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A Simplified Event-based Impulsive Control Approach for Stable, Efficient, and 
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ABSTRACT: Biological evidence indicates that the actuation system in humans and legged animals 
is characterized by impulsiveness rather than continuity; i.e., control actions are concentrated within a 
specific phase of the motion cycle (the stance phase), while the rest of the cycle is passive. Based on this 
observation, we propose a simple event-based impulsive controller to generate walking cycles for legged 
robots. To improve optimization speed, we parametrize the controller-applied forces as a Gaussian 
function of time and employ a deep reinforcement learning method to optimize the controller parameters. 
To further enhance learning speed, an autoencoder is utilized to address the high dimensionality in 
the state space. Additionally, we employ a three-phase reward-shaping approach to further improve 
learning speed and achieve better results. In phase one, the reward function focuses on stability and 
forward motion to learn stable locomotion. In phase two, the reward function is modified to achieve 
stable locomotion with lower control effort and desired forward velocity. In phase three, the reward 
function remains the same as in phase two but places more emphasis on forward velocity regulation. The 
proposed controller, state encoder, and learning process can be implemented on a group of legged robots 
with actuation at the leg contact point with the ground. In this paper, the proposed approach is tested on 
a simulated single-legged robot. In addition, the controller robustness is analyzed considering different 
types of external disturbances. The simulation results indicate the efficacy of the proposed method as a 
bio-inspired control approach for legged locomotion.
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1- Introduction
For the past several years, researchers have been studying 

diverse control strategies for legged robots, aiming to 
unlock their full potential in terms of adaptability, stability, 
robustness, efficiency, and forward velocity. Given the 
intrinsic nonlinear, hybrid, discontinuous, and uncertain 
nature of legged locomotion, formulating an effective control 
strategy that embodies simplicity, efficiency, stability, and 
robustness is a significant challenge [1]. Consequently, 
devising a comprehensive controller design methodology for 
legged robots remains intricate and demanding. To achieve this 
goal, researchers have explored various avenues, including 
analytical approaches [2], energy-efficient controller design 
[3], impedance control [4], natural dynamic exploitation [5], 
and trajectory adaptation [6].

Nature has served as a wellspring of inspiration for 
numerous research endeavors in this field. Accordingly, 
many attempts have been made to design controllers based 
on biological evidence; one notable method is using central 
pattern generators (CPGs) as controllers [7-9]. For instance, 
[10] proposes a controller based on the encoded activation 

patterns observed in the spinal cords of salamanders. Another 
avenue of exploration involves impedance controllers [4]. 
These controllers are designed based on findings suggesting 
that humans modulate the impedance of their ankle joints to 
attain stability and efficiency during walking tasks [11-13]. 
Furthermore, an impressive instance is the work by [14], 
wherein an event-based muscle-level controller is presented.

It has been investigated that the human actuation system 
is impulsive [15] and event-based [16]. [15] showed that 
large cursorial animals, such as horses, rely on a catapult 
mechanism for rapid acceleration and preparing for the next 
stance phase. In addition, [17], [18] showed that the H-reflex 
activates muscles with a 200ms time delay in response to 
external disturbances. Moreover, other research has shown 
that after the push-off moment, the rest of the walking cycle 
(between toe-off and heel-strike) is passive [19], [20]; i.e., 
lower limb dynamics during the swing are governed by 
natural dynamics. In conclusion, the control strategy for 
legged animals is impulsive, event-based, and built upon the 
natural dynamics of the system.

Inspired by these biological facts, in [21], we presented 
a concurrent analytical design of a controller and passive 
elements (i.e., spring and damper) for impulsive actuation 
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systems to generate rhythmic walking patterns. However, the 
proposed controller suffered from a lack of state feedback, 
non-smooth actuation patterns, and non-optimal timing of 
actuation impulses. In this paper, we address these issues by 
optimizing the timing of actuation, smoothing the actuation 
impulses, reducing the number of actuations to one per 
motion period, and incorporating state feedback to improve 
the controller’s robustness to external disturbances. This 
approach results in a simple, impulsive, and event-based 
controller. Due to the complex and hybrid nature of walking, 
such controllers cannot be designed analytically; hence, a 
deep reinforcement learning (DRL) approach is utilized to 
resolve this complex and nonlinear mapping. 

1- 1- Related work
Due to the complexity, non-linearity, and hybrid nature of 

legged locomotion, control strategies for legged robots should 
be nonlinear and phase-dependent; i.e., they should be event-
based or discontinuous. Accordingly, many attempts have 
been made to enhance legged robots’ performance through 
event-based controllers. For instance, event-based controllers 
for bipedal robots [22], predictive and robust controllers [23], 
[24], and controllers based on finite state machines (FSM) 
[25] have been explored. Besides event-based controllers, 
impulsive control strategies have also shown potential 
in generating bio-inspired and energy-efficient legged 
locomotion [21], [26], [27]. However, such controllers are 
mostly designed based on the dynamical model of the system 
and are not adaptive.

Some approaches benefit from both concepts (impulsive 
and event-based commands) to present a nonlinear closed-
loop controller [28]. [28] proposes two types of event-
triggering algorithms to generate impulsive control 
commands. The first algorithm is based on continuous event 
detection, while the second updates the impulsive inputs 
according to cyclic events. However, both algorithms are 
developed for continuous dynamical systems, which are 
not suitable for hybrid and discontinuous dynamics such 
as legged locomotion. In addition, this method requires the 
dynamical equations of the system which is mostly unknown 
in legged locomotion tasks.

Due to the ability of deep neural networks (DNN) to 
encode nonlinear complex relations between robot states 
and controller commands and its adaptation capability, this 
toolbox has recently been utilized in many studies involving 
reinforcement learning on legged locomotion [29-31]. For 
instance, [29] utilizes deep reinforcement learning (DRL) 
to generate natural walking from scratch. The problem of 
close-to-natural human walking is divided into three stages 
of learning: standing, stepping, and then gradually improving 
the gait. This strategy accelerates the learning process and 
helps the bipedal model generate close-to-natural human 
walking patterns. Another example is [30], which presents 
a two-level continuous control strategy using DRL for a 
3D bipedal robot; while the low-level controller moves the 
joints over the desired trajectories, the high-level controller 
generates the optimal trajectories for the low-level controller. 

A similar two-level continuous control strategy is also 
presented in [31], where the problem of pursuing a specific 
goal in the environment is divided into two levels of training: 
(1) learning basic movements such as walking and (2) learning 
how to combine basic movements to achieve the final goal. 
However, these proposed controllers are not event-based. 

As mentioned earlier, in legged locomotion, a proper 
control strategy should be energy-efficient, robust, and 
adaptive to effectively enhance the locomotion task. Hence, 
the controller should consume less energy, provide a high 
level of uncertainty robustness, and grant adaptability. 
Accordingly, many attempts have been made to enhance 
legged robots’ performance by improving the control strategy 
[40].

From our design perspective, controllers for legged robots 
can be divided into four main categories: discontinuous 
(event-based or impulsive) and continuous controllers, 
each with rule-based (classic) and RL-based (data-driven) 
design approaches. Each category has its own advantages 
and disadvantages [41]. For instance, rule-based designs, 
which often rely on detailed environment models and robot 
dynamics, can deliver reliable tracking performance [42]. 
However, they are not robust in the face of uncertainties in 
robot. 

dynamics and environment models [43]. Additionally, 
continuous controllers are generally associated with high 
energy consumption [44].

On the other hand, discontinuous controllers use energy 
in short intervals, reducing overall energy consumption at the 
cost of increased tracking error [21]. RL-based designs offer 
a model-free alternative, allowing adaptable performance 
without prior knowledge of the environment model or 
robot dynamics, reducing reliance on accurate system 
identification, and increasing controller robustness. However, 
they often require considerable learning time, especially to 
learn continuous actuation patterns. Combining an RL-based 
controller design with a discontinuous actuation pattern can 
minimize the search space and improve training time.

Table. 1 summarizes the advantages and disadvantages 
of each control category. Based on this table, the only 
drawback of discontinuous controllers designed with an RL-
based approach is low tracking performance. Nevertheless, 
it is worth mentioning that in legged locomotion, tracking 
performance is not the main objective, neither in biology [45] 
nor in robotics [46].

To achieve energy efficiency and high control robustness, 
we propose a controller and optimization strategy using 
the DRL toolbox, which includes: (1) a simple event-based 
impulsive controller (SEBIC) architecture, (2) a state encoder 
using an autoencoder, and (3) a three-phase learning process 
that improves learning speed and results. The proposed 
strategy is implemented on a simulated single-legged robot, 
with actuators 

at the contact point with the ground to modulate the 
ground reaction force (GRF) and attain similar GRF patterns 
as in legged animals [32-35].

The rest of this paper is organized as follows: The 
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next section presents the problem statement and detailed 
formalization, including model description, reward 
definition, and learning strategy. Section III presents the 
simulation results, evaluating the quality of the trained 
policy for the single-legged robot in terms of optimality and 
stability. Finally, discussions, conclusions, and future work 
are provided in the last section.

2- Methods and materials
Our suggested control architecture for a legged robot is 

presented in Fig. 1. The main components of our controller 
are: 
• State Encoder: Reduces the state space dimension and is 

trained individually using a batch dataset of the robot.
• Stance Phase Detector: Detects impact events and triggers 

the controller to generate impulsive control actions for 
push-off.

• Passive Dynamics: Comprising passive compliance 
and damper for each joint, these behave as nonlinear 
state feedback and are designed according to the method 
presented in [21].

• Simple Event-Based Impulsive Controller (SEBIC): 
Maps the robot states at the impact moment to the 
impulsive actions during the stance phase.
Based on our formulation, the impulsive control action 

( 2,  
T

ag x yF F F = ∈   ) is a two-dimensional vector in the 
sagittal plane applied to the ground at the contact point; i.e., the 
actuation system is prismatic. The control action is formulated 
as two Gaussian force profiles (i.e., ( )( )2   x x x xF A exp tσ µ= − −  
and ( )( )2

   y y y yF A exp tσ µ= − − ), with their parameters (
6, , , , ,  

T

x y x y x yA Aθ σ σ µ µ =   ò ) determined by the DRL 
algorithm according to the robot states ( tQ ) at the impact 
moments ( 0t t += ). The robot states at the impact moment 
form a vector of the robot’s positions ( 2, 

T

hip kneeq θ θ = ∈  
) and velocities ( 4, , ,  

T

hip knee x yv v vω ω = ∈   ), as shown 

in Fig. 2. Therefore, the problem is to learn a controller (i.e., 
a policy;  θπ ) that maps the observed states ( [ ] 6, T

tQ q v= ∈
) of the leg at impact moments to the actuation impulses (

agF ). Due to the high dimensionality of the state space, we 
employed a state encoder to reduce the state space dimension, 
hence the reduced state space ( tS ) is actually mapped to the 
action space ( tA ) as ( ) ( )    a t tF t A Sθπ= = . The robot model, 
state encoder, reward function, and training process are 
explained in the following subsections.

2- 1- State encoder
We use a nonlinear encoder to reduce state dimensions 

and accelerate the learning process. Accordingly, a 4-layer 
autoencoder is utilized to reduce the observation dimension 
from 6 ( )6 tO ∈  to 3 encoded dimensions ( 3 tS ∈ ) and then 
reconstruct the input in the output using the encoded states; 
see Fig. 2. The activation functions of the network layers are 
ReLU, Linear, ReLU, and Sigmoid, respectively. To train the 
autoencoder network, we generate a set of feasible impact 
states and use 70% for training and the remaining 30% for 
evaluation, achieving 97% evaluation accuracy.

2- 2- Deep reinforcement learning model
Consider Fig. 3, which illustrates our suggested SEBIC 

logic and training strategy. The SEBIC controller captures 
the robot states (positions and velocities) at the impact 
moments and predicts the stabilizer force profiles to stabilize 
the system in the next step (active mode). Besides the active 
mode, the rest of the cycle (passive mode) is governed by 
passive elements. During the active mode, the controller 
determines the shape and timing of the force impulses based 
on the observed states at the impact event ( tO ). The reward

function ( tR ) is computed at the end of each step, and 
consequently, the policy ( )θπ  and actions ( tA ) are updated 
once per cycle. To train our SEBIC controller, an actor-critic 

Table 1. The overall comparison between four different control categories.
Table. 1 The overall comparison between four different control categories. 

Controller design approach Rule-based (classic) RL based (data-driven) 

Controller type Continuous Discontinuous Continuous Discontinuous 

Require system model Yes Yes No No 

Energy consumption High Low High Low 

Learning/training time ---- ---- High Low 

Tracking error Low High Low High 

Robustness Low Low High High 

Adaptability Yes No Yes Yes 
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Fig. 1  The suggested control architecture for a single-legged robot employs a simple event-based 

impulsive controller (SEBIC). In this block diagram, a stance detector triggers the main controller 

(SEBIC) to apply control commands during the stance phase based on the robot's state at the impact 

moment, while passive dynamic feedback governs the system's natural dynamics; i.e., position (𝑞𝑞) and 

velocity (𝑣𝑣). SEBIC determines the actuation at the impact point (𝐹𝐹𝑎𝑎𝑎𝑎) to modulate the total ground 

reaction force (𝐹𝐹𝑎𝑎𝑔𝑔𝑔𝑔). The total GRF (𝐹𝐹𝑎𝑎𝑔𝑔𝑔𝑔) is the sum of the force applied by the simulated ground model 

(𝐹𝐹𝑝𝑝𝑎𝑎) and the actuators' force applied by SEBIC (𝐹𝐹𝑎𝑎𝑎𝑎). Moreover, 𝑬𝑬 and 𝑩𝑩 are the Jacobian matrices that 

map the 𝐹𝐹𝑎𝑎𝑎𝑎 and 𝐹𝐹𝑝𝑝𝑎𝑎 to the joint space, where 𝑢𝑢 = 𝑩𝑩𝐹𝐹𝑎𝑎𝑎𝑎 + 𝑬𝑬𝐹𝐹𝑝𝑝𝑎𝑎. In general, 𝑬𝑬 and 𝑩𝑩 can be different, 

in our simulations, they are equivalent. Also, 𝐹𝐹𝑐𝑐(𝑞𝑞) and 𝐹𝐹𝑏𝑏(𝑣𝑣) are passive nonlinear spring and damper 

forces designed based on [21], which form a nonlinear state feedback stabilizing the internal stability. 

 

 

 

 

 

 

 

 

 

Fig. 1. The suggested control architecture for a single-legged robot employs a simple event-based impulsive 
controller (SEBIC). In this block diagram, a stance detector triggers the main controller (SEBIC) to apply 
control commands during the stance phase based on the robot’s state at the impact moment, while passive 
dynamic feedback governs the system’s natural dynamics; i.e., position (q) and velocity (v). SEBIC deter-
mines the actuation at the impact point (Fag) to modulate the total ground reaction force (Fgrf). The total GRF 
(Fgrf) is the sum of the force applied by the simulated ground model (Fpg) and the actuators’ force applied by 
SEBIC (Fag). Moreover, E and B are the Jacobian matrices that map the Fag and Fpg to the joint space, where 
u=BFag+EFpg. In general, E and B can be different, in our simulations, they are equivalent. Also, Fc (q) and 
Fb (v) are passive nonlinear spring and damper forces designed based on [21], which form a nonlinear state 

feedback stabilizing the internal stability.

 

Fig. 2 The SEBIC architecture including the state encoder and machine learning model. The state encoder 

maps the robot's state at the impact moment (𝑂𝑂𝑡𝑡 𝜖𝜖 ℝ6) to a lower dimension (𝑆𝑆𝑡𝑡 𝜖𝜖 ℝ3) to facilitate the 

learning process. The machine learning model maps the reduced state space (𝑆𝑆𝑡𝑡) to the parameters of 

control actions. The parameters of control action are widths (𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦), amplitudes (𝐴𝐴𝑥𝑥 and 𝐴𝐴𝑦𝑦), and 

center of Gaussian profiles (𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦) of forces in vertical (𝑦𝑦) and horizontal (𝑥𝑥) directions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The SEBIC architecture including the state encoder and machine learning model. The state encoder 
maps the robot’s state at the impact moment (Ot  ϵ R6) to a lower dimension (St  ϵ R3) to facilitate the learning 
process. The machine learning model maps the reduced state space (St) to the parameters of control actions. 
The parameters of control action are widths (σx and σy), amplitudes (Ax and Ay), and center of Gaussian pro-

files (μx and μy) of forces in vertical (y) and horizontal (x) directions.  
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policy is developed in Python and connected to MATLAB 
via TCP/IP protocol. During learning, an off-policy algorithm 
called Twin Delayed Deep Deterministic Policy Gradient 
(TD3) [36] is used to update the actor-critic network. 

The designed network consists of a 3-layer, 256-neuron 
policy network and two 3-layer, 256-neuron value networks 
with ReLU and tanh activation functions. The optimal total 
number of deep network parameters, determined through 
grid search, is approximately 136,500; any deviation from 
this value, either increasing or decreasing the parameter 
count, led to a reduction in the evaluation reward, ensuring 
that the model does not overfit. The network design is based 
on our experimental findings to ensure sufficient network 
representation capability and learning efficiency. To initiate 
the state and action in each training episode, we use the 
agent’s previous experiences stored in the replay buffer for 
off-policy training. Additionally, since each decision-making 
unit in our problem is a stride (not a specific time step), we 
define each stable episode length as a specific number of 
strides.

2- 3- Reward function
To achieve stable, efficient, and robust locomotion 

performance, the reward function ( tR ) is designed as a 
weighted summation of stability reward ( sR ), forward 
motion reward ( fR ), control effort-reward ( eR ), and forward 
velocity reward ( vR ); i.e.,              t s s f f e e v vR w R w R w R w R= + + +
, where 0iw >  is the reward weight. The stability reward 
is defined as ( ) 

  2 / 1 s vT
R f dt= +∫ , where vf  is the vertical 

force applied by a virtual surface ( 0vf > ) to the hip joint 
to prevent it from falling below a certain height. When this 
reward is maximum (   2max

sR = ), the system is stable. The 
forward motion reward is equal to the sign of stride length; 
i.e., if stride length is positive (negative), the reward is plus 
(minus) one (   1 fR =± ). The control effort penalty function 
is: ( )  2 / 1e tR E= + , where tE  is the integral of the absolute 
value of impulsive actuation divided by the traveled distance 
at each step. tE  is similar to the cost of transportation (COT) 
and the maximum of control effort-reward is   2max

eR = . The 
forward velocity reward is defined as follows.

𝑅𝑅𝑣𝑣 =        {
−(𝑣𝑣𝑥𝑥 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟)2, 𝑥𝑥𝑡𝑡𝑡𝑡𝑟𝑟 ≤ 1

exp (−(𝑣𝑣𝑥𝑥 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟)2), 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
     (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (1)

This function heavily penalizes forward velocity at the 
initial steps toward the desired velocity ( refv ) for traveled 
distances less than 1 unit. Once the traveled distance exceeds 
1 unit, it considers forward velocity as a reward. This reward 
is the maximum (  1 max

vR = ) for velocities equal to the desired 
one. The forward velocity reward function is inspired by the 
technique described in [29] to improve training performance.

2- 4- Training strategy
To improve training speed and performance, we employ 

a reward shaping approach [29] similar to the Method 

 

Fig. 3 Agent-environment interaction in DRL. Each locomotion stride is divided into two main modes: 

active (SEBIC is on) and passive (SEBIC is off). In each touch-down moment (i.e., stance phase), the 

active mode triggers and the encoded state data (𝑆𝑆𝑡𝑡) along with a calculated reward (𝑅𝑅𝑡𝑡) between 

previous (𝑡𝑡) and current (𝑡𝑡 + 1) touch-down moments are sent to the learning machine policy. The policy 

updates and sends the actions (𝐴𝐴𝑡𝑡) to the environment. This action specifies the push-off force parameters 

(𝜃𝜃 =  [𝐴𝐴𝑥𝑥, 𝐴𝐴𝑦𝑦, 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦, 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦]𝑇𝑇) during the stance phase of a stride. As the robot disconnects from the 

ground (i.e., flight phase), push-off force vanishes, and the robot enters the passive mode or swing phase 

in which receives no activation; i.e., 𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑦𝑦 = 0. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Agent-environment interaction in DRL. Each locomotion stride is divided into two main modes: active 
(SEBIC is on) and passive (SEBIC is off). In each touch-down moment (i.e., stance phase), the active mode 
triggers and the encoded state data (St) along with a calculated reward (Rt) between previous (t) and current 
(t+1) touch-down moments are sent to the learning machine policy. The policy updates and sends the actions 
(At) to the environment. This action specifies the push-off force parameters (θ= [Ax,Ay,σx,σy,μx,μy ]

T) during 
the stance phase of a stride. As the robot disconnects from the ground (i.e., flight phase), push-off force van-

ishes, and the robot enters the passive mode or swing phase in which receives no activation; i.e., Fx=Fy=0.
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suggested in [37]. As discussed in [37], the problem of reward 
shaping is an MDP if the changes in the reward function are 
sufficiently slower than the training speed. To achieve this, 
we decompose our locomotion learning problem into three 
phases, where the reward function changes only in these 
phases, and the trained policy at each phase is used as the 
initial policy for the next one. The reward function at each 
phase is reshaped based on the training goals of that phase 
(see Fig. 4). The first phase aims to generate a stable-walking-
capable agent that walks forward stably. Accordingly, 
stability and forward locomotion are prioritized, while energy 
efficiency and forward velocity are not considered during 
this phase; 1, 1, 0, 0s f v ew w w w= = = = . The second 
phase focuses on speed tuning and minimizing control effort 
while maintaining stability. Since the forward locomotion 
reward is redundant with the forward velocity reward in 
this phase, it is omitted; 1, 0, 1, 1s f v ew w w w= = = = . 
Similarly, the third phase places more emphasis on forward 
velocity regulation compared to the second phase. Hence, in 
the third phase, the gains are the same as in the second phase 
but with a higher emphasis on the forward velocity reward 
gain; 1, 0, 4, 1s f v ew w w w= = = = . The learning process is 
formulated in Algorithm. 1, and the reward weights for each 
phase are summarized in Table. 2. 

2- 5- Model description
The designed control architecture is implemented for 

a planar single-leg robot model with 2 revolute joints (see 
Fig. 2). The model consists of a point mass representing 
the coupling dynamics of the leg with the whole body, hip 
and knee joints, and a point foot; i.e., ( , ,  ,  

T

hip knee x yθ θ  
), indicating that the model has 4 independent coordinates 
and consequently 4 degrees of freedom. Joints have parallel 
springs and dampers designed according to [21] to govern 
system dynamics until the next actuation interval. To model 
foot-ground contact, we have utilized the soft impact 
model presented in [14]. Accordingly, for each leg, the 
state observation ( tO ) has 8 dimensions, including all joint 
positions and velocities, and point-foot velocity and position 

 

Fig. 4 Learning algorithm flowchart of the proposed training method. The training is summarized in 

three main steps: Phase 1: learn to move stably (𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑓𝑓), Phase 2: learn to achieve higher forward 

velocity along with energy efficiency (𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑣𝑣 + 𝑅𝑅𝑒𝑒), and Phase 3: improve forward velocity while 

maintaining energy efficiency (𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 4𝑅𝑅𝑣𝑣 + 𝑅𝑅𝑒𝑒). Each phase is initialized with the optimally trained 

policy from the previous phase and concludes based on the gradient criterion. The first phase is starts with 

a randomly generated policy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase 1 
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Fig. 4. Learning algorithm flowchart of the proposed training method. The training is summarized in three 
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with energy efficiency (Rt=Rs+Rv+Re), and Phase 3: improve forward velocity while maintaining energy ef-
ficiency (Rt=Rs+4Rv+Re). Each phase is initialized with the optimally trained policy from the previous phase 

and concludes based on the gradient criterion. The first phase is starts with a randomly generated policy. 

Algorithm. 1: Training Table. 2 The reward weight values in different phases 
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stride num d; initial policy network weights π;  
for 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈  {1, 2, 3} do 
   Initialize: Value networks weights V; 
   Get 𝑆𝑆0 encoding 𝑂𝑂0 using state encoder; 
   set 𝜔𝜔𝑖𝑖 according to Section 2-5; 
   while True do: 
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in the x and y directions at the impact moment. However, we 
ignore the point-foot positions (x, y) and remove them from 
the state observations for the following reasons:

Since the state features are observed at every touch-down 
moment, the point-foot y position is always level with the 
ground ( 0y = ). Thus, including the y position is pointless.

As the robot moves forward on a fixed-condition ground, 
the x position of the pointed foot continually increases. 
Therefore, the x position is not a suitable parameter for 
discriminating between different observations.

Therefore, the state has 6 dimensions; i.e., 
6, , , , ,  

T

t hip knee hip knee x yO v vθ θ ω ω = ∈   . We assume that 
all of these states are measurable with commercial sensors. 

For instance, , , , hip knee hip kneeθ θ ω ω  can be measured using an 
encoder and ,  x yv v can be measured using IMU sensors.

3- Simulation results
In this section, we investigate the performance of 

the proposed learning method on a single-legged planar 
robot in simulation (see Fig. 2). We conducted two sets 
of simulations. The first set involved training the model, 
with the results presented in Fig. 6. The second set 
demonstrates the performance of the best policy, shown 
in Fig. 7. Finally, we applied external disturbances to the 
optimal policy. Since these disturbances were not part of 
the learning process, we effectively evaluate the robustness 
of the policy (see Table. 3).

3- 1- Training results
The agent rewards (i.e., total, forward velocity, and control 

effort) during the training process are presented in Fig. 6. 
Each subplot consists of three main phases, as explained in 
Section II-B, with different reward weights. 

 Fig. 6a illustrates the overall reward. It is clear that the 
overall reward settles before the start of new phases, indicating 
that learning in each phase converges to a local optimum. Fig. 
6b shows the contribution of the forward velocity reward ( vR
) defined in Eq. 1 with 1.5 /refv m s=  to the overall reward (

tR ). The first phase does not include any reward term related 
to velocity (   0vw = ); consequently, the contribution of the 
forward velocity reward in phase one is zero. However, 
the second and third phases include the forward velocity 
reward with different coefficients ( 1vw = ) in phase two 
and ( 4vw = ) in phase three, as explained in Section II-B, 
resulting in a significantly higher forward velocity reward in 
the third phase compared to the second phase. Based on the 
results in this figure and the reward function weights, it can 
be inferred that increasing the speed reward coefficient in the 
third phase tunes the velocity more precisely. Additionally, 
the learning speed has increased significantly compared to 
the first two phases.

Fig. 6c represents the contribution of the control effort-
reward ( eR ) to the overall reward ( tR ). In the first phase, 
due to the zero control effort-reward weight (  0ew = ), the 
contribution of control effort is zero. In the second and 

 

Fig. 5 The dynamical model of a representative leg of a single-legged robot is detailed in Appendix A. The 

measured states of the representative leg at the impact moment are 𝑂𝑂𝑡𝑡 = [𝜃𝜃ℎ𝑖𝑖𝑖𝑖, 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝜔𝜔ℎ𝑖𝑖𝑖𝑖, 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦]𝑇𝑇. 
The simulated model parameters are 𝑚𝑚1 = 5𝑘𝑘𝑘𝑘, 𝑚𝑚2 = 2𝑘𝑘𝑘𝑘, 𝑙𝑙1 = 52𝑐𝑐𝑚𝑚, 𝑙𝑙2 = 40𝑐𝑐𝑚𝑚, and 𝑘𝑘 = 9.81𝑚𝑚/𝑠𝑠2. 
The passive dynamical parameters (compliance and damper coefficients) of the hip and knee joints are 

Kℎ𝑖𝑖𝑖𝑖 = 100Nm/rad, Kknee = 50N. m/rad, bhip = 2N ms/rad, and 𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 5 𝑁𝑁𝑚𝑚𝑠𝑠/𝑟𝑟𝑟𝑟𝑟𝑟.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The dynamical model of a representative leg of a single-legged robot is detailed in Appendix A. The 
measured states of the representative leg at the impact moment are Ot=[θhip,θknee,ωhip,ωknee,vx,vy ]

T. The simu-
lated model parameters are m1=5kg, m2=2kg, l1=52cm, l2=40cm, and g=9.81m/s2. The passive dynamical pa-
rameters (compliance and damper coefficients) of the hip and knee joints are Khip=100Nm/rad, Kknee=50N.m/

rad, bhip=2N ms/rad, and bknee=5 Nms/rad. 
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 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝟏𝟏: 𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑓𝑓 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝟐𝟐: 𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑣𝑣 + 𝑅𝑅𝑒𝑒 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝟑𝟑: 𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑠𝑠 + 4𝑅𝑅𝑣𝑣 + 𝑅𝑅𝑒𝑒 

a 
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c 

 
 

 
  

 

Fig. 2  The rewards during training. Each column consists of three phases as explained in Section II-B. (a) 

shows overall reward. (b) illustrates the forward velocity regulation reward (𝑅𝑅𝑣𝑣 in Eq. 1) with desired 

velocity of 𝑣𝑣𝑟𝑟𝑒𝑒𝑓𝑓 = 1.5 𝑚𝑚/𝑠𝑠. (c) presents control  effort reward (𝑅𝑅𝑒𝑒 in Eq. 1). 

 

 

 

 

Fig. 6. The rewards during training. Each column consists of three phases as explained in Section II-B. (a) 
shows overall reward. (b) illustrates the forward velocity regulation reward (Rv  in Eq. 1) with desired velocity 

of vref=1.5 m/s. (c) presents control  effort reward (Re in Eq. 1).
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third phases, the control effort-reward contribution weight 
is the same and non-zero, and the control effort-reward 
approximately converges to the same level in these two 
phases. This indicates that the trained policy in the second 
phase already attains its minimum control effort, such that 
it cannot be further improved in the third phase, even with 
different reward function weights. 

3- 2- Optimal policy evaluation results
The robot’s performance after training is presented in Fig. 

7, showing the results of the optimal policy. Fig. 7a and Fig. 
7b represent hip and knee positions versus their corresponding 
velocities in state space, respectively; these plots are hip and 
knee limit cycles. Fig. 7c illustrates the vertical foot position 
versus the horizontal position, with touch-down and toe-off 
moments specified. Fig. 7d, Fig. 7e, and Fig. 7f illustrate 
the average profiles of hip, knee, and ground reaction force 
(GRF) during one cycle, along with their standard deviations. 
These sub-figures are plotted using data from 21 stride cycles 
of the trained model, and the GRFs are normalized by body 
weight (BW). The ground reaction force is zero during the 

flight phase (about 40% of the gait cycle) since the leg is 
not in contact with the ground. As seen in Fig. 7, the results 
of the trained policy closely resemble locomotion patterns 
in biology, such as human walking. For instance, similar 
to human walking, the hip and knee limit cycles in our 
simulation results (Fig. 7a and Fig. 7b) are self-crossing and 
non-self-crossing closed curves, where similar behavior can 
also be observed in human gait (see [38]).  Additionally, as 
shown in Fig. 7e, the ground reaction force in the vertical 
direction resembles a summation of two Gaussian curves, 
similar to human walking patterns. Our no-sliding analysis 

using the friction cone index1 indicates that the trained 
walking policy can maintain a no-sliding condition with a 
minimum static friction coefficient of 0.8sµ ≥ , ensuring a 
high level of robustness for mechanical stability.

1  The friction cone analysis is defined to calculate the minimum 
friction coefficient between the foot and ground for no sliding condi-
tion in legged locomotion [39]. It is computed based on vertical and 
horizontal ground reaction forces presented in Fig. 6e.

a b 
c 

d e f 

Fig. 3  Evaluation results; the results of the optimal polity. (a-b) present the hip joint and knee joint 

trajectories in the optimal policy. (c) shows the tip trajectory w.r.t. hip. (d,e) illustrate hip and knee angle 

variations in a gait stride cycle. (f) show GRF of the simulated single leg based on the soft impact model 

during walking, which is normalized by body weight (BW). Considering the GRF, it is obvious that all 

trajectories are started at the impact moment, followed by the stance phase, and then the robot goes to 

the flight phase about 40% of the gait cycle; i.e., about 40% of the resultant gait cycle is stance phase, 

and 60% of the resultant gait is the flight phase. 

 

 

 

 

 

 

 

 

Fig. 7. Evaluation results; the results of the optimal polity. (a-b) present the hip joint and knee joint trajecto-
ries in the optimal policy. (c) shows the tip trajectory w.r.t. hip. (d,e) illustrate hip and knee angle variations 
in a gait stride cycle. (f) show GRF of the simulated single leg based on the soft impact model during walking, 
which is normalized by body weight (BW). Considering the GRF, it is obvious that all trajectories are started 
at the impact moment, followed by the stance phase, and then the robot goes to the flight phase about 40% 
of the gait cycle; i.e., about 40% of the resultant gait cycle is stance phase, and 60% of the resultant gait is 

the flight phase.
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3- 3- Robustness results
In our study, robustness is defined as the robot’s ability 

to maintain stable locomotion in face of unknown external 
disturbance. To evaluate this, two types of disturbances were 
analyzed: 

vanishing and non-vanishing. These disturbances simulate 
both transient and sustained external forces in the x direction 
at the hip joint, each designed to push the system to the edges 
of stability. By evaluating the effect of these disturbances on 
reward functions—such as total reward ( tR ), velocity reward 
( vR ), and energy efficiency reward ( eR )—we can observe 
how the control strategy adapts to changes and preserves 
stable locomotion. The results, are summarized in Table. 3, 
show percentage reductions in each reward category based 
on disturbance parameters, revealing sensitivity patterns and 
recovery capacities.

Our findings show that while stability is maintained, 
the energy efficiency and forward velocity are significantly 
impacted by disturbances. In scenarios with vanishing 
disturbances—short impulses applied to the system—high-
magnitude forces caused moderate to severe reductions in 

tR , vR , and eR  Before the system recovered; i.e., at least 
50% reduction in total reward. These transient disturbances 
highlight the sensitivity of trajectory and velocity tracking to 
impulse forces but also indicate the controller’s capacity to 
return to stable locomotion within a limited number of steps. 
The impulse in this case is a square pulse, where two parameters 
can be adjusted: amplitude and width. We considered two 
cases. In the first case, the pulse width was fixed at 0.1W =  
seconds, and the force amplitude ( A ) was gradually increased 

to approach approximately the body weight of the robot, at 
which point instability begins to emerge. In the second case, 
the force amplitude was held constant at a moderate level (

60%A =  of body weight), while the pulse width ( )W  was 
incrementally increased until the robot reached the edge of 
instability with 0.4W =  seconds. Notably, as long as these 
disturbances vanish, the robot takes approximately 10 steps 
for the first case and 7 steps for the second case to return to its 
previous gait pattern, demonstrating the controller’s ability 
to recover and reestablish stable locomotion after transient 
disturbances.

The non-vanishing disturbance tests further validate 
the controller’s robustness, as the system maintained stable 
operation with degradation in rewards (40% reduction in total 
reward) despite a constant force applied over time (see Table. 
3). This adaptive response, shown by the consistent stability 
reward ( sR ), suggests that the controller can maintain core 
stability while managing sustained disturbances with an 
amplitude of 14%A =  of body weight. These results affirm 
the controller’s robustness, demonstrating that it is well-suited 
for deployment in real-world scenarios where maintaining 
stability under unknown dynamic and unanticipated 
conditions is essential.

4- Discussion and Conclusion
This paper presents a novel, simple-to-implement, and 

bio-inspired control strategy to generate gait cycles for legged 
robots. The proposed control method utilizes the leg states 
(position and velocity) at the contact moment to generate 
a corrective impulsive actuation, making the robot stable, 

Table 3. Impact of vanishing and non-vanishing disturbances on reward. The table shows the percentage 
changes in each reward under the different disturbance conditions, illustrating the system’s sensitivity to each 
disturbance type. In this table, the body weight (BW) is about 69N, and the applied forces are reported as a 

ratio of the body weight.

Table 3 Impact of vanishing and non-vanishing disturbances on reward. The table shows the percentage 

changes in each reward under the different disturbance conditions, illustrating the system’s sensitivity to 

each disturbance type. In this table, the body weight (BW) is about 69N, and the applied forces are 

reported as a ratio of the body weight. 

 

 Parameters 𝑅𝑅𝑡𝑡 𝑅𝑅𝑣𝑣 𝑅𝑅𝑒𝑒 Recovered in 

Vanishing 

A = 100% BW 

W = 0.1 s 
-50% -70% -70% 10 steps 

A = 60% BW 

W = 0.4 s 
-70% -95% -40% 7 steps 

Non-
Vanishing B = 14% BW -40% -70% -15% - 
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energy-efficient, robust, and capable of regulated forward 
velocity. This method is ideal for systems employing semi-
active actuation mechanisms.

In DC motors, the start torque is much higher than the 
nominal torque. Using impulsive controllers, such as our 
suggested controller, allows us to maximize this feature and 
significantly reduce motor size. Consequently, this reduces 
the robot’s total weight, energy consumption, battery weight, 
and cost.

Reinforcement learning methods are based on heuristic 
search, which might lead to falls and severe scenarios for 
robotic systems. Given the high cost of robotic systems, 
especially legged robots, it is not safe to run reinforcement 
learning methods directly on such systems. However, safe 
reinforcement learning approaches can minimize these risks. 
One such method is reward shaping, as employed in this 
paper. Our proposed reward shaping can also be fine-tuned to 
minimize robot failure scenarios and improve learning safety.

4- 1- Future work
Our next steps are: (1) extend the simulations of our 

general method to multi-legged systems (e.g., bipedal 
robots, quadruped robots, etc.), (2) implement the proposed 
controller and its training strategy in practical applications, 
and (3) compare the proposed controller with other existing 
controllers in the literature. These steps will help us further 
validate and refine our approach, ensuring its effectiveness 
and robustness across different robotic platforms.
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Appendix A: Derivation of Dynamic Equations for Single-Legged Hopping Model 

This appendix provides a detailed derivation of the dynamic equations for the planar single-legged robot. 
The dynamics of this robotic model is described as: 

𝐷𝐷(Θ)Θ̈ + 𝐶𝐶(Θ, Θ̇) + 𝐺𝐺(Θ) = 𝑩𝑩𝑇𝑇𝐹𝐹𝑎𝑎𝑎𝑎 + 𝑬𝑬𝑇𝑇𝐹𝐹𝑝𝑝𝑎𝑎 + 𝐹𝐹𝑐𝑐(𝑞𝑞) + 𝐹𝐹𝑏𝑏(𝑣𝑣),   𝐹𝐹𝑎𝑎𝑎𝑎 = [𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦]𝑇𝑇                           
where Θ = [𝑞𝑞, 𝑥𝑥, 𝑦𝑦]𝑇𝑇 = [𝜃𝜃ℎ𝑖𝑖𝑝𝑝, 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑥𝑥, 𝑦𝑦]𝑇𝑇 ∈ ℝ4 denotes the generalized coordinates of the robot with 4 

degrees of freedom. Θ̇ = [𝜔𝜔ℎ𝑖𝑖𝑝𝑝, 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦]𝑇𝑇 ∈ ℝ4  is the derivative of the generalized coordinates. 
𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦  are actuation forces applied to the robotic model from the ground in 𝑥𝑥  and 𝑦𝑦 directions. In 
addition, 𝐷𝐷 ∈ ℝ4×4 denotes the inertia matrix, 𝐶𝐶 ∈ ℝ4 denotes the Coriolis and centrifugal forces vector, 
and 𝐺𝐺 ∈ ℝ4 denotes the generalized gravity vector. The term 𝐹𝐹𝑘𝑘𝑥𝑥𝑒𝑒 ∈ ℝ2 denotes the GRFs acting on the 
robot’s contacting feet and  𝑩𝑩 = 𝑬𝑬 ∈ ℝ2×4 denotes the Jacobian of the associated contact frame. 𝐹𝐹𝑐𝑐(𝑞𝑞) and 
𝐹𝐹𝑏𝑏(𝑣𝑣) The detailed derivations of the dynamical equations are presented as follow. 

𝑩𝑩 = 𝑬𝑬 = [
−𝑙𝑙1 sin(𝜃𝜃ℎ𝑖𝑖𝑖𝑖) − 𝑙𝑙2sin (𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) −𝑙𝑙2sin (𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 1 0
𝑙𝑙1 cos(𝜃𝜃ℎ𝑖𝑖𝑖𝑖) + 𝑙𝑙2cos (𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 𝑙𝑙2cos (𝜃𝜃ℎ𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 0 1]  

𝐷𝐷11 = 𝑚𝑚1(𝑙𝑙1
2 + 𝑑𝑑2)
12 + 𝐼𝐼2 + 𝑙𝑙1

2𝑚𝑚1
4 + 𝑙𝑙1

2𝑚𝑚2 + 𝑙𝑙2
2𝑚𝑚2
4  +  𝑙𝑙1𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)  , 𝐷𝐷22 = 𝑚𝑚2𝑙𝑙2

2

4  +  𝑚𝑚2(𝑙𝑙2
2 + 𝑑𝑑2)
12  

𝐷𝐷33 = 𝑚𝑚1 + 𝑚𝑚2 , 𝐷𝐷44 = 𝑚𝑚1 + 𝑚𝑚2  , 𝐷𝐷12 = 𝐷𝐷21 = 𝑚𝑚2(𝑙𝑙2
2 + 𝑑𝑑2)
12 + 𝑚𝑚2𝑙𝑙2

2

4  + 𝑙𝑙1𝑚𝑚2 cos(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 𝑙𝑙2
2   

𝐷𝐷13 = 𝐷𝐷31 = −
𝑚𝑚2𝑙𝑙2 sin(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2  + 𝑚𝑚2𝑙𝑙1 sin(𝑞𝑞1) −
𝑙𝑙1𝑚𝑚1 sin(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)

2   

𝐷𝐷14 = 𝐷𝐷41 =
𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2 + 𝑚𝑚2𝑙𝑙1 cos(𝑞𝑞1) +  𝑙𝑙1𝑚𝑚1
cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)

2  

𝐷𝐷24 = 𝐷𝐷42 =
𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2   , 𝐷𝐷34 = 𝐷𝐷43 = 0 

𝐶𝐶1 =  − 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
2 𝑙𝑙1𝑙𝑙2𝑚𝑚2 sin(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2  − 𝜔𝜔ℎ𝑖𝑖𝑝𝑝𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑙𝑙1𝑙𝑙2𝑚𝑚2 sin(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) , 𝐶𝐶2 = 𝜔𝜔ℎ𝑖𝑖𝑝𝑝
2 𝑙𝑙2𝑚𝑚2𝑙𝑙1𝑠𝑠𝑖𝑖𝑘𝑘(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 

𝐶𝐶3 = −𝜔𝜔ℎ𝑖𝑖𝑝𝑝
2 𝑚𝑚2𝑙𝑙1 cos(𝑞𝑞1) +

𝑚𝑚2𝑙𝑙2 cos(𝑞𝑞1 +  𝑞𝑞2) (𝜔𝜔ℎ𝑖𝑖𝑝𝑝  + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)2

2  −
𝜔𝜔ℎ𝑖𝑖𝑝𝑝

2 𝑙𝑙1𝑚𝑚1 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)
2  

𝐶𝐶4 = 𝜔𝜔ℎ𝑖𝑖𝑝𝑝
2 𝑚𝑚2𝑙𝑙1 sin(𝑞𝑞1) +

𝑚𝑚2𝑙𝑙2 sin(𝑞𝑞1 +  𝑞𝑞2) (𝜔𝜔ℎ𝑖𝑖𝑝𝑝  + 𝜔𝜔𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)2

2 −
𝜔𝜔ℎ𝑖𝑖𝑝𝑝

2 𝑙𝑙1𝑚𝑚1 sin(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)
2  

𝐺𝐺1 =
𝑔𝑔𝑙𝑙2𝑚𝑚2 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2  +
𝑔𝑔𝑙𝑙1𝑚𝑚1 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝)

2  +  𝑔𝑔𝑙𝑙1𝑚𝑚2 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝) 

𝐺𝐺2 =
𝑙𝑙2𝑚𝑚2𝑔𝑔 cos(𝜃𝜃ℎ𝑖𝑖𝑝𝑝 + 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)

2   , 𝐺𝐺3 = 0  , 𝐺𝐺4 = 𝑔𝑔(𝑚𝑚1 + 𝑚𝑚2) 
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