous controllers use energy
in short intervals, reducing overall energy consumption at the
cost of increased tracking error [21]. RL-based designs offer
a model-free alternative, allowing adaptable performance
without prior knowledge of the environment model or
robot dynamics, reducing reliance on accurate system
identification, and increasing controller robustness. However,
they often require considerable learning time, especially to
learn continuous actuation patterns. Combining an RL-based
controller design with a discontinuous actuation pattern can
minimize the search space and improve training time.

Table. 1 summarizes the advantages and disadvantages
of each control category. Based on this table, the only
drawback of discontinuous controllers designed with an RL-
based approach is low tracking performance. Nevertheless,
it is worth mentioning that in legged locomotion, tracking
performance is not the main objective, neither in biology [45]
nor in robotics [46].

To achieve energy efficiency and high control robustness,
we propose a controller and optimization strategy using
the DRL toolbox, which includes: (1) a simple event-based
impulsive controller (SEBIC) architecture, (2) a state encoder
using an autoencoder, and (3) a three-phase learning process
that improves learning speed and results. The proposed
strategy is implemented on a simulated single-legged robot,
with actuators

at the contact point with the ground to modulate the
ground reaction force (GRF) and attain similar GRF patterns
as in legged animals [32-35].

The rest of this paper is organized as follows: The

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

187

next section presents the problem statement and detailed
formalization, including model description, reward
definition, and learning strategy. Section III presents the
simulation results, evaluating the quality of the trained
policy for the single-legged robot in terms of optimality and
stability. Finally, discussions, conclusions, and future work
are provided in the last section.

2- Methods and materials
Our suggested control architecture for a legged robot is

presented in Fig. 1. The main components of our controller
are:
• State Encoder: Reduces the state space dimension and is

trained individually using a batch dataset of the robot.
• Stance Phase Detector: Detects impact events and triggers

the controller to generate impulsive control actions for
push-off.

• Passive Dynamics: Comprising passive compliance
and damper for each joint, these behave as nonlinear
state feedback and are designed according to the method
presented in [21].

• Simple Event-Based Impulsive Controller (SEBIC):
Maps the robot states at the impact moment to the
impulsive actions during the stance phase.
Based on our formulation, the impulsive control action

(2,
T

ag x yF F F = ∈) is a two-dimensional vector in the
sagittal plane applied to the ground at the contact point; i.e., the
actuation system is prismatic. The control action is formulated
as two Gaussian force profiles (i.e., ()()2 x x x xF A exp tσ µ= − −
and ()()2

 y y y yF A exp tσ µ= − −), with their parameters (
6, , , , ,

T

x y x y x yA Aθ σ σ µ µ = ò) determined by the DRL
algorithm according to the robot states (tQ) at the impact
moments (0t t +=). The robot states at the impact moment
form a vector of the robot’s positions (2,

T

hip kneeq θ θ = ∈
) and velocities (4, , ,

T

hip knee x yv v vω ω = ∈), as shown

in Fig. 2. Therefore, the problem is to learn a controller (i.e.,
a policy; θπ) that maps the observed states ([] 6, T

tQ q v= ∈
) of the leg at impact moments to the actuation impulses (

agF). Due to the high dimensionality of the state space, we
employed a state encoder to reduce the state space dimension,
hence the reduced state space (tS) is actually mapped to the
action space (tA) as () () a t tF t A Sθπ= = . The robot model,
state encoder, reward function, and training process are
explained in the following subsections.

2- 1- State encoder
We use a nonlinear encoder to reduce state dimensions

and accelerate the learning process. Accordingly, a 4-layer
autoencoder is utilized to reduce the observation dimension
from 6 ()6 tO ∈ to 3 encoded dimensions (3 tS ∈) and then
reconstruct the input in the output using the encoded states;
see Fig. 2. The activation functions of the network layers are
ReLU, Linear, ReLU, and Sigmoid, respectively. To train the
autoencoder network, we generate a set of feasible impact
states and use 70% for training and the remaining 30% for
evaluation, achieving 97% evaluation accuracy.

2- 2- Deep reinforcement learning model
Consider Fig. 3, which illustrates our suggested SEBIC

logic and training strategy. The SEBIC controller captures
the robot states (positions and velocities) at the impact
moments and predicts the stabilizer force profiles to stabilize
the system in the next step (active mode). Besides the active
mode, the rest of the cycle (passive mode) is governed by
passive elements. During the active mode, the controller
determines the shape and timing of the force impulses based
on the observed states at the impact event (tO). The reward

function (tR) is computed at the end of each step, and
consequently, the policy ()θπ and actions (tA) are updated
once per cycle. To train our SEBIC controller, an actor-critic

Table 1. The overall comparison between four different control categories.
Table. 1 The overall comparison between four different control categories.

Controller design approach Rule-based (classic) RL based (data-driven)

Controller type Continuous Discontinuous Continuous Discontinuous

Require system model Yes Yes No No

Energy consumption High Low High Low

Learning/training time ---- ---- High Low

Tracking error Low High Low High

Robustness Low Low High High

Adaptability Yes No Yes Yes

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

188

Fig. 1 The suggested control architecture for a single-legged robot employs a simple event-based

impulsive controller (SEBIC). In this block diagram, a stance detector triggers the main controller

(SEBIC) to apply control commands during the stance phase based on the robot's state at the impact

moment, while passive dynamic feedback governs the system's natural dynamics; i.e., position (𝑞𝑞) and

velocity (𝑣𝑣). SEBIC determines the actuation at the impact point (𝐹𝐹𝑎𝑎𝑎𝑎) to modulate the total ground

reaction force (𝐹𝐹𝑎𝑎𝑔𝑔𝑔𝑔). The total GRF (𝐹𝐹𝑎𝑎𝑔𝑔𝑔𝑔) is the sum of the force applied by the simulated ground model

(𝐹𝐹𝑝𝑝𝑎𝑎) and the actuators' force applied by SEBIC (𝐹𝐹𝑎𝑎𝑎𝑎). Moreover, 𝑬𝑬 and 𝑩𝑩 are the Jacobian matrices that

map the 𝐹𝐹𝑎𝑎𝑎𝑎 and 𝐹𝐹𝑝𝑝𝑎𝑎 to the joint space, where 𝑢𝑢 = 𝑩𝑩𝐹𝐹𝑎𝑎𝑎𝑎 + 𝑬𝑬𝐹𝐹𝑝𝑝𝑎𝑎. In general, 𝑬𝑬 and 𝑩𝑩 can be different,

in our simulations, they are equivalent. Also, 𝐹𝐹𝑐𝑐(𝑞𝑞) and 𝐹𝐹𝑏𝑏(𝑣𝑣) are passive nonlinear spring and damper

forces designed based on [21], which form a nonlinear state feedback stabilizing the internal stability.

Fig. 1. The suggested control architecture for a single-legged robot employs a simple event-based impulsive
controller (SEBIC). In this block diagram, a stance detector triggers the main controller (SEBIC) to apply
control commands during the stance phase based on the robot’s state at the impact moment, while passive
dynamic feedback governs the system’s natural dynamics; i.e., position (q) and velocity (v). SEBIC deter-
mines the actuation at the impact point (Fag) to modulate the total ground reaction force (Fgrf). The total GRF
(Fgrf) is the sum of the force applied by the simulated ground model (Fpg) and the actuators’ force applied by
SEBIC (Fag). Moreover, E and B are the Jacobian matrices that map the Fag and Fpg to the joint space, where
u=BFag+EFpg. In general, E and B can be different, in our simulations, they are equivalent. Also, Fc (q) and
Fb (v) are passive nonlinear spring and damper forces designed based on [21], which form a nonlinear state

feedback stabilizing the internal stability.

Fig. 2 The SEBIC architecture including the state encoder and machine learning model. The state encoder

maps the robot's state at the impact moment (𝑂𝑂𝑡𝑡 𝜖𝜖 ℝ6) to a lower dimension (𝑆𝑆𝑡𝑡 𝜖𝜖 ℝ3) to facilitate the

learning process. The machine learning model maps the reduced state space (𝑆𝑆𝑡𝑡) to the parameters of

control actions. The parameters of control action are widths (𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦), amplitudes (𝐴𝐴𝑥𝑥 and 𝐴𝐴𝑦𝑦), and

center of Gaussian profiles (𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦) of forces in vertical (𝑦𝑦) and horizontal (𝑥𝑥) directions.

Fig. 2. The SEBIC architecture including the state encoder and machine learning model. The state encoder
maps the robot’s state at the impact moment (Ot ϵ R6) to a lower dimension (St ϵ R3) to facilitate the learning
process. The machine learning model maps the reduced state space (St) to the parameters of control actions.
The parameters of control action are widths (σx and σy), amplitudes (Ax and Ay), and center of Gaussian pro-

files (μx and μy) of forces in vertical (y) and horizontal (x) directions.

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

189

policy is developed in Python and connected to MATLAB
via TCP/IP protocol. During learning, an off-policy algorithm
called Twin Delayed Deep Deterministic Policy Gradient
(TD3) [36] is used to update the actor-critic network.

The designed network consists of a 3-layer, 256-neuron
policy network and two 3-layer, 256-neuron value networks
with ReLU and tanh activation functions. The optimal total
number of deep network parameters, determined through
grid search, is approximately 136,500; any deviation from
this value, either increasing or decreasing the parameter
count, led to a reduction in the evaluation reward, ensuring
that the model does not overfit. The network design is based
on our experimental findings to ensure sufficient network
representation capability and learning efficiency. To initiate
the state and action in each training episode, we use the
agent’s previous experiences stored in the replay buffer for
off-policy training. Additionally, since each decision-making
unit in our problem is a stride (not a specific time step), we
define each stable episode length as a specific number of
strides.

2- 3- Reward function
To achieve stable, efficient, and robust locomotion

performance, the reward function (tR) is designed as a
weighted summation of stability reward (sR), forward
motion reward (fR), control effort-reward (eR), and forward
velocity reward (vR); i.e., t s s f f e e v vR w R w R w R w R= + + +
, where 0iw > is the reward weight. The stability reward
is defined as ()

 2 / 1 s vT
R f dt= +∫ , where vf is the vertical

force applied by a virtual surface (0vf >) to the hip joint
to prevent it from falling below a certain height. When this
reward is maximum (2max

sR =), the system is stable. The
forward motion reward is equal to the sign of stride length;
i.e., if stride length is positive (negative), the reward is plus
(minus) one (1 fR =±). The control effort penalty function
is: () 2 / 1e tR E= + , where tE is the integral of the absolute
value of impulsive actuation divided by the traveled distance
at each step. tE is similar to the cost of transportation (COT)
and the maximum of control effort-reward is 2max

eR = . The
forward velocity reward is defined as follows.

𝑅𝑅𝑣𝑣 = {
−(𝑣𝑣𝑥𝑥 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟)2, 𝑥𝑥𝑡𝑡𝑡𝑡𝑟𝑟 ≤ 1

exp (−(𝑣𝑣𝑥𝑥 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟)2), 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (1)

 (1)

This function heavily penalizes forward velocity at the
initial steps toward the desired velocity (refv) for traveled
distances less than 1 unit. Once the traveled distance exceeds
1 unit, it considers forward velocity as a reward. This reward
is the maximum (1 max

vR =) for velocities equal to the desired
one. The forward velocity reward function is inspired by the
technique described in [29] to improve training performance.

2- 4- Training strategy
To improve training speed and performance, we employ

a reward shaping approach [29] similar to the Method

Fig. 3 Agent-environment interaction in DRL. Each locomotion stride is divided into two main modes:

active (SEBIC is on) and passive (SEBIC is off). In each touch-down moment (i.e., stance phase), the

active mode triggers and the encoded state data (𝑆𝑆𝑡𝑡) along with a calculated reward (𝑅𝑅𝑡𝑡) between

previous (𝑡𝑡) and current (𝑡𝑡 + 1) touch-down moments are sent to the learning machine policy. The policy

updates and sends the actions (𝐴𝐴𝑡𝑡) to the environment. This action specifies the push-off force parameters

(𝜃𝜃 = [𝐴𝐴𝑥𝑥, 𝐴𝐴𝑦𝑦, 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦]𝑇𝑇) during the stance phase of a stride. As the robot disconnects from the

ground (i.e., flight phase), push-off force vanishes, and the robot enters the passive mode or swing phase

in which receives no activation; i.e., 𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑦𝑦 = 0.

Fig. 3. Agent-environment interaction in DRL. Each locomotion stride is divided into two main modes: active
(SEBIC is on) and passive (SEBIC is off). In each touch-down moment (i.e., stance phase), the active mode
triggers and the encoded state data (St) along with a calculated reward (Rt) between previous (t) and current
(t+1) touch-down moments are sent to the learning machine policy. The policy updates and sends the actions
(At) to the environment. This action specifies the push-off force parameters (θ= [Ax,Ay,σx,σy,μx,μy]

T) during
the stance phase of a stride. As the robot disconnects from the ground (i.e., flight phase), push-off force van-

ishes, and the robot enters the passive mode or swing phase in which receives no activation; i.e., Fx=Fy=0.

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

190

suggested in [37]. As discussed in [37], the problem of reward
shaping is an MDP if the changes in the reward function are
sufficiently slower than the training speed. To achieve this,
we decompose our locomotion learning problem into three
phases, where the reward function changes only in these
phases, and the trained policy at each phase is used as the
initial policy for the next one. The reward function at each
phase is reshaped based on the training goals of that phase
(see Fig. 4). The first phase aims to generate a stable-walking-
capable agent that walks forward stably. Accordingly,
stability and forward locomotion are prioritized, while energy
efficiency and forward velocity are not considered during
this phase; 1, 1, 0, 0s f v ew w w w= = = = . The second
phase focuses on speed tuning and minimizing control effort
while maintaining stability. Since the forward locomotion
reward is redundant with the forward velocity reward in
this phase, it is omitted; 1, 0, 1, 1s f v ew w w w= = = = .
Similarly, the third phase places more emphasis on forward
velocity regulation compared to the second phase. Hence, in
the third phase, the gains are the same as in the second phase
but with a higher emphasis on the forward velocity reward
gain; 1, 0, 4, 1s f v ew w w w= = = = . The learning process is
formulated in Algorithm. 1, and the reward weights for each
phase are summarized in Table. 2.

2- 5- Model description
The designed control architecture is implemented for

a planar single-leg robot model with 2 revolute joints (see
Fig. 2). The model consists of a point mass representing
the coupling dynamics of the leg with the whole body, hip
and knee joints, and a point foot; i.e., (, , ,

T

hip knee x yθ θ
), indicating that the model has 4 independent coordinates
and consequently 4 degrees of freedom. Joints have parallel
springs and dampers designed according to [21] to govern
system dynamics until the next actuation interval. To model
foot-ground contact, we have utilized the soft impact
model presented in [14]. Accordingly, for each leg, the
state observation (tO) has 8 dimensions, including all joint
positions and velocities, and point-foot velocity and position

Fig. 4 Learning algorithm flowchart of the proposed training method. The training is summarized in

three main steps: Phase 1: learn to move stably (𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑓𝑓), Phase 2: learn to achieve higher forward

velocity along with energy efficiency (𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑣𝑣 + 𝑅𝑅𝑒𝑒), and Phase 3: improve forward velocity while

maintaining energy efficiency (𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 4𝑅𝑅𝑣𝑣 + 𝑅𝑅𝑒𝑒). Each phase is initialized with the optimally trained

policy from the previous phase and concludes based on the gradient criterion. The first phase is starts with

a randomly generated policy.

Phase 1
optimal Policy

Phase 1

Rt = Rs + Rf

Phase 2

Phase 3

Rt = Rs + 4Rv + 𝑅𝑅𝑒𝑒

Yes

No No

Yes
 ∇𝑅𝑅𝑡𝑡 2 < 𝜀𝜀

Phase 2
Optimal Policy

 ∇𝑅𝑅𝑡𝑡 2 < 𝜀𝜀
Rt = Rs + Rv + 𝑅𝑅𝑒𝑒

Fig. 4. Learning algorithm flowchart of the proposed training method. The training is summarized in three
main steps: Phase 1: learn to move stably (Rt=Rs+Rf), Phase 2: learn to achieve higher forward velocity along
with energy efficiency (Rt=Rs+Rv+Re), and Phase 3: improve forward velocity while maintaining energy ef-
ficiency (Rt=Rs+4Rv+Re). Each phase is initialized with the optimally trained policy from the previous phase

and concludes based on the gradient criterion. The first phase is starts with a randomly generated policy.

Algorithm. 1: Training Table. 2 The reward weight values in different phases
Initialize: Initial observation O0; stable episode

stride num d; initial policy network weights π;
for 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈ {1, 2, 3} do
 Initialize: Value networks weights V;
 Get 𝑆𝑆0 encoding 𝑂𝑂0 using state encoder;
 set 𝜔𝜔𝑖𝑖 according to Section 2-5;
 while True do:
 𝐴𝐴𝑡𝑡 = 𝜋𝜋(𝑆𝑆𝑡𝑡);
 Wait until the next touchdown;
 Get 𝑂𝑂𝑡𝑡+1, 𝑅𝑅𝑡𝑡+1(𝜔𝜔𝑖𝑖);
 Get 𝑂𝑂𝑡𝑡+1 encoding 𝑆𝑆𝑡𝑡+1;
 Get 𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛, 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 by optimizing π, V using TD3;
 t=t+1; 𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡+1;
 if d ≤ t or instability occurrence then
 Select 𝑆𝑆0 from prev. experiences;
 Get 𝑂𝑂0 encoding 𝑆𝑆0 using state decoder;
 t=0;
 end
 if converge then
 break;
 end
 end

end

 𝜔𝜔𝑠𝑠 𝜔𝜔𝑓𝑓 𝜔𝜔𝑣𝑣 𝜔𝜔𝑛𝑛

Phase 1 1 1 0 0
Phase 2 1 0 1 1
Phase 3 1 0 4 1

Table 2. The reward weight values in different phasesAlgorithm. 1: Training Table. 2 The reward weight values in different phases
Initialize: Initial observation O0; stable episode

stride num d; initial policy network weights π;
for 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈ {1, 2, 3} do
 Initialize: Value networks weights V;
 Get 𝑆𝑆0 encoding 𝑂𝑂0 using state encoder;
 set 𝜔𝜔𝑖𝑖 according to Section 2-5;
 while True do:
 𝐴𝐴𝑡𝑡 = 𝜋𝜋(𝑆𝑆𝑡𝑡);
 Wait until the next touchdown;
 Get 𝑂𝑂𝑡𝑡+1, 𝑅𝑅𝑡𝑡+1(𝜔𝜔𝑖𝑖);
 Get 𝑂𝑂𝑡𝑡+1 encoding 𝑆𝑆𝑡𝑡+1;
 Get 𝜋𝜋𝑛𝑛𝑛𝑛𝑛𝑛, 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 by optimizing π, V using TD3;
 t=t+1; 𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡+1;
 if d ≤ t or instability occurrence then
 Select 𝑆𝑆0 from prev. experiences;
 Get 𝑂𝑂0 encoding 𝑆𝑆0 using state decoder;
 t=0;
 end
 if converge then
 break;
 end
 end

end

 𝜔𝜔𝑠𝑠 𝜔𝜔𝑓𝑓 𝜔𝜔𝑣𝑣 𝜔𝜔𝑛𝑛

Phase 1 1 1 0 0
Phase 2 1 0 1 1
Phase 3 1 0 4 1

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

191

in the x and y directions at the impact moment. However, we
ignore the point-foot positions (x, y) and remove them from
the state observations for the following reasons:

Since the state features are observed at every touch-down
moment, the point-foot y position is always level with the
ground (0y =). Thus, including the y position is pointless.

As the robot moves forward on a fixed-condition ground,
the x position of the pointed foot continually increases.
Therefore, the x position is not a suitable parameter for
discriminating between different observations.

Therefore, the state has 6 dimensions; i.e.,
6, , , , ,

T

t hip knee hip knee x yO v vθ θ ω ω = ∈ . We assume that
all of these states are measurable with commercial sensors.

For instance, , , , hip knee hip kneeθ θ ω ω can be measured using an
encoder and , x yv v can be measured using IMU sensors.

3- Simulation results
In this section, we investigate the performance of

the proposed learning method on a single-legged planar
robot in simulation (see Fig. 2). We conducted two sets
of simulations. The first set involved training the model,
with the results presented in Fig. 6. The second set
demonstrates the performance of the best policy, shown
in Fig. 7. Finally, we applied external disturbances to the
optimal policy. Since these disturbances were not part of
the learning process, we effectively evaluate the robustness
of the policy (see Table. 3).

3- 1- Training results
The agent rewards (i.e., total, forward velocity, and control

effort) during the training process are presented in Fig. 6.
Each subplot consists of three main phases, as explained in
Section II-B, with different reward weights.

 Fig. 6a illustrates the overall reward. It is clear that the
overall reward settles before the start of new phases, indicating
that learning in each phase converges to a local optimum. Fig.
6b shows the contribution of the forward velocity reward (vR
) defined in Eq. 1 with 1.5 /refv m s= to the overall reward (

tR). The first phase does not include any reward term related
to velocity (0vw =); consequently, the contribution of the
forward velocity reward in phase one is zero. However,
the second and third phases include the forward velocity
reward with different coefficients (1vw =) in phase two
and (4vw =) in phase three, as explained in Section II-B,
resulting in a significantly higher forward velocity reward in
the third phase compared to the second phase. Based on the
results in this figure and the reward function weights, it can
be inferred that increasing the speed reward coefficient in the
third phase tunes the velocity more precisely. Additionally,
the learning speed has increased significantly compared to
the first two phases.

Fig. 6c represents the contribution of the control effort-
reward (eR) to the overall reward (tR). In the first phase,
due to the zero control effort-reward weight (0ew =), the
contribution of control effort is zero. In the second and

Fig. 5 The dynamical model of a representative leg of a single-legged robot is detailed in Appendix A. The

measured states of the representative leg at the impact moment are 𝑂𝑂𝑡𝑡 = [𝜃𝜃ℎ𝑖𝑖𝑖𝑖, 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝜔𝜔ℎ𝑖𝑖𝑖𝑖, 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦]𝑇𝑇.
The simulated model parameters are 𝑚𝑚1 = 5𝑘𝑘𝑘𝑘, 𝑚𝑚2 = 2𝑘𝑘𝑘𝑘, 𝑙𝑙1 = 52𝑐𝑐𝑚𝑚, 𝑙𝑙2 = 40𝑐𝑐𝑚𝑚, and 𝑘𝑘 = 9.81𝑚𝑚/𝑠𝑠2.
The passive dynamical parameters (compliance and damper coefficients) of the hip and knee joints are

Kℎ𝑖𝑖𝑖𝑖 = 100Nm/rad, Kknee = 50N. m/rad, bhip = 2N ms/rad, and 𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 5 𝑁𝑁𝑚𝑚𝑠𝑠/𝑟𝑟𝑟𝑟𝑟𝑟.

Fig. 5. The dynamical model of a representative leg of a single-legged robot is detailed in Appendix A. The
measured states of the representative leg at the impact moment are Ot=[θhip,θknee,ωhip,ωknee,vx,vy]

T. The simu-
lated model parameters are m1=5kg, m2=2kg, l1=52cm, l2=40cm, and g=9.81m/s2. The passive dynamical pa-
rameters (compliance and damper coefficients) of the hip and knee joints are Khip=100Nm/rad, Kknee=50N.m/

rad, bhip=2N ms/rad, and bknee=5 Nms/rad.

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

192

 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝟏𝟏: 𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑓𝑓 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝟐𝟐: 𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑣𝑣 + 𝑅𝑅𝑒𝑒 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝟑𝟑: 𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 4𝑅𝑅𝑣𝑣 + 𝑅𝑅𝑒𝑒

a

b

c

Fig. 2 The rewards during training. Each column consists of three phases as explained in Section II-B. (a)

shows overall reward. (b) illustrates the forward velocity regulation reward (𝑅𝑅𝑣𝑣 in Eq. 1) with desired

velocity of 𝑣𝑣𝑟𝑟𝑒𝑒𝑓𝑓 = 1.5 𝑚𝑚/𝑠𝑠. (c) presents control effort reward (𝑅𝑅𝑒𝑒 in Eq. 1).

Fig. 6. The rewards during training. Each column consists of three phases as explained in Section II-B. (a)
shows overall reward. (b) illustrates the forward velocity regulation reward (Rv in Eq. 1) with desired velocity

of vref=1.5 m/s. (c) presents control effort reward (Re in Eq. 1).

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

193

third phases, the control effort-reward contribution weight
is the same and non-zero, and the control effort-reward
approximately converges to the same level in these two
phases. This indicates that the trained policy in the second
phase already attains its minimum control effort, such that
it cannot be further improved in the third phase, even with
different reward function weights.

3- 2- Optimal policy evaluation results
The robot’s performance after training is presented in Fig.

7, showing the results of the optimal policy. Fig. 7a and Fig.
7b represent hip and knee positions versus their corresponding
velocities in state space, respectively; these plots are hip and
knee limit cycles. Fig. 7c illustrates the vertical foot position
versus the horizontal position, with touch-down and toe-off
moments specified. Fig. 7d, Fig. 7e, and Fig. 7f illustrate
the average profiles of hip, knee, and ground reaction force
(GRF) during one cycle, along with their standard deviations.
These sub-figures are plotted using data from 21 stride cycles
of the trained model, and the GRFs are normalized by body
weight (BW). The ground reaction force is zero during the

flight phase (about 40% of the gait cycle) since the leg is
not in contact with the ground. As seen in Fig. 7, the results
of the trained policy closely resemble locomotion patterns
in biology, such as human walking. For instance, similar
to human walking, the hip and knee limit cycles in our
simulation results (Fig. 7a and Fig. 7b) are self-crossing and
non-self-crossing closed curves, where similar behavior can
also be observed in human gait (see [38]). Additionally, as
shown in Fig. 7e, the ground reaction force in the vertical
direction resembles a summation of two Gaussian curves,
similar to human walking patterns. Our no-sliding analysis

using the friction cone index1 indicates that the trained
walking policy can maintain a no-sliding condition with a
minimum static friction coefficient of 0.8sµ ≥ , ensuring a
high level of robustness for mechanical stability.

1  The friction cone analysis is defined to calculate the minimum
friction coefficient between the foot and ground for no sliding condi-
tion in legged locomotion [39]. It is computed based on vertical and
horizontal ground reaction forces presented in Fig. 6e.

a b
c

d e f

Fig. 3 Evaluation results; the results of the optimal polity. (a-b) present the hip joint and knee joint

trajectories in the optimal policy. (c) shows the tip trajectory w.r.t. hip. (d,e) illustrate hip and knee angle

variations in a gait stride cycle. (f) show GRF of the simulated single leg based on the soft impact model

during walking, which is normalized by body weight (BW). Considering the GRF, it is obvious that all

trajectories are started at the impact moment, followed by the stance phase, and then the robot goes to

the flight phase about 40% of the gait cycle; i.e., about 40% of the resultant gait cycle is stance phase,

and 60% of the resultant gait is the flight phase.

Fig. 7. Evaluation results; the results of the optimal polity. (a-b) present the hip joint and knee joint trajecto-
ries in the optimal policy. (c) shows the tip trajectory w.r.t. hip. (d,e) illustrate hip and knee angle variations
in a gait stride cycle. (f) show GRF of the simulated single leg based on the soft impact model during walking,
which is normalized by body weight (BW). Considering the GRF, it is obvious that all trajectories are started
at the impact moment, followed by the stance phase, and then the robot goes to the flight phase about 40%
of the gait cycle; i.e., about 40% of the resultant gait cycle is stance phase, and 60% of the resultant gait is

the flight phase.

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

194

3- 3- Robustness results
In our study, robustness is defined as the robot’s ability

to maintain stable locomotion in face of unknown external
disturbance. To evaluate this, two types of disturbances were
analyzed:

vanishing and non-vanishing. These disturbances simulate
both transient and sustained external forces in the x direction
at the hip joint, each designed to push the system to the edges
of stability. By evaluating the effect of these disturbances on
reward functions—such as total reward (tR), velocity reward
(vR), and energy efficiency reward (eR)—we can observe
how the control strategy adapts to changes and preserves
stable locomotion. The results, are summarized in Table. 3,
show percentage reductions in each reward category based
on disturbance parameters, revealing sensitivity patterns and
recovery capacities.

Our findings show that while stability is maintained,
the energy efficiency and forward velocity are significantly
impacted by disturbances. In scenarios with vanishing
disturbances—short impulses applied to the system—high-
magnitude forces caused moderate to severe reductions in

tR , vR , and eR Before the system recovered; i.e., at least
50% reduction in total reward. These transient disturbances
highlight the sensitivity of trajectory and velocity tracking to
impulse forces but also indicate the controller’s capacity to
return to stable locomotion within a limited number of steps.
The impulse in this case is a square pulse, where two parameters
can be adjusted: amplitude and width. We considered two
cases. In the first case, the pulse width was fixed at 0.1W =
seconds, and the force amplitude (A) was gradually increased

to approach approximately the body weight of the robot, at
which point instability begins to emerge. In the second case,
the force amplitude was held constant at a moderate level (

60%A = of body weight), while the pulse width ()W was
incrementally increased until the robot reached the edge of
instability with 0.4W = seconds. Notably, as long as these
disturbances vanish, the robot takes approximately 10 steps
for the first case and 7 steps for the second case to return to its
previous gait pattern, demonstrating the controller’s ability
to recover and reestablish stable locomotion after transient
disturbances.

The non-vanishing disturbance tests further validate
the controller’s robustness, as the system maintained stable
operation with degradation in rewards (40% reduction in total
reward) despite a constant force applied over time (see Table.
3). This adaptive response, shown by the consistent stability
reward (sR), suggests that the controller can maintain core
stability while managing sustained disturbances with an
amplitude of 14%A = of body weight. These results affirm
the controller’s robustness, demonstrating that it is well-suited
for deployment in real-world scenarios where maintaining
stability under unknown dynamic and unanticipated
conditions is essential.

4- Discussion and Conclusion
This paper presents a novel, simple-to-implement, and

bio-inspired control strategy to generate gait cycles for legged
robots. The proposed control method utilizes the leg states
(position and velocity) at the contact moment to generate
a corrective impulsive actuation, making the robot stable,

Table 3. Impact of vanishing and non-vanishing disturbances on reward. The table shows the percentage
changes in each reward under the different disturbance conditions, illustrating the system’s sensitivity to each
disturbance type. In this table, the body weight (BW) is about 69N, and the applied forces are reported as a

ratio of the body weight.

Table 3 Impact of vanishing and non-vanishing disturbances on reward. The table shows the percentage

changes in each reward under the different disturbance conditions, illustrating the system’s sensitivity to

each disturbance type. In this table, the body weight (BW) is about 69N, and the applied forces are

reported as a ratio of the body weight.

 Parameters 𝑅𝑅𝑡𝑡 𝑅𝑅𝑣𝑣 𝑅𝑅𝑒𝑒 Recovered in

Vanishing

A = 100% BW

W = 0.1 s
-50% -70% -70% 10 steps

A = 60% BW

W = 0.4 s
-70% -95% -40% 7 steps

Non-
Vanishing B = 14% BW -40% -70% -15% -

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

195

energy-efficient, robust, and capable of regulated forward
velocity. This method is ideal for systems employing semi-
active actuation mechanisms.

In DC motors, the start torque is much higher than the
nominal torque. Using impulsive controllers, such as our
suggested controller, allows us to maximize this feature and
significantly reduce motor size. Consequently, this reduces
the robot’s total weight, energy consumption, battery weight,
and cost.

Reinforcement learning methods are based on heuristic
search, which might lead to falls and severe scenarios for
robotic systems. Given the high cost of robotic systems,
especially legged robots, it is not safe to run reinforcement
learning methods directly on such systems. However, safe
reinforcement learning approaches can minimize these risks.
One such method is reward shaping, as employed in this
paper. Our proposed reward shaping can also be fine-tuned to
minimize robot failure scenarios and improve learning safety.

4- 1- Future work
Our next steps are: (1) extend the simulations of our

general method to multi-legged systems (e.g., bipedal
robots, quadruped robots, etc.), (2) implement the proposed
controller and its training strategy in practical applications,
and (3) compare the proposed controller with other existing
controllers in the literature. These steps will help us further
validate and refine our approach, ensuring its effectiveness
and robustness across different robotic platforms.

References
[1]  P. Biswal and P. K. Mohanty, “Development of quadruped

walking robots: A review,” Ain Shams Engineering
Journal, vol. 12, no. 2, pp. 2017–2031, 2021.

[2] Y. Farid and F. Ruggiero, “Finite-time disturbance
reconstruction and robust fractional-order controller
design for hybrid port-hamiltonian dynamics of biped
robots,” Robotics and Autonomous Systems, vol. 144, p.
103836, 2021.

[3] P. A. Bhounsule, J. Cortell, and A. Ruina, “Design and
control of ranger: an energy-efficient, dynamic walking
robot,” in Adaptive Mobile Robotics. World Scientific,
2012, pp. 441–448.

[4] C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, M.
Focchi, D. G. Caldwell, and J. Buchli, “Towards versatile
legged robots through active impedance control,” The
International Journal of Robotics Research, vol. 34, no.
7, pp. 1003–1020, 2015.

[5] B. Vanderborght, B. Verrelst, R. Van Ham, M. Van Damme,
D. Lefeber, B. M. Y. Duran, and P. Beyl, “Exploiting
natural dynamics to reduce energy consumption by
controlling the compliance of soft actuators,” The
International Journal of Robotics Research, vol. 25, no.
4, pp. 343–358, 2006.

[6] J. Zhang, F. Gao, X. Han, X. Chen, and X. Han, “Trot gait
design and cpg method for a quadruped robot,” Journal
of Bionic Engineering, vol. 11, no. 1, pp. 18–25, 2014.

[7] N. Van der Noot, A. J. Ijspeert, and R. Ronsse, “Bio-
inspired controller achieving forward speed modulation
with a 3d bipedal walker,” The International Journal of
Robotics Research, vol. 37, no. 1, pp. 168–196, 2018.

[8] R. Nasiri, M. Khoramshahi, and M. N. Ahmadabadi,
“Design of a nonlinear adaptive natural oscillator:
Towards natural dynamics exploitation in cyclic
tasks,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
3653–3658.

[9] M. Khoramshahi, R. Nasiri, M. Shushtari, A. J. Ijspeert,
and M. N. Ahmadabadi, “Adaptive natural oscillator to
exploit natural dynamics for energy efficiency,” Robotics
and Autonomous Systems, vol. 97, pp. 51–60, 2017.

[10] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen,
“From swimming to walking with a salamander robot
driven by a spinal cord model,” science, vol. 315, no.
5817, pp. 1416–1420, 2007.

[11] H. Lee, E. J. Rouse, and H. I. Krebs, “Summary of
human ankle mechanical impedance during walking,”
IEEE journal of translational engineering in health and
medicine, vol. 4, pp. 1–7, 2016.

[12] R. Nasiri, M. Khoramshahi, M. Shushtari, and M.
N. Ahmadabadi, “Adaptation in variable parallel
compliance: Towards energy efficiency in cyclic tasks,”
IEEE/ASME Transactions on Mechatronics, vol. 22, no.
2, pp. 1059–1070, 2016.

[13] R. Nasiri, A. Ahmadi, and M. N. Ahmadabadi,
“Realization of nonlinear adaptive compliance:
Towards energy efficiency in cyclic tasks,” in 2019 7th
International Conference on Robotics and Mechatronics
(ICRoM). IEEE, 2019, pp. 175–180.

[14] H. Geyer and H. Herr, “A muscle-reflex model that
encodes principles of legged mechanics produces
human walking dynamics and muscle activities,” IEEE
Transactions on neural systems and rehabilitation
engineering, vol. 18, no. 3, pp. 263–273, 2010.

[15] A. M. Wilson, J. C. Watson, and G. A. Lichtwark, “A
catapult action for rapid limb protraction,” Nature, vol.
421, no. 6918, pp. 35–36, 2003.

[16] J. Yang, J. Fung, M. Edamura, R. Blunt, R. Stein, and H.
Barbeau, “Hreflex modulation during walking in spastic
paretic subjects,” Canadian Journal of Neurological
Sciences, vol. 18, no. 4, pp. 443–452, 1991.

[17] Z. Miranda, A. Pham, G. Elgbeili, and D. Barthélemy,
“H-reflex modulation preceding changes in soleus emg
activity during balance perturbation,” Experimental brain
research, vol. 237, no. 3, pp. 777– 791, 2019.

[18] M. Rayati, R. Nasiri, and M. N. Ahmadabadi, “Improving
muscle force distribution model using reflex excitation:
Toward a model-based exoskeleton torque optimization
approach,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 31, pp. 720– 728, 2022.

[19] M. Meinders, A. Gitter, and J. M. Czerniecki, “The role

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

196

of ankle plantar flexor muscle work during walking.”
Scandinavian journal of rehabilitation medicine, vol. 30,
no. 1, pp. 39–46, 1998.

[20] M. Srinivasan and A. Ruina, “Computer optimization of
a minimal biped model discovers walking and running,”
Nature, vol. 439, no. 7072, pp. 72–75, 2006.

[21] R. Nasiri, A. Zare, O. Mohseni, M. J. Yazdanpanah, and
M. N. Ahmadabadi, “Concurrent design of controller
and passive elements for robots with impulsive actuation
systems,” Control Engineering Practice, vol. 86, pp.
166–174, 2019.

[22] D. Wahrmann, Y. Wu, F. Sygulla, A.-C. Hildebrandt,
R. Wittmann, P. Seiwald, and D. Rixen, “Time-
variable, event-based walking control for biped robots,”
International Journal of Advanced Robotic Systems, vol.
15, no. 2, p. 1729881418768918, 2018.

[23] K. A. Hamed, J. Kim, and A. Pandala, “Quadrupedal
locomotion via event-based predictive control and
qp-based virtual constraints,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4463–4470, 2020.

[24] J. Lee and J. H. Kim, “A comparative study on the l 1
optimal event-based method for biped walking on rough
terrains,” IEEE Access, vol. 8, pp. 96 304–96 315, 2020.

[25] Y. Lee, H. Lee, J. Lee, and J. Park, “Toward reactive
walking: Control of biped robots exploiting an event-
based fsm,” IEEE Transactions on Robotics, vol. 38, no.
2, pp. 683–698, 2021.

[26] F. Giardina and F. Iida, “Efficient and stable locomotion
for impulse-actuated robots using strictly convex foot
shapes,” IEEE Transactions on Robotics, vol. 34, no. 3,
pp. 674–685, 2018.

[27] S. Mochiyama and T. Hikihara, “Impulsive torque
control of biped gait with power packets,” Nonlinear
Dynamics, vol. 102, no., pp. 951–963, 2020.

[28] K. Zhang and E. Braverman, “Event-triggered impulsive
control for nonlinear systems with actuation delays,”
IEEE Transactions on Automatic Control, pp. 1–1, 2022.

[29] J. Weng, E. Hashemi, and A. Arami, “Natural walking
with musculoskeletal models using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 4156–4162, 2021.

[30] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne,
“Deeploco: Dynamic locomotion skills using hierarchical
deep reinforcement learning,” ACM Transactions on
Graphics (TOG), vol. 36, no. 4, pp. 1–13, 2017.

[31] T. Li, N. Lambert, R. Calandra, F. Meier, and A.
Rai, “Learning generalizable locomotion skills with
hierarchical reinforcement learning,” in 2020 IEEE
International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 413–419.

[32] H. M. Clayton, H. C. Schamhardt, M. A. Willemen, J. L.
Lanovaz, and G. R. Colborne, “Kinematics and ground
reaction forces in horses with superficial digital flexor
tendinitis,” American journal of veterinary research, vol.

61, no. 2, pp. 191–196, 2000.
[33] N. Ogihara, E. Hirasaki, H. Kumakura, and M.

Nakatsukasa, “Ground reaction-force profiles of bipedal
walking in bipedally trained Japanese monkeys,” Journal
of human evolution, vol. 53, no. 3, pp. 302–308, 2007.

[34] H. T. Lin and B. A. Trimmer, “The substrate as a
skeleton: ground reaction forces from a soft-bodied
legged animal,” Journal of Experimental Biology, vol.
213, no. 7, pp. 1133–1142, 2010.

[35] S. W. Lipfert, Kinematic and dynamic similarities
between walking and running. Kovaˇc Hamburg, 2010.

[36] S. Fujimoto, H. Hoof, and D. Meger, “Addressing
function approximation error in actor-critic methods,” in
International Conference on Machine Learning. PMLR,
2018, pp. 1587–1596.

[37] A. D. Laud, Theory and application of reward shaping in
reinforcement learning. University of Illinois at Urbana-
Champaign, 2004.

[38] R. Nasiri, H. Dinovitzer, and A. Arami, “A unified gait
phase estimation and control of exoskeleton using virtual
energy regulator (ver),” in 2022 International Conference
on Rehabilitation Robotics (ICORR). IEEE, 2022, pp.
1–6.

[39] S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K.
Fujiwara, and H. Hirukawa, “Biped walking on a
low friction floor,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No. 04CH37566), vol. 4. IEEE, 2004, pp.
3546– 3552.

[40] Zhao, Yongyong, Jinghua Wang, Guohua Cao, Yi
Yuan, Xu Yao, and Luqiang Qi. “Intelligent control of
multilegged robot smooth motion: a review.” IEEE
Access 11 (2023): 86645-86685.

[41] Kotha, Swapnil Saha, Nipa Akter, Sarafat Hussain Abhi,
Sajal Kumar Das, Md Robiul Islam, Md Firoj Ali, Md Hafiz
Ahamed et al. “Next generation legged robot locomotion:
A review on control techniques.” Heliyon (2024).

[42] Gao, Yong, Wu Wei, Xinmei Wang, Dongliang Wang,
Yanjie Li, and Qiuda Yu. “Trajectory tracking of multi-
legged robot based on model predictive and sliding mode
control.” Information Sciences 606 (2022): 489-511.

[43] Morimoto, Jun, and Christopher Atkeson. “Minimax
differential dynamic programming: An application to
robust biped walking.” Advances in neural information
processing systems 15 (2002).

[44] Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-
Wei Lee, Jie Tan, and Sergey Levine. “Learning agile
robotic locomotion skills by imitating animals.” arXiv
preprint arXiv:2004.00784 (2020). Alexander, R.
McNeill. Principles of animal locomotion. Princeton
university press, 2003.

[45] Fu, Zipeng, Ashish Kumar, Jitendra Malik, and Deepak
Pathak. “Minimizing energy consumption leads to the
emergence of gaits in legged robots.” arXiv preprint

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

197

arXiv:2111.01674 (2021).
[46] Hutter M, Gehring C, Jud D, Lauber A, Bellicoso CD,

Tsounis V, Hwangbo J, Bodie K, Fankhauser P, Bloesch
M, Diethelm R. Anymal-a highly mobile and dynamic

quadrupedal robot. In2016 IEEE/RSJ international
conference on intelligent robots and systems (IROS)
2016 Oct 9 (pp. 38-44). IEEE.

Appendix A: Derivation of Dynamic Equations for Single-Legged Hopping Model

This appendix provides a detailed derivation of the dynamic equations for the planar single-legged robot.
The dynamics of this robotic model is described as:

𝐷𝐷(Θ)Θ̈ + 𝐶𝐶(Θ, Θ̇) + 𝐺𝐺(Θ) = 𝑩𝑩𝑇𝑇𝐹𝐹𝑎𝑎𝑎𝑎 + 𝑬𝑬𝑇𝑇𝐹𝐹𝑝𝑝𝑎𝑎 + 𝐹𝐹𝑐𝑐(𝑞𝑞) + 𝐹𝐹𝑏𝑏(𝑣𝑣), 𝐹𝐹𝑎𝑎𝑎𝑎 = [𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦]𝑇𝑇
where Θ = [𝑞𝑞, 𝑥𝑥, 𝑦𝑦]𝑇𝑇 = [𝜃𝜃ℎ𝑖𝑖𝑝𝑝, 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑥𝑥, 𝑦𝑦]𝑇𝑇 ∈ ℝ4 denotes the generalized coordinates of the robot with 4

degrees of freedom. Θ̇ = [𝜔𝜔ℎ𝑖𝑖𝑝𝑝, 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦]𝑇𝑇 ∈ ℝ4 is the derivative of the generalized coordinates.
𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 are actuation forces applied to the robotic model from the ground in 𝑥𝑥 and 𝑦𝑦 directions. In
addition, 𝐷𝐷 ∈ ℝ4×4 denotes the inertia matrix, 𝐶𝐶 ∈ ℝ4 denotes the Coriolis and centrifugal forces vector,
and 𝐺𝐺 ∈ ℝ4 denotes the generalized gravity vector. The term 𝐹𝐹𝑘𝑘𝑥𝑥𝑒𝑒 ∈ ℝ2 denotes the GRFs acting on the
robot’s contacting feet and 𝑩𝑩 = 𝑬𝑬 ∈ ℝ2×4 denotes the Jacobian of the associated contact frame. 𝐹𝐹𝑐𝑐(𝑞𝑞) and
𝐹𝐹𝑏𝑏(𝑣𝑣) The detailed derivations of the dynamical equations are presented as follow.

𝑩𝑩 = 𝑬𝑬 = [
−𝑙𝑙1 sin(𝜃𝜃ℎ𝑖𝑖𝑖𝑖) − 𝑙𝑙2sin (𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) −𝑙𝑙2sin (𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 1 0
𝑙𝑙1 cos(𝜃𝜃ℎ𝑖𝑖𝑖𝑖) + 𝑙𝑙2cos (𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 𝑙𝑙2cos (𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 0 1]

𝐷𝐷11 = 𝑚𝑚1(𝑙𝑙1
2 + 𝑑𝑑2)
12 + 𝐼𝐼2 + 𝑙𝑙1

2𝑚𝑚1
4 + 𝑙𝑙1

2𝑚𝑚2 + 𝑙𝑙2
2𝑚𝑚2
4 + 𝑙𝑙1𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) , 𝐷𝐷22 = 𝑚𝑚2𝑙𝑙2

2

4 + 𝑚𝑚2(𝑙𝑙2
2 + 𝑑𝑑2)
12

𝐷𝐷33 = 𝑚𝑚1 + 𝑚𝑚2 , 𝐷𝐷44 = 𝑚𝑚1 + 𝑚𝑚2 , 𝐷𝐷12 = 𝐷𝐷21 = 𝑚𝑚2(𝑙𝑙2
2 + 𝑑𝑑2)
12 + 𝑚𝑚2𝑙𝑙2

2

4 + 𝑙𝑙1𝑚𝑚2 cos(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 𝑙𝑙2
2

𝐷𝐷13 = 𝐷𝐷31 = −
𝑚𝑚2𝑙𝑙2 sin(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2 + 𝑚𝑚2𝑙𝑙1 sin(𝑞𝑞1) −
𝑙𝑙1𝑚𝑚1 sin(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)

2

𝐷𝐷14 = 𝐷𝐷41 =
𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2 + 𝑚𝑚2𝑙𝑙1 cos(𝑞𝑞1) + 𝑙𝑙1𝑚𝑚1
cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)

2

𝐷𝐷24 = 𝐷𝐷42 =
𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2 , 𝐷𝐷34 = 𝐷𝐷43 = 0

𝐶𝐶1 = − 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
2 𝑙𝑙1𝑙𝑙2𝑚𝑚2 sin(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2 − 𝜔𝜔ℎ𝑖𝑖𝑝𝑝𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙1𝑙𝑙2𝑚𝑚2 sin(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) , 𝐶𝐶2 = 𝜔𝜔ℎ𝑖𝑖𝑝𝑝
2 𝑙𝑙2𝑚𝑚2𝑙𝑙1𝑠𝑠𝑖𝑖𝑘𝑘(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

𝐶𝐶3 = −𝜔𝜔ℎ𝑖𝑖𝑝𝑝
2 𝑚𝑚2𝑙𝑙1 cos(𝑞𝑞1) +

𝑚𝑚2𝑙𝑙2 cos(𝑞𝑞1 + 𝑞𝑞2) (𝜔𝜔ℎ𝑖𝑖𝑝𝑝 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)2

2 −
𝜔𝜔ℎ𝑖𝑖𝑝𝑝

2 𝑙𝑙1𝑚𝑚1 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)
2

𝐶𝐶4 = 𝜔𝜔ℎ𝑖𝑖𝑝𝑝
2 𝑚𝑚2𝑙𝑙1 sin(𝑞𝑞1) +

𝑚𝑚2𝑙𝑙2 sin(𝑞𝑞1 + 𝑞𝑞2) (𝜔𝜔ℎ𝑖𝑖𝑝𝑝 + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)2

2 −
𝜔𝜔ℎ𝑖𝑖𝑝𝑝

2 𝑙𝑙1𝑚𝑚1 sin(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)
2

𝐺𝐺1 =
𝑔𝑔𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2 +
𝑔𝑔𝑙𝑙1𝑚𝑚1 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)

2 + 𝑔𝑔𝑙𝑙1𝑚𝑚2 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)

𝐺𝐺2 =
𝑙𝑙2𝑚𝑚2𝑔𝑔 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2 , 𝐺𝐺3 = 0 , 𝐺𝐺4 = 𝑔𝑔(𝑚𝑚1 + 𝑚𝑚2)

B. S. Mortazavi et al., AUT J. Model. Simul., 56(2) (2024) 185-198, DOI: 10.22060/miscj.2025.23344.5368

198

HOW TO CITE THIS ARTICLE
B. S. Mortazavi, R. Nasiri, M. Nili Ahmadabadi, A Simplified Event-based Impulsive Control
Approach for Stable, Efficient, and Robust Locomotion Using Deep Reinforcement Learning,
AUT J. Model. Simul., 56(2) (2024) 185-198.

DOI: 10.22060/miscj.2025.23344.5368

https://dx.doi.org/10.22060/miscj.2025.23344.5368

