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ABSTRACT: This paper presents a comprehensive investigation into the modeling and dynamic 
analysis of a XY mechanism, considering the potential occurrence of motor pulley slipping. The 
research commenced with the establishment of kinematic relationships among system components 
and the definition of virtual pulleys. By characterizing static and kinetic frictions for individual system 
elements, various rolling and slipping states were explored. The study unveiled that the system, excluding 
motor pulleys, experiences a stick-slip phenomenon due to friction between actuator components and 
the ground, resulting in deadzones during motion initiation. To address this, a novel friction model 
encompassing deadzones was introduced, and equations accounting for the stick-slip phenomenon were 
derived. Moreover, recognizing that each actuator motor can be in either a rolling or slipping state, it 
was established that the mechanism represents a hybrid-DOF dynamic system. The equations of motion 
switch between four modes, denoted as RR, SR, RS, and SS, contingent on input voltages, kinematic and 
dynamic variables, and friction coefficients between motor pulleys and belts. Calculating the required 
friction to maintain rolling was essential; insufficient friction between motor pulleys and belts leads 
to motor slipping. The determination of the system’s subsequent dynamics considered different motor 
states, varying DOF, and the interplay of stick-slip phenomena with deadzones. Ultimately, dynamic 
analyses of the mechanism were conducted through simulations in three distinct scenarios. This study 
effectively highlights the nonlinear effects and complexities inherent in this mechanism, offering 
valuable insights into its behavior under different conditions.
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1- Introduction
1- 1- Overview

The XY mechanism has emerged as a pivotal innovation 
in the realm of mechanical systems and precision engineering, 
offering unparalleled precision and accuracy. Its synchronized 
belt arrangement minimizes backlash and positional errors, 
resulting in finer and more detailed prints and cuts. This 
mechanism’s efficiency is evident in its rapid and smooth 
movement, achieved through coordinated motor control and 
parallel belt paths, which reduce production times and enhance 
CNC machining operations. Moreover, the CoreXY design’s 
emphasis on reduced inertia facilitates quicker acceleration 
and deceleration, ultimately translating into faster overall 
speeds. This harmonious movement also mitigates vibrations 
and sudden shifts, ensuring consistent layer heights in 3D 
printing and achieving precise cuts in CNC machining. The 
versatility of the CoreXY mechanism finds application in 
a wide array of industries that demand exacting movement 
control. In the realm of 3D printing, it facilitates the creation 
of intricate designs, reduces vibrations for improved layer 

adhesion, and expedites the production of detailed prints. 
CNC machining benefits from its precision, enabling intricate 
tasks such as milling, engraving, and cutting. Industries 
engaged in prototyping and rapid manufacturing capitalize 
on CoreXY’s accuracy for crafting functional prototypes 
and small-scale production runs. From high-technology 
industries, where intricate components meet stringent 
quality benchmarks, to the healthcare sector, which requires 
precision in medical devices, CoreXY mechanisms offer 
reliable performance. Despite its transformative potential, the 
mathematical modeling of the CoreXY mechanism presents 
a set of intricate challenges. Its complex kinematic structure 
gives rise to nonlinear relationships between motor inputs 
and positional outcomes, necessitating meticulous derivation 
of accurate mathematical expressions. Cross-axis coupling 
introduces further complexity, requiring the consideration of 
interactions between the x and y axes for precise modeling. 
Ensuring proper synchronization of belts and accounting 
for their behavior, along with belt stretch and tension, is 
paramount for an accurate model. Incorporating motor 
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dynamics, friction, wear, and discretization into the model 
demands a comprehensive understanding of mechanical and 
dynamic behavior. 

Frictional elements, including pulleys, are intrinsic to the 
CoreXY mechanism and significantly influence its dynamic 
behavior. Friction, aside from opposing the system’s motion, 
necessitates an increase in actuator energy, and due to its 
inherently unpredictable behavior, introduces nonlinearity 
into the system’s dynamics. One notable nonlinearity 
arising from the transition in frictional states is the stick-
slip phenomenon, wherein the continuous change in forces 
and torques between static and kinetic states leads to highly 
intricate and nonlinear system behavior. The CoreXY 
mechanism comprises several movable components, each 
potentially in either a static or kinetic state, depending on 
the mechanism’s kinematics. Hence, it is imperative to 
consider the stick-slip phenomenon comprehensively for 
all components within the mechanism based on kinematic 
relationships. Another undesirable effect of friction is the 
creation of a deadzone when the system initiates motion [1]. 
In other words, when an object is at rest with static friction 
against a surface, an input force must be applied sufficiently 
to overcome static friction and set it in motion, resulting in 
the confinement of the system’s dynamic input to a deadzone 
function [2]. Another nonlinear factor contributing to the 
complexity of the CoreXY mechanism’s dynamics is the 
possibility of pulley slippage in actuator motors. Depending 
on the instantaneous speed and acceleration of the system’s 
components, applying voltage inputs to the actuator motors 
may cause individual motor pulleys to transition between 
rolling and slipping states or vice versa. Moreover, pulley 
slippage effectively separates the motor from the system’s 
dynamics, granting it independent motion, and consequently 
increasing the system’s DOF. Therefore, by accounting for the 
possibility of slippage in each motor, the CoreXY mechanism 
may exhibit 2, 3, or 4 DOF, with transitions occurring 
between them at any given moment. As a result, the CoreXY 
mechanism does not conform to a unified dynamic model and 
behaves as a hybrid-DOF system. In this paper, considering 
various rolling/slipping states for the two actuator motors, the 
dynamic modeling of the mechanism has been undertaken, 
presenting a switchable model encompassing four distinct 
states.

1- 2- Literature Review
The domain of mechanical systems and precision 

engineering has witnessed a resurgence, sparked by a 
succession of groundbreaking inquiries, each embarking on 
a unique voyage to unravel the complexities of frictional 
adjustment, dynamic governance, and advanced motion 
mechanisms. Through methodical explorations and inventive 
methodologies, these investigations have made substantial 
contributions to the progression of mechanical design 
and positioning technologies, expanding the horizons of 
performance, precision, and productivity. One particularly 
noteworthy exploration venture into the realm of frictional 
adaptation, a crucial pursuit in the quest for enhanced 

accuracy and control [3], [4]where deep learning (DL. In the 
study [5], researchers delved into the subtleties of friction 
dynamics within a planar slider, employing parameter 
estimation methods to formulate a comprehensive friction 
model [6]. This model was subsequently incorporated into 
a PID controller, resulting in the attainment of flawless 
positional tracking accuracy, thereby providing invaluable 
insights into the dynamic attenuation of frictional forces. 
Within the expansive domain of additive manufacturing, the 
study [7]additive manufacturing has grown steadily and found 
numerous applications across all types of industries. More 
recently, the industry has seen a spur of growth as the terms 
of the original patents expired and new companies entered 
the market. While there exist several different methods of 
additive manufacturing, polymer-based material extrusion 3D 
printing (also known as fused filament fabrication introduces 
a groundbreaking endeavor centered around a large-scale 
3D printing device. This innovation harnesses the geometry 
of a different shape, maximizing its advantages through 
the application of simplified kinematic equations. Not only 
does this approach enhance printing accuracy, but it also 
establishes the groundwork for efficient large-scale printing 
processes. The pursuit of dynamic control and precision 
takes the spotlight in the study [8], where the concept of 
adaptive fuzzy-logic deadzone compensation plays a pivotal 
role. This study delves into the intricacies of positioning 
control for an XY table, introducing advanced control 
strategies that effectively mitigate deadzone effects through 
adaptive control algorithms [9]. This approach exemplifies 
the harmonious interaction between dynamic control and 
compensation, providing a holistic solution for improved 
motion precision. Building upon the distinctive framework of 
this new mechanism, study [10] embarks on a comprehensive 
exploration of kinematic and dynamic modeling. Employing 
Lagrange equations, the study meticulously dissects dynamic 
behaviors. Notably, the consideration of friction, now in 
a new light, enriches the understanding of the intricate 
dynamics of the system. Study [11] resonates with the desire 
for linear and seamless motion by unveiling a groundbreaking 
mechanism with characteristics that minimize backward and 
nonlinear motion properties. Through ingenious engineering, 
this innovative mechanism achieves a linear and continuous 
motion trajectory. Additionally, the incorporation of a 
flexure mechanism further enhances motion continuity, with 
friction serving as a critical non-switching element within 
the dynamic equations. Amidst this vibrant landscape, study 
[12] presents an exploration into a hollow-type piezoelectric 
positioning platform, introducing a three-stage flexible lever 
amplification. This innovative platform design offers a novel 
approach to motion amplification, carefully considering 
flexible mechanisms and piezoelectric properties. In 
doing so, this study contributes a layer of complexity and 
adaptability to motion systems within the field of precision 
engineering.  Furthermore, study [13] sheds light on the 
intricacies of modeling robotic systems with closed-circuit 
belt-pulley transmissions. The study reveals the complexities 
of belt-pulley network friction, encompassing factors such as 
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belt tension, pulley wrap angles, and the number of pulleys 
[14]. Employing multi-friction models for pulleys, the 
research navigates the multifaceted interplay of frictional 
forces, further expanding the realm of dynamic modeling. 
In numerous mechanical systems involving contact 
between surfaces, the challenge of friction poses significant 
design complexities for control systems. Frictional forces 
manifest between surfaces in both static and kinetic 
forms, characterized by their inherently nonlinear nature, 
which defies precise mathematical modeling [15], [16]. 
Additionally, the transition from static to kinetic friction, as 
well as the point at which movement commences or ceases, 
remains obscure. Given the inherent uncertainties introduced 
by friction in control systems, numerous researchers have 
approached the problem by treating friction as a disturbance 
during controller design and employing estimators, such as 
state observers, to approximate its effects. In a noteworthy 
instance, in 1989, Ostertag and colleagues devised an observer 
tailored to estimate the dry friction effects exerted on an 
inverted pendulum system. This innovative approach enabled 
the system’s control through state feedback mechanisms [17], 
[18], [19].  In reality, the constant transformation between 
static and kinetic friction ushers in a perpetual cycle of motion 
and halts, a phenomenon often termed as stick-slip [20], 
[21]. This occurrence can wield detrimental consequences 
on the control of systems where surface interaction prevails. 
Employing a switching model and integrating feedback 
control, particularly in scenarios involving dry friction such 
as brake systems, servo systems contending with friction, 
vibration-propelled locomotion systems, ultrasonic motors, 
drilling apparatus, haptic devices characterized by friction, 
and the dynamic dynamics of seismic fault lines, emerges as 
a viable approach to govern systems susceptible to the stick-
slip phenomenon [22], [23]. To illustrate, within the realm 
of oil and gas drilling, the stick-slip phenomenon constitutes 
a pivotal consideration [24]. Given the unpredictable 
environmental conditions surrounding the drilling process 
and the nonlinearity of frictional forces, the behavior of the 
drilling equipment inherently adopts nonlinear characteristics. 
When delving into friction modeling, it becomes imperative 
to effectively capture the system’s switching dynamics [25]. 
The Stribeck model emerges as one of the most prevalent 
models employed in systems grappling with friction, offering 
insights into friction as a function of motion velocity [26], 
[27]. On the flip side, within mechanical systems, the frictional 
resistance to motion, whether in static or kinetic states, incurs 
energy losses and escalates the power demands placed on the 
actuator for system control.  In situations where the system 
is at rest, any applied actuator force must surpass the static 
friction force’s magnitude for motion to initiate. Consequently, 
within the range where the actuator force remains inferior to 
the static friction force, the system encounters a deadzone. 
This deadzone can manifest with either symmetric upper and 
lower boundaries [28] or asymmetric boundaries [29].

1- 3- Contributions and Innovations
Based on the conducted literature review, the innovative 

contributions in this paper can be organized as follows:
•	 Novel Friction Model: The paper introduces a new 

friction model that incorporates deadzones, addressing 
the limitations of traditional friction models which do not 
account for these phenomena.

•	 Stick-Slip Analysis: It explores the stick-slip phenomenon 
specifically in the context of the XY mechanism, 
highlighting how friction between actuator components 
and the ground results in motion deadzones.

•	 Hybrid DOF Dynamic System: The research establishes 
the mechanism as a hybrid degrees of freedom (DOF) 
dynamic system, recognizing that each actuator motor can 
be in different states (rolling or slipping).

•	 Dynamic Equations of Motion: The paper derives 
equations of motion that switch between four distinct 
operational modes (RR, SR, RS, SS), depending on various 
factors such as input voltages and friction coefficients.

•	 Comprehensive State Analysis: It provides a detailed 
analysis of the system dynamics based on different 
motor states and their impact on motion, which includes 
assessing the required friction to maintain rolling to 
prevent slipping.

•	 Simulations for Dynamic Analysis: Finally, the study 
includes dynamic analyses conducted through simulations 
across three different scenarios, effectively demonstrating 
the nonlinear behaviors of the mechanism under varied 
conditions.
The remaining sections of this paper are organized as 

follows. Section 2 covers an explanation of the CoreXY 
mechanism’s operation, the actuators used to set it in motion, 
the derivation of kinematic relationships within the system, 
the establishment of dynamic equations for the central 
mechanism, a description of the introduced model for stick-
slip with deadzones, the procedure for detecting friction sign 
changes, the hybrid-DOF dynamic modeling, and the method 
for identifying system rolling/slipping states as a precursor 
for further steps. Section 3 involves the simulation of the 
derived equations using MATLAB and the dynamic analysis 
of the mechanism with its inherent nonlinearities. Section 4 
will conclude the findings presented in this paper.

Fig. 1 illustrates the flowchart of the hybrid-DOF system 
modeling algorithm presented in this paper. As shown in 
Fig. 1, the process begins by using the kinematic data of the 
manipulator to calculate the velocities and accelerations of 
the driven pulleys and virtual pulleys, which are then used to 
determine whether the system is in a rolling or slipping state. 
Additionally, the motor dynamics and the friction between 
the belt and the motor pulleys are considered to compute the 
input torque for the Hybrid Dynamics Equations.

Based on the rolling or slipping state in the previous time 
step (k-1), the state of the system in the current time step (k) 
is identified and applied as a trigger to the switching dynamic 
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equations. Finally, the output accelerations of the manipulator 
and the motors are calculated, taking into account the effects 
of deadzone and the stick-slip phenomenon.

2- XY Mechanism Example Introduction
In this section, the CoreXY mechanism is initially 

explained as an example of belt-pulley mechanisms. As 
depicted in Fig. 2, the CoreXY mechanism utilizes two DC 
servo motors along with 8 pulleys to actuate a collar with mass 
m on a vertical slider with mass M. This system is a 2-DOF 
mechanism, and by appropriately adjusting the voltages 

applied to the two motors as the system inputs, the position of 
the collar can be controlled in the XY plane. Furthermore, to 
transmit the generated torques from the motors to the sliders, 
two belts with tensions 1P  and 2P  are employed.

To name the pulleys, angle symbols are employed 
as indicated in Fig. 2. Subscript 1 is used for the pulleys 
connected to Belt 1, and subscript 2 is assigned to pulleys 
connected to Belt 2. Subsequently, after examining the 
equations related to the system’s actuators, the kinematics 
and dynamics of the mechanism will be derived, considering 
the modeling assumptions described below.

 

Fig. 1. Flowchart of the dynamic modeling algorithm for the hybrid-DOF system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the dynamic modeling algorithm for the hybrid-DOF system

 

Fig. 2. An overhead view of the CoreXY mechanism, comprising DC servo motors, torque-transmitting pulleys, and 
two sliders on horizontal and vertical rails. The system is configured as a hybrid-DOF dynamic system which can 
have 2, 3 or 4 DOF in the different rolling/slipping modes, with the use of two belts with different initial tensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. An overhead view of the CoreXY mechanism, comprising DC servo motors, torque-transmitting pul-
leys, and two sliders on horizontal and vertical rails. The system is configured as a hybrid-DOF dynamic 
system which can have 2, 3 or 4 DOF in the different rolling/slipping modes, with the use of two belts with 

different initial tensions.
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Assumptions
•	 The belts, labeled as Belt 1 and Belt 2, have constant 

initial tensions, represented by 1P  and 2P .
•	 Neglecting the effects of weight, friction, and the 

nonlinear behavior of belt motion, the belts maintain a 
constant length during movement and do not undergo any 
bending. 

•	 The mechanism’s pulleys may come into contact with dry 
friction against the ground and can either be stationary or 
in motion. 

•	 All pulleys, except for the motor-driven ones, are always 
in a rolling state and do not slip. 

•	 The interaction between the motor pulleys and the belts 
can involve either rolling or slipping, corresponding to 
static or kinetic friction, respectively.

2- 1- Assumed Servo Actuators
As observed in Fig. 2, two DC servo motors have been 

employed to actuate the mechanism. By applying voltage inputs 
to each of the motors, the output torque of these motors can be 
adjusted. Subsequently, the equations pertaining to the system’s 
actuators are extracted in accordance with Eqs. (1)-(3).
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r  

(6) 

θ̇14 =
ẋ
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As depicted in Eq. (1), the output torque of the DC motor 
Eτ , is proportional to the current intensity i , multiplied by 

a constant coefficient tK . On the other hand, in accordance 
with Eq. (2), the current intensity generated in the DC motor 
increases with an increase in input voltage v , and the rotational 
speed of the motor is affected by the multiplication of the 
voltage effects by the back EMF coefficient eK . Therefore, 
by substituting Eq. (2) into Eq. (1), the output torque of the 
motor can be calculated as a function of the input voltage 
and the rotational speed of the motor. In these equations, R  
represents the resistance of the motor’s armature winding.

2- 2- CoreXY Collar-Belt Kinematics 
In this section, considering the DOF x and y for the 

system, the kinematics of the CoreXY mechanism, including 
the rotational velocities and accelerations of the pulleys, 
are derived. As illustrated in Fig. 2, 8 pulleys are employed 
to transmit the torques from the motors to the sliders. The 
relationships for their velocities can be expressed in terms of 
x  and y  as shown in Eqs. (4)-(11). Additionally, by taking 
derivatives of the velocity equations, the pulley accelerations 
can also be readily obtained in terms of 

¨
x  and 

¨
y , which will 

have similar relationships to the velocity equations.
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ẋ − ẏ
r  

(13) 

θ̈1v =
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r  

(15) 

 

+T10r − T11r + τ11 = J′ −ẍr  (16) 
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ẋ − ẏ
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ẍ − ÿ
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ẍ − ÿ
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ẋ + ẏ
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r  

(10) 

θ̇24 =
ẋ
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ẋ
r 

(7) 

θ̇21 = − ẋ
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Where r represents the radius of the pulleys, and it is 
assumed that all pulleys, including the motor pulleys, have 
the same uniform radius and i

jθ  , demonstrates the angular 
velocity of the thi pully driven by thj motor.

2- 3- Belt-Connected Virtual Pulleys
In this section, two virtual pulleys are introduced in the 

region where the motors are located, and it is assumed that 
the motion of these pulleys occurs smoothly along with the 
mechanism without any slippage. This allows us to divide 
the entire system into three parts: motor 1 on the left, motor 
2 on the right, and the central 2-DOF mechanism, referred 
to as the “central mechanism.” Therefore, the velocities and 
accelerations of the virtual pulleys, which are part of the 
central mechanism, can be expressed in terms of the velocities 
and accelerations of the DOF as shown in Eqs. (12)-(15).
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r 

(4) 

θ̇12 =
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ẍ − ÿ
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r  

(13) 

θ̈1v =
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2- 4- Dynamic Modelling of Hybrid DOF System
In this section, considering the internal forces and torques 

acting on the components of the system, at first the dynamic 
equations for the central mechanism are derived. Then, the 
different hybrid dynamic states of the system are examined. 
As depicted in Fig. 3, the tensile forces acting on each of 
the system’s components, including the pulleys and sliders, 
denoted as T , along with the torques and friction forces, 
represented by τ  and f , respectively, are specified.

Remark 1. As illustrated in Fig. 3, for each of the pulleys, 
two tension forces are depicted with identical subscripts. 
When the belt passes over each pulley, due to the pulley’s 
torque or its rotational inertia, a difference in tension forces 
on both sides of the pulley is created, denoted as P∆ . Prior to 
motion, the tension forces on both sides of the pulley are equal 
and equivalent to the initial tension force, P . Assuming the 
transfer of the same amount of tension force from one side to 

the other side of the pulley, it is possible to consider the sum 
of the tension forces before and after motion as 2P .

In Fig. 3, the motor pulleys are separated from the 
system, and the forces and torques acting on each component 
are illustrated. Applying voltage inputs to each of the 
motors, torque E

1τ  and E
2τ  are generated in motors 1 and 

2, respectively. Friction torques between the motor pulleys 
and the ground are denoted as 0

1τ  and 0
2τ , respectively. Due 

to the contact between motor pulleys and the belts, contact 
forces E

1f  and E
2f  are transmitted to motors 1 and 2, which 

are of static or kinetic friction, and these forces depend on the 
interaction of the pulleys with the belts. Moreover, vertical 
forces on the surface, adjusted to the tension in the belts and 
the weight of the sliders, are taken into account. Since the 
belts wrap around the motor pulleys 180 degrees, the vertical 
force between the belt and each motor pulley (with i 1,  2=  
corresponding to each belt) is calculated as i2P . However, 
for the 8 passive pulleys used in the central mechanism, 
considering an approximate 90-degree angle for the belt 
around each pulley, the vertical force between the belt and 
each passive pulley is considered as i2P . Additionally, the 
vertical forces acting on the horizontal and vertical rails are 
proportional to the weight on the rails and can be calculated 
as xN mg=  and ( )yN M m g= + , respectively.

2- 4- 1- Dynamic Equations of Collar-Belt System
Taking into consideration the forces and torques depicted 

in Fig. 3, the dynamic equations for the central mechanism 
can be written as Eqs. (16)-(25).
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Fig. 3. Free-body diagram of CoreXY system components, including tension forces, torques, and friction forces 
between the ground and system components, friction forces between belts and motor pulleys 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Free-body diagram of CoreXY system components, including tension forces, torques, and friction 
forces between the ground and system components, friction forces between belts and motor pulleys



M. M. Ebrahimi and M. R. Homaeinezhad, AUT J. Model. Simul., 56(2) (2024) 129-154, DOI: 10.22060/miscj.2024.22932.5350

135

τE = Kti (1) 

i = −Ke
R ω + 1

R v (2) 

τE = −KtKe
R ω + Kt

R v (3) 

 

θ̇11 = − ẋ
r 

(4) 

θ̇12 =
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(22) 

+T33r − T32r + τ24 = J′ +ẍr  
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𝔣𝔣s = −Nμssign(𝒜𝒜) (26) 

𝔣𝔣k = −Nμksign(𝓋𝓋) (27) 

 

𝔵̈𝔵 = 𝔣𝔣E + 𝔣𝔣f (28) 

𝔵̈𝔵 = ℱ(𝔣𝔣E, 𝔣𝔣s, 𝔣𝔣k, 𝓋𝓋) = 
 

{DZ(𝔣𝔣E, 𝔣𝔣s, 𝓋𝓋 = 0) 𝓋𝓋 = 0
𝔣𝔣E + 𝔣𝔣k 𝓋𝓋 ≠ 0 

(29) 

DZ(𝔣𝔣E, 𝔣𝔣s, 𝓋𝓋 = 0) = { 0 |𝔣𝔣E| < |𝔣𝔣s|
𝔣𝔣E + 𝔣𝔣s else  (30) 

 

f1kb = −2μ1kb P1sgn(ω1 − θ̇1v) (31) 

 (23)

+T41r − T40r + τ21 = J′ −ẍr  
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where J′  represents the inertia of the pulleys, xf  denotes 
the frictional force on the horizontal rail, and yf  represents 
the frictional force on the vertical rail.

2- 4- 2- Friction States and Direction Detection
The force or torque resulting from friction differs between 

a static object and a moving one. When a force or torque 
is applied to a static object, static friction is generated in 
the opposite direction of the applied force or torque. The 
static friction continues to build up until the magnitude of 
the applied force or torque exceeds the static friction, at 
which point the object will start accelerating, denoted as 
 . Since static friction opposes the initiation of motion, 
its direction is determined by the direction of acceleration, 
and the magnitude of the frictional force or torque can be 
calculated using Eq. (26). After the initiation of motion and 

the application of acceleration, the object’s velocity reaches a 
non-zero value, represented as ϑ . At this point, the direction 
of kinetic friction is opposite to the direction of the object’s 
velocity. The kinetic friction can be calculated using Eq. (27).

+T41r − T40r + τ21 = J′ −ẍr  
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r  

(20) 

+T32r − T31r + τ23 = J′ ẍ − ÿ
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+T22r + T32r − T10r − T40r + fyr = (M +m)rÿ (25) 
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In these equations, N  represents the normal force, sµ
is the coefficient of static friction, kµ  is the coefficient of 
kinetic friction, sf  stands for static friction, and kf  represents 
kinetic friction, which are applied to the object.

2- 4- 3- Stick-Slip with Deadzone Function Definition
It is assumed that the dynamic system with unit inertia 

is subjected to friction f , which can take on values sf  and 
kf  in two states: static friction and kinetic friction. The 

acceleration of this system is calculated according to Eq. 
(28), where E f  and f f  denote the representative terms of 
external forces (torques) and friction forces, respectively. 
When Ef  is applied to the dynamic system, its behavior can 
be described as a function ( )E s k, , ,ϑf f f , as shown in Eq. 
(29). Additionally, the deadzone function, denoted by DZ, 
which represents the deadzone at the start of motion, can be 
obtained using Eq. (30).
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r  

(20) 

+T32r − T31r + τ23 = J′ ẍ − ÿ
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(17) 

+T20r − T21r + τ12 = J′ ẍ + ÿ
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(17) 

+T20r − T21r + τ12 = J′ ẍ + ÿ
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In other words, a dynamic system can exhibit two states: 
static and kinetic. In the first state, static friction prevents 
motion, while in the second state, kinetic friction hinders 
the system’s motion. When an external force is applied 
to the system while it is at rest, two scenarios may occur, 
determined by the deadzone function. If the magnitude of 
the external force is insufficient to overcome static friction, 
the system’s acceleration is calculated as zero. However, if 
the external force can overcome static friction, the system’s 
acceleration is calculated as the sum of the applied force and 
the static friction, resulting in a non-zero acceleration. In the 
kinetic state, when the body has a non-zero velocity, kinetic 
friction is constantly applied constant with a value of kf  and 
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in the direction opposite to the body’s velocity.

2- 4- 4- Motor-Belt Friction Definition
Taking into account the friction between the belt and the 

pulley of each motor in both static and kinetic states, the 
friction force can be considered as shown in Eqs. (31)-(34). 
As can be seen, the direction of kinetic friction depends on 
the velocity difference between the motor pulley and the 
virtual pulley, while static friction’s direction is determined 
by the difference in acceleration between the motor pulley 
and the virtual pulley. The magnitude of kinetic friction 
can be taken as a constant, assuming a constant coefficient 
of kinetic friction. However, determining the magnitude of 
static friction is not possible independently and is equal to 
the motor torque applied to the pulley until it reaches its 
maximum value, at which point it turns into kinetic friction. 
The maximum static friction can be determined using Eq. 
(33)-(34). In these equations, the sign of the acceleration of 
the motor pulley as well as the virtual pulley depends on the 
applied motor torques.
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(23) 

+T23r + T41r − T33r − T11r + fxr = mrẍ (24) 
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𝔣𝔣s = −Nμssign(𝒜𝒜) (26) 

𝔣𝔣k = −Nμksign(𝓋𝓋) (27) 

 

𝔵̈𝔵 = 𝔣𝔣E + 𝔣𝔣f (28) 

𝔵̈𝔵 = ℱ(𝔣𝔣E, 𝔣𝔣s, 𝔣𝔣k, 𝓋𝓋) = 
 

{DZ(𝔣𝔣E, 𝔣𝔣s, 𝓋𝓋 = 0) 𝓋𝓋 = 0
𝔣𝔣E + 𝔣𝔣k 𝓋𝓋 ≠ 0 

(29) 

DZ(𝔣𝔣E, 𝔣𝔣s, 𝓋𝓋 = 0) = { 0 |𝔣𝔣E| < |𝔣𝔣s|
𝔣𝔣E + 𝔣𝔣s else  (30) 

 

f1kb = −2μ1kb P1sgn(ω1 − θ̇1v) (31) 
 (31)

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
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ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (34)

In which b
1kµ  and b

2kµ  are the coefficients of kinetic 
friction between the pulleys and the motor belts number 1 
and 2. Also, the speed and acceleration of motor number 1 
are denoted by 1ω  and 1α , and the speed and acceleration of 
motor number 2 are represented by 2ω  and 2α .

Remark 2. Since the contact between the motor pulley 
and the belt depends on their relative speed and acceleration, 
it is necessary to use the relative speed and acceleration when 
calculating the static and kinetic friction between the pulley 
and the belt. These relative speed and acceleration values are 
determined based on the motion of the motor pulley as well 
as the speed and acceleration of the virtual pulley, which is 
essentially connected to the belt.

2- 4- 5-  Rolling/Slipping Hybrid-DOF Dynamic Equations
With the dynamic system presented in Fig. 3, dynamic 

equations can be considered for different scenarios in which 
the left and right motors are either in a rolling or slipping 
state. Thus, four modes can be defined for the system, each 
governed by different dynamic equations. The general 
equation governing the dynamics of the central mechanism 

can be formulated as Eq. (35), where ó  represents the 
inertia matrix, σb  is a vector containing the frictions of 
the pulleys and sliders, and στ  is the vector of forces and 
torques acting on the central mechanism.

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (35)

Remark 3. The dynamic system of the CoreXY 
mechanism, assuming the two motors can be in a rolling or 
slipping state, is a hybrid switching system. This is due to 
the fact that if each of the motors is in a rolling state, their 
motion is effectively coupled with the central mechanism, 
following its DOF. However, if a motor is in a slipping state, 
its motion becomes independent of the central mechanism 
and adds one degree of freedom to the system. As a result, 
the dynamic system can have either 2, 3, or 4 DOF at any 
given moment. Moreover, a unique identifier will be assigned 
to each dynamic mode, denoted as iDMN  (Dynamic Model 
Number), where i can take values from 1 to 4.

I . RR: Motor 1 and Motor 2 Rolling: 2 DOF, 1 DMN
In the first scenario, both motors are assumed to be in a 

rolling state, and the system functions as a unified 2-DOF 
mechanism. In this configuration, the system’s DOF is 
defined as the positions along the x and y axes. All angles, 
including those of the pulleys and motors, can be expressed 
in terms of these coordinates. Assuming a rolling state for 
both motors, the dynamic equation for each motor can be 
represented as Eqs. (36)-(37).

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (36)

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (37)

Thus, by considering these two equations along with the 
equations derived in Section 2.4.1, the dynamic equations 
governing the system can be formulated as Eq. (35), where the 
matrix. I  and the two vectors Ib  and Iτ  are calculated 
using Eqs. (38)-(40).

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (38)

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (39)
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f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (40)

Additionally, in this scenario, as both motors are in a 
rolling state, their angular acceleration and velocity can be 
expressed in terms of the DOF of the middle mechanism, as 
shown in Eqs. (41)-(44).

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (41)

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (42)

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 

 (43)

f2kb = −2μ2kb P2sgn(ω2 − θ̇2v) (32) 

f1smax
b = −2μ1smax

b P1sgn(α1 − θ̈1v) (33) 

f2smax
b = −2μ2smax

b P2sgn(α2 − θ̈2v) (34) 

 

 

𝓜𝓜σ𝔁̈𝔁 = 𝐛𝐛σ + 𝛕𝛕σ (35) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (36) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(37) 

 

𝓜𝓜I = [
mr + 8J′

r + 2J
r 0

0 (M +m)r + 4J′
r + 2J

r

] (38) 

𝐛𝐛I = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

(39) 

𝛕𝛕I = [τ1
E + τ2E
τ1E − τ2E

] (40) 

 

α1 = θ̈1v =
ẍ + ÿ
r  (41) 

α2 = θ̈2v =
ẍ − ÿ
r  

(42) 

ω1 = θ̇1v =
ẋ + ẏ
r  

(43) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(44) 

 
 (44)

II . SR: Motor 1 Slipping and Motor 2 Rolling: 3 DOF,
2 DMN

In this scenario, it is assumed that motor 1 is in a slipping 
state, while motor 2 is in a rolling state. As a result, with 
the independence of motor 1 due to slipping, one degree 
of freedom is added to the DOF of the mechanism, and the 
system will have three DOF. The equations related to the 
torques applied to the belts at the contact points with the 
motors can be seen in Eqs. (45),(46). Thus, the system consists 
of a 2-DOF mechanism on the right side of the system along 
with a motor on the left side of the system. As shown in Eq. 
(45), the frictional force between motor 1’s pulley and the 
belt is transformed into a torque applied to the motor, denoted 
as b

1kf r , and its reaction on the right-side mechanism.

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (45)

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (46)

By eliminating the effects of the left-side motor from 
the equations and applying Eq. (46) to the equations of the 
central mechanism, the parameters of the dynamic equation 
Eq. (35) can be calculated as Eqs. (47)-(49).

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (47)

By examining the inertia matrix presented in Eq. (47) 
and comparing it with the inertia matrix for the first rolling/
slipping scenario presented in Eq. (38), it’s evident that the 
inertia matrix in the second scenario is no longer diagonal, and 
the term 

J
r

−  has appeared in the off-diagonal of the matrix. 
Consequently, it can be concluded that by disconnecting the 
left-side motor, the dynamic symmetry of the system has 
been disrupted, resulting in coupled dynamic equations.

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (48)

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (49)

The friction vector can be obtained using Eq. (48). As 
observed in Eq. (49), the torque vector for the right-side 
mechanism includes the torque resulting from the translational 
friction, which is b

1kf r , acting as the actuator torque for the 
mechanism. Furthermore, the dynamic equation governing 
motor 1 can be formulated, considering the actuator torque 

E b
1 1kf rτ +  resulting from the translational friction between 

the motor’s pulley and the belt, as presented in Eq. (50). 
Additionally, since motor 2 is in a rolling state, its acceleration 
and velocity need to be calculated using kinematic relations, 
and these are expressed as Eqs. (51),(53). Moreover, with 
the determination of the acceleration of motor 1, its angular 
velocity can be obtained by integrating the acceleration, as 
shown in Eq. (52).

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (50)

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (51)

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (52)

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (53)
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III . RS: Motor 1 Rolling and Motor 2 Slipping: 3 DOF,
3 DMN

In this case, it is assumed that motor 1 is in a rolling 
state, while motor 2 is in a slipping state. Consequently, the 
system can be divided into two parts: motor 2 on the right 
and a 2-DOF mechanism on the left. The only connecting 
factor between them is the torque resulting from translational 
friction between the motor’s pulley and the belt, denoted as 

b
2kf r . Therefore, in this scenario, dynamic equations will be 

formulated for a 3-DOF system. The equations related to the 
belts at the points of contact with the motor’s pulleys can be 
observed in Eqs. (54),(55).

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (54)

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (55)

As seen in Eq. (55), a torque of b
2kf r  is applied to the 

belt due to the change in the state of motor 2 to slipping. 
In this scenario, by considering the equations of the middle 
mechanism, the parameters in Eq. (35) can be calculated as 
presented in Eqs. (56)-(58).

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57) 

 (56)

+T10r − T20r + f1kb r = 0 (45) 

+T30r − T40r + τ20 + τ2E = J ẍ − ÿ
r  

(46) 

 

𝓜𝓜II = [
mr + 8J′

r + J
r − J

r
− J
r (M + m)r + 4J′

r + J
r

] (47) 

 

𝐛𝐛II = 
 

[+τ1
1 + τ12 + τ13 + τ14 + τ20 + τ21 + τ22 + τ23 + τ24 + fxr

+τ12 + τ13 − τ20 − τ22 − τ23 + fyr
] 

 

(48) 

𝛕𝛕II = [f1k
b r + τ2E
f1kb r − τ2E

] (49) 

 

Jα1 = τ10 + τ1E + f1kb r 
(50) 

α2 = θ̈2v =
ẍ − ÿ
r  

(51) 

ω1 = ∫α1 dt 
(52) 

ω2 = θ̇2v =
ẋ − ẏ
r  

(53) 

 

+T10r − T20r + τ10 + τ1E = J ẍ + ÿ
r  (54) 

+T30r − T40r + f2kb r = 0 (55) 

 

𝓜𝓜III = [
mr + 8J′

r + J
r

J
r

J
r (M + m)r + 4J′

r + J
r

] (56) 

𝐛𝐛III = 
 

[+τ1
0 + τ11 + τ12 + τ13 + τ14 + τ21 + τ22 + τ23 + τ24 + fxr

+τ10 + τ12 + τ13 − τ22 − τ23 + fyr
] 

(57)  (57)

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (58)

As shown in Eq. (56), the inertia matrix is calculated in 
a non-diagonal form, indicating the loss of system dynamic 
symmetry due to the disconnection of motor 2, and the 
coupling of the dynamics of the mechanism on the left side. 
Furthermore, in Eq. (58), the torque resulting from the friction 
between the belt and motor 2 is applied to the mechanism on 
the left instead of E

2τ . Next, the acceleration and velocity of 
motors 1 and 2 can be calculated as presented in Eqs. (59)-
(62).

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (59)

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (60)

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (61)

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (62)

Since motor 1 is in a rolling state, its acceleration and 
velocity are calculated based on virtual pulley 1, while for 
motor 2, its acceleration is determined based on the friction 
from the belt, and it defines the next step’s angular velocity 
in integration.

IV . SS: Motor 1 and Motor 2 Slipping: 4 DOF, 4 DMN
The last scenario in which the dynamic system may exist 

is when both motors are in a slipping state. In this case, the 
dynamic system is divided into three subsystems, with two 
motors on the left and right sides and a 2-DOF mechanism in 
the center. Therefore, with both motors becoming independent, 
the dynamic system will act as a 4-DOF mechanism, and the 
torques resulting from the friction between the motors’ pulleys 
and belts will be a factor in connecting the subsystems. The 
equations for the torques applied to the belts at the contact 
points with the motors can be written as Eqs. (63),(64).

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (63)

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (64)

By using Eqs. (63),(64) along with the equations for the 
dynamics of the central mechanism obtained in Section 2.4.1, 
the parameters of Eq. (35) can be calculated as shown in Eqs. 
(65)-(67).

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (65)

As seen in Eq. (65), the inertia matrix in this case is 
similar to case I  and is diagonal, indicating the symmetry 
of the system’s dynamics and the decoupling of the slider 
motions from each other.

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (66)
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𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (67)

In this case, considering that both motors are in a slipping 
state, the friction vector can be obtained using Eq. (66) and 
the actuation vector for the 2-DOF central mechanism will be 
as shown in Eq. (67), containing only the torques resulting 
from the friction between the pulleys of the motors and the 
belts. Accordingly, dynamic equations for each of the motors 
can also be written, taking into account the actuation torques 

E b
1 1kf rτ +  for motor 1 and 22

E b
kf rτ +  for motor 2 as shown in 

Eqs. (68),(69). Furthermore, angular velocities are calculated 
by integrating the accelerations according to Eqs. (70),(71).

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (68)

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (69)

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (70)

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (71)

2- 4- 6- Next Step Rolling/Slipping State Determination
As seen in Section 2.4.5, the dynamic equations of the 

system can have four different modes, in one of which, the 
system’s degree of freedom and equation parameters are 
variable. To clarify the mode selection process, it is first 
determined which of the rolling/slipping states each motor 
is expected to be in after considering the system’s kinematics 
at the current time k 1−   and applying the input voltages to 
each of the motors, denoted as ( ) ( )1 2v k 1 ,  v k 1− − . In order 
to discern the chosen mode, this process is initially performed 
for one of the motors. The dynamic system, consisting of 
the motor pulley and belt, can be in two states, denoted as 
( )R k 1−  for rolling and ( )S k 1−  for slipping, where in both 

states, it can transition to ( )R k  or ( )S k  in the next time step 
k . According to Eq. (72), when the system is in ( )R k 1− , 
it is necessary to calculate the friction required to maintain 
the system in a rolling state, which corresponds to the static 
friction coefficient ( )s kµ  . By comparing this friction 
coefficient with the actual static friction coefficient, it will 
be determined whether the system will continue rolling or if 
the available friction is insufficient, causing it to transition to 
slipping in the next time step.

𝛕𝛕III = [τ1
E + f2k

b r
τ1

E − f2k
b r

] (58) 

 

α1 = θ̈1
v = ẍ + ÿ

r  (59) 

Jα2 = τ2
0 + τ2

E + f2k
E r (60) 

ω1 = θ̇1
v = ẋ + ẏ

r  
(61) 

ω2 = ∫ α2 dt (62) 

 

+T1
0r − T2

0r + f1k
b r = 0 (63) 

+T3
0r − T4

0r + f2k
b r = 0 (64) 

 

𝓜𝓜IV = [
mr + 8J′

r 0

0 (M + m)r + 4J′

r

] (65) 

 

𝐛𝐛IV = 
 

[+τ1
1 + τ1

2 + τ1
3 + τ1

4 + τ2
1 + τ2

2 + τ2
3 + τ2

4 + fxr
+τ1

2 + τ1
3 − τ2

2 − τ2
3 + fyr ] 

(66) 

𝛕𝛕IV = [f1k
b r + f2k

b r
f1k

b r − f2k
b r

] (67) 

 

Jα1 = τ1
0 + τ1

E + f1k
b r (68) 

Jα2 = τ2
0 + τ2

E + f2k
b r (69) 

ω1 = ∫ α1 dt (70) 

ω2 = ∫ α2 dt (71) 

 

R(k − 1) → {R(k): μs
b ≥ μs

⋆(k)
S(k): μs

b < μs
⋆(k) (72) 

 

 (72)

However, when the system, including the motor pulley 
and belt, is in the ( )S k 1−  state, as observed in Eq. (73), there 
is no static friction coefficient in play to determine the next 
state. Therefore, it is necessary to calculate the pulley motor 
and virtual pulley speeds in the next step. Then, it can be 
determined in which state the system is. If the speeds of the 
pulley motor and virtual pulley become equal in the next time 
step, indicating that their relative speed has become zero and 
the system has transitioned to a rolling state. However, if the 
speeds of the two pulleys are not equal, the system is still in 
a slipping state. Therefore, when the system is in ( )S k 1− , 
there is no need to determine the next state, and the kinematic 
variables, after integration, will specify the subsequent state 
of the system.

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (73)

In general, at time k 1− , based on the mechanism’s 
kinematics, the dynamic system can have four states: 

( )RR k 1− , where both motors are in a rolling state; ( )SR k 1−
, where motor 1 is slipping, and motor 2 is rolling; ( )RS k 1−
, where motor 1 is rolling, motor 2 is slipping; and the last 
state ( )SS k 1− , where both motors are slipping. Similar to 
determining the state for one motor and belt, depending on 
the state of the mechanism at k 1− , determining the state for 
both motors at k  will be different. In this section, each of 
these states will be examined.

To calculate ( )s kµ  , which represents the necessary 
friction coefficient to continue the rolling state, it is necessary 
to first calculate the ideal acceleration for the mechanism 
with the assumption of ( )R k  for each state where the motor 
is in ( )R k 1− . This ideal acceleration is denoted as x̂  and 
is calculated using Eq. (74). This acceleration is, in fact, 
the ideal acceleration that the mechanism can achieve if no 
slipping occurs. Upon determining the ideal accelerations, 
the motor is separated from the mechanism, and its diagram 
is drawn. Taking into account the motor’s acceleration from 
the kinematic equations, it is determined what friction force 
exists between the motor and the belt when the motor is in a 
rolling state. On the other hand, the maximum static friction 
force between the motor and the belt is also determined using 
the static friction coefficient. Therefore, ( )s kµ   and b

sµ  can 
be compared to determine whether the motor had enough 
friction or not, which will indicate the rolling or slipping state 
for the next step, respectively.
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S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (74)

Remark 4. The ideal acceleration calculated using Eq. 
(74) signifies that a motor in a rolling state should remain 
in the same state in the subsequent step. Therefore, when 
calculating ideal accelerations, it is imperative to consider that 

iDMN  should also be chosen according to the corresponding 
ideal state.

Case ( )1−RR k
If the mechanism is in the ( )RR k 1−  state, it is necessary 

to calculate the friction coefficients for each of the motors. 
These calculated coefficients should be compared with the 
real static friction coefficients of the system to determine 
whether the rolling/slipping state will persist in the next 
instant.

Remark 5. As observed in Section 2.4.5, the dynamic 
system has four different states with distinct dynamic 
equations. To calculate the required static friction coefficient 
for the continuation of the rolling state, dynamic system 
equations are used. Therefore, depending on the state the 
system is expected to be in the next step, the corresponding 
dynamic equations for that state should be utilized.

Assuming that the system is in ( )RR k 1− , the ideal 
acceleration for the entire mechanism with both motors in the 
rolling state, represented by 1DMN , is calculated. The ideal 
motor accelerations can be obtained using Eqs. (75),(76).

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (75)

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (76)

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (77)

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (78)

With the ideal accelerations of each motor determined, the 
dynamic equations for motor 1 and motor 2 will be as shown 
in Eqs. (77),(78). Using these equations, the static friction 
force required for rolling can be calculated as expressed in 
Eqs. (79),(80).

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (79)

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (80)

Where the sign of static friction is determined based on the 
angular acceleration of the motor relative to the virtual pulley 
when no friction is present. Thus, the coefficients 1sµ   and 

2sµ  , representing the static friction coefficients required to 
continue rolling, can be calculated as given in Eqs. (81),(82).

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (81)

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (82)

By determining the ideal static friction coefficients, the 
following scenarios can be examined for the system dynamics:

•	 RR  to 1 1 2 2 1( ) : ( ), ( );RR k k k DMNµ µ µ µ≥ ≥b b
s s s s

  In this 
case, the system will transition from ( )RR k 1−  to ( )RR k . 
Therefore, it is necessary for the actual friction coefficients 
of the system for both motors to be sufficiently large to 
keep both motors in a rolling state. Moreover, since the 
system is expected to be in the ( )RR k  state, to calculate 
the required friction coefficients, the dynamic equation 
for motor 1, denoted as 1DMN , should be utilized.

•	
•	 RR  to 1 1 2 2 2( ) : ( ), ( );SR k k k DMNµ µ µ µ< ≥b b

s s s s
 

In the second case, the friction for motor 1 is insufficient, 
and the system will transition to the ( )SR k  state. Therefore, 
it is necessary to use the equations of 2DMN  for calculations.

•	 RR  to 1 1 2 2 3( ) : ( ), ( );RS k k k DMNµ µ µ µ≥ <b b
s s s s

 

In the third case, the friction for motor 2 is insufficient, 
and the system will transition to the ( )RS k  state. Therefore, 
it is necessary to use the equations of 

3DMN  for calculations.

•	 RR  to 1 1 2 2 4( ) : ( ), ( );SS k k k DMNµ µ µ µ< <b b
s s s s

 

In the final case, both motors will be in the slipping 
state, and the system will transition to ( )SS k . Therefore, it 
is necessary to use the equations of 4DMN  for calculations.

Case ( )1−SR k
In this case, it is assumed that the system is in the ( )SR k 1−  

state. Therefore, it is only necessary to determine the state 
of motor 2, and this can be done by calculating 2s ( )kµ   
according to Eq. (83).
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S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (83)

•	 SR  to  2 2 2( ) : ( );SR k k DMNµ µ≥b
s s



In the first case, friction for motor 2 must be large enough 
to continue rolling. Since the ( )SR k  the state is expected, it is 
necessary to use the equations 2DMN .

•	 SR  to 2 2 4)( )  (: ;S kS k DMNµ µ<b
s s



In the second case, friction for motor 2 is not sufficient, 
and motor 2 will be in a slipping state. Thus, the ( )SS k  state 
will be applied to the system, and it is necessary to use the 
equations 4DMN .

Case ( )1−RS k
In this case, it is assumed that the system is in the ( )RS k 1−  

state. Therefore, it is only necessary to check the condition of 
motor 1’s slipping. To do this, 1sµ   Can be calculated using.

S(k − 1) → {R(k): ω(k) = θ̇v(k)
S(k): ω(k) ≠ θ̇v(k) (73) 

 

𝓜𝓜σ𝔁̈̂𝔁(k − 1) = 𝐛𝐛σ(k − 1) + 𝛕𝛕σ(k − 1); 
 
DMNi; σ = I, II, III, IV 

(74) 

 

α̂1 = ẍ̂ + ÿ̂
r  

(75) 

α̂2 = ẍ̂ − ÿ̂
r  

(76) 

Jα̂1 = τ1
0 + τ1

E + f1s
b r (77) 

Jα̂2 = τ2
0 + τ2

E + f2s
b r (78) 

 

f1s
b = J ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r = 

μ1s
⋆ 2P1sgn[α1(f1

b = 0) − θ̈1
v(f1

b = 0)] 
(79) 

f2s
b = J ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r = 

μ2s
⋆ 2P2sgn[α2(f2

b = 0) − θ̈2
v(f2

b = 0)] 
(80) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN1 (81) 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN1 
(82) 

 

μ2s
⋆ = J

2P2
|ẍ̂ − ÿ̂

r2 − τ2
0 + τ2

E

r | ; DMN2 (83) 

 

μ1s
⋆ = J

2P1
|ẍ̂ + ÿ̂

r2 − τ1
0 + τ1

E

r | ; DMN3 (84) 

 

 (84)

•	 RS  to 1 1 3)( )  (: ;R kS k DMNµ µ≥b
s s



In the first case, if the friction coefficient is sufficiently 
large, motor 1 will continue in its rolling state, and the 
system’s dynamics will be of the 3DMN  mode.

•	 RS  to 1 1 4( ) : ( );SS k k DMNµ µ<b
s s



In the second case, if the friction of motor 1 is not 
sufficiently large, it will transition into a slipping state. 
Therefore, the future state of the system will be ( )SS k , and it 
is necessary to use the equations 4DMN  to calculate 1s ( )kµ  .

Case ( )1−SS k

•	 ( ) 4  ;SStoSS k DMN
The last scenario occurs when both motors are in a 

slipping state. In this case, there is no need to determine the 
state for the next step, and the speeds of the pulleys in the 
next moment will dictate what the state will be.
3-  Numerical Simulation and Discussions

In this section, in order to analyze the dynamic behavior 
of the presented model for the CoreXY mechanism while 
considering the dead zone caused by friction and the 
possibility of motor slipping, the system’s outputs will be 
plotted for various motor voltage inputs. To achieve this, 
the dynamic equations will be numerically solved using 
MATLAB software, and the results will be presented. The 
parameters used in the simulation of the CoreXY mechanism 
are detailed in Table 1.

The information and parameters presented in Tables 1 
and 2 are strategically curated to facilitate a comprehensive 
examination of all possible states of slipping, sliding, and 
deadzone behaviors within the XY mechanism across various 
scenarios. By employing a systematic approach to vary the 
defined parameters—such as friction coefficients, input 

Table 1. Simulation parameters for the CoreXY mechanism along with values and descriptionsTable 1. Simulation parameters for the CoreXY mechanism along with values and descriptions 
 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 [𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔] 𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 [𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔] 𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄

𝐦𝐦 [𝐊𝐊𝐊𝐊] 0.5 Horizontal Collar 
Mass μ1s

b Based on Scenario
Static Friction 

Coeff. Of Motor 1 
With Belt

𝐌𝐌 [𝐊𝐊𝐊𝐊] 1 Vertical Slider 
Mass μ2s

b Based on Scenario
Static Friction 

Coeff. Of Motor 2 
With Belt

𝐉𝐉 [𝐊𝐊𝐊𝐊/𝐦𝐦𝟐𝟐] 0.001 Motors Pulley 
Inertial f1k

b 0.2
Kinetic Friction 

Coeff. Of Motor 1 
With Belt

𝐉𝐉′ [𝐊𝐊𝐊𝐊/𝐦𝐦𝟐𝟐] 0.0005 Passive Pulleys 
Inertial f2k

b 0.2
Kinetic Friction 

Coeff. Of Motor 2 
With Belt

𝐫𝐫 [𝐦𝐦] 0.05 Pulleys Radius ωv [rad/s] 0.5 Input Voltage 
Frequency

𝐑𝐑 [𝛀𝛀] 0.9 DC Motor 
Resistance v01 [volts] Based on Scenario Motor 1 Voltage 

Amplitude

𝐊𝐊𝐊𝐊 [𝐍𝐍. 𝐦𝐦/𝐚𝐚𝐚𝐚𝐚𝐚] 2 Motor Torque 
Constant v02[volts] Based on Scenario Motor 2 Voltage 

Amplitude
𝐊𝐊𝐊𝐊 [𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯/𝐫𝐫𝐫𝐫𝐫𝐫
/𝐬𝐬𝐬𝐬𝐬𝐬] 0.03 Electromotive 

Force Constant P1 [N] Based on Scenario Tension Force on 
Belt 1

𝛍𝛍𝐬𝐬 0.4 Static Friction 
Coeff. with Ground P2[N] Based on Scenario Tension Force on 

Belt 2

𝛍𝛍𝐤𝐤 0.1 Kinetic Friction 
Coeff. with Ground T [sec] 0.0001 Simulation Time 

Step
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voltages, and kinematic variables—this study enables the 
generation of specific conditions under which each state can 
be initiated or exited. The scenarios are designed to reflect 
real-world operating conditions, allowing the mechanism to 
experience the full spectrum of dynamic behaviors, including 
the transition between stable rolling motion and the different 
slip states. Notably, the adjustments made to the system 
inputs are critical for manipulating the interplay between 
actuator dynamics and frictional forces. These manipulations 
effectively demonstrate how changes in voltage input or 
environmental conditions can lead to the onset of stick-slip 
phenomena or provoke the activation of deadzones during 
movement initiation. Furthermore, the data from Tables 1 and 
2 serves as a baseline for computational simulations, which 
model how the mechanism responds to these input variations. 
By analyzing these results, the study not only reaffirms 
the presence of stick-slip behavior but also deepens our 
understanding of how varying input conditions influence the 
transition among rolling, slipping, and deadzone states. This 
holistic approach underscores the complexity of the system 
dynamics and highlights the importance of controlling the 
frictional interactions among the motor pulleys, belts, and 
actuator components.

Scenario 1:
Considering the parameters provided in Table 1 for 

simulating the CoreXY mechanism system, the input voltages 
for the actuator motors are generated as harmonic functions, 
given by ( ) ( )1 01 v 2 02 vv v sin 2 t ,  v v cos 2 tπω πω= = , 
where 01v  and 02v  are the voltage magnitudes, and vù  is the 
frequency. The values of simulation parameters can be found 
in Table 2. In this scenario, the friction coefficient between 
motor 1 and the belt is significantly larger than the friction 
coefficient between motor 2 and the belt, making the chances 
of motor 1 slipping much lower compared to motor 2.

By applying the harmonic inputs defined in Scenario 1 
to the system’s governing equations, the resulting motion of 
the system and the motors is shown in Fig. 4. In Fig. 4-a, the 
acceleration, velocity, and position of each motor, along with 
the corresponding values for the virtual pulleys, are plotted. 

From this, it is evident that at certain moments, the velocity 
and acceleration of the motor pulley match those of the virtual 
pulley, indicating a rolling condition for the motor. In contrast, 
when the velocity and acceleration of the motor pulley and 
the virtual pulley differ, it signals a slipping condition for the 
motor. Initially, as depicted in Fig. 4-a, motor 1 remains in 
a rolling state, while motor 2 starts slipping right from the 
beginning. As the input voltage to the motors is increased, 
motor 1 also transitions into a slipping state. Fig. 4-b shows 
the motion of the central mechanism resulting from the 
calculated torques. Upon closer inspection of Fig. 4-b, it is 
observed that the central mechanism initially starts moving 
with motor 1, aided by the torque from the Coulomb friction 
of motor 2. However, after a short period, the motion halts 
as the power of motor 1 diminishes, causing the mechanism 
to enter a dead zone where its speed drops to zero. Once the 
motor power is increased again, the central mechanism exits 
the dead zone and resumes its motion.

Fig. 5-a illustrates the trajectory of the central mechanism’s 
motion along with the applied voltages in Scenario 1. It can be 
observed that, despite the various states of the motors and the 
occurrence of multiple stick-slip phenomena, the mechanism 
has been able to exhibit continuous motion with relatively 
smooth velocity, owing to the harmonic nature of the voltage 
inputs. Additionally, it’s noticeable that the voltage inputs in 
the 1 2v v  plane is situated within an elliptical region. Fig. 5-b 
displays the voltages applied to each of the motors over time, 
along with mapped deadzone boundaries. These deadzone 
intervals can be determined based on the existing deadzones 
on the motor output torque and using inverse relationships 
of the DC motors. It can be observed that motor 1 initially 
resided within the deadzone with a slight deviation at the 
start of each sinusoidal wave but then managed to exit the 
deadzone, facilitating the motion of the central mechanism. 
Motor 2, on the other hand, remained outside the deadzone for 
most of the time since it was in a slipping state. Furthermore, 
Fig. 5-b allows us to visualize the torque transmitted from 
the motors to the belts. In instances where the motor was in a 
rolling state, the motor drive torque was transferred to the belt. 
However, when the motor was in a slipping state, the torque 

Table 2. Defined variable parameters for each simulation scenario, encompassing influential vari-
ables affecting the behavior of the CoreXY mechanism

 

 

 

Table 2. Defined variable parameters for each simulation scenario, encompassing influential variables affecting the 
behavior of the CoreXY mechanism 

 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 # 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐏𝐏𝟏𝟏, 𝐏𝐏𝟐𝟐 [N] 𝐯𝐯𝟎𝟎𝟎𝟎, 𝐯𝐯𝟎𝟎𝟎𝟎[𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯] 𝛍𝛍𝟏𝟏𝐬𝐬
𝐛𝐛 , 𝛍𝛍𝟐𝟐𝐬𝐬

𝐛𝐛

𝟏𝟏 Harmonic 20, 20 10, 5 10, 0.1

𝟐𝟐 Harmonic 30, 30 20, 10 0.001, 0.001

𝟑𝟑 Piece − wise Step 20, 30 20, 10 10, 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M. M. Ebrahimi and M. R. Homaeinezhad, AUT J. Model. Simul., 56(2) (2024) 129-154, DOI: 10.22060/miscj.2024.22932.5350

143

 
(a) 

 
(b) 

 

Fig. 4. Simulation Results of the CoreXY Mechanism in Scenario 1. (a) Angular acceleration, angular velocity, and 
the angle of the actuator motors along with the corresponding values for virtual pulleys. (b) Calculated torques in the 
mechanism's DOF, including the deadzone intervals resulting from the friction of the mechanism's components with 

the ground, acceleration, velocity, and position in the DOF due to the applied torques over time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Simulation Results of the CoreXY Mechanism in Scenario 1. (a) Angular acceleration, angular ve-
locity, and the angle of the actuator motors along with the corresponding values for virtual pulleys. (b) 
Calculated torques in the mechanism’s DOF, including the deadzone intervals resulting from the friction 
of the mechanism’s components with the ground, acceleration, velocity, and position in the DOF due to the 

applied torques over time

resulting from kinetic friction between the pulley and the belt 
was applied to the belt. Thus, it is evident that motor 1, when 
in a slipping state, transferred a significantly smaller amount 
of torque due to kinetic friction to the belt. Similarly, motor 
2 was also in a slipping state, and the only torque applied to 
the belt was from kinetic friction. A comparison of the torque 
graphs transferred to the belts reveals that the magnitude of 
the transferred torque in the rolling state is much greater than 
when the motor is in a slipping state.

As seen in Fig. 6, the dynamic states of the entire system 
are plotted over time. In this diagram, 1 represents the RR 
state, 2 represents the SR state, 3 represents the RS state, 
and 4 represents the SS state. It can be observed that in most 
points, the system is in state 3 or 4, in both of which, motor 
2 is in a slipping state. However, in state 3, motor 1 is in a 
rolling state and rotates in sync with the belt. In the remaining 
points, it can be seen that states 1 and 2 have occurred, each 
happening at a different moment.

Scenario 2:
In this scenario, simulation is performed using harmonic 

voltage inputs with different voltage ranges compared to 
Scenario 1. As shown in Table 2, in addition to increasing the 
voltage range of the motors, the tension forces have also been 
considered to be larger. To increase the likelihood of motor 
slips, the friction coefficients between the motor pulleys and 
the belts are much smaller than in Scenario 1.

Fig. 7 presents the acceleration, velocity, and position 
values for the motors, alongside the motion variables of the 
central mechanism. In Fig. 7-a, the angular acceleration, 
angular velocity, and angle of each motor, as well as the 
corresponding values for the virtual pulleys, are plotted over 
time. In this scenario, it can be observed that as harmonic 
voltage inputs are applied to the motors, they immediately 
begin slipping. This causes the velocities of the motor 
pulleys and the virtual pulleys to diverge. Fig. 7-b shows 
that torque values along the x-axis remain within the dead 
zone throughout the motion. Along the y-axis, however, 
the central mechanism manages to move out of the dead 
zone in certain intervals, resulting in minimal movement in 
the y-direction on the millimeter scale. A closer look at the 
graphs for motion in the y-direction reveals that the motion 
is driven by impulsive acceleration that occurs sporadically 
outside the dead zone. This indicates that both motors 1 and 
2 were mainly in a slipping state during most of the motion. 
Moreover, it is evident that when the velocities of both motors 
drop to zero, the stick-slip phenomenon arises for the motor 
pulleys. This phenomenon, caused by the friction between 
the motor pulleys and the ground, leads to small residual 
velocities. When the driving torque of the motors exits the 
dead zone, the motors begin to move again.

As shown in Fig. 8-a, the trajectories of the central 
mechanism for position, velocity, and acceleration in DOF, 
along with the voltage inputs on the 1 2v  v  plane, are plotted. 
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(a) 

 

 
(b) 

 

Fig. 5. Simulation results for the CoreXY mechanism in Scenario 1. (a) Trajectories of the CoreXY mechanism's 
DOF, including position, velocity, and acceleration in the xy planes, along with the generated voltage inputs on 
v1v2. (b) Applied voltage inputs to the system's actuator motors over time, along with mapped deadzones on the 

voltages, the torques transmitted to the belts due to contact with the motor pulleys, which are in the form of motor 
drive torque or torque from kinetic friction 

 

 

 

Fig. 5. Simulation results for the CoreXY mechanism in Scenario 1. (a) Trajectories of the CoreXY mecha-
nism’s DOF, including position, velocity, and acceleration in the xy planes, along with the generated voltage 
inputs on v_1 v_2. (b) Applied voltage inputs to the system’s actuator motors over time, along with mapped 
deadzones on the voltages, the torques transmitted to the belts due to contact with the motor pulleys, which 

are in the form of motor drive torque or torque from kinetic friction
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The trajectories clearly show that by applying voltage inputs 
in the shape of an ellipse, the central mechanism can only 
move in the y-direction and remains within the deadzone in 
the x-direction at all times. Fig. 8-b illustrates the voltage 
inputs applied to the motors over time, along with the 
mapped deadzone boundaries. It can be observed that in some 
instances, the voltages are within the deadzone. Nevertheless, 
despite experiencing stick-slip, the motors have managed to 
overcome disturbances caused by belt contact and continue 
their oscillatory motion. Additionally, in Fig. 8-b, the 
transferred torque values to the belts are consistently due to 
motion-induced friction. This indicates that both motors are 
in a state of slipping almost all the time. However as seen in 
Fig. 7-b, these torque values resulting from motion-induced 
friction have managed to set the central mechanism in motion 
in the y-direction, as evident from the trajectories.

Finally, one can observe the rolling/slipping states during 
the application of voltage inputs in the second scenario in Fig. 
9. In almost all points, except for a few isolated instances, 
the system is in state 4, which is SS, meaning both motors 
are in a slipping state. Therefore, it can be concluded that 
by selecting small coefficients for the friction between the 
motors and the belts, the conditions for slipping both motors 
have been created.

Scenario 3:
In this scenario, the voltage inputs to the system 

will be applied in a piece-wise stepwise manner. To 
generate this type of input, voltages can be considered as 

( ) ( )1 v 2 vv sign sin 2 t ,  v sign cos 2 tπω πω   = =    . This 
input will be applied to the motors in the form of pulses, 
increasing the likelihood of slipping them. Therefore, in this 
scenario, both coefficients of friction between the motors and 
the belts have been set to high values.

The simulation results of the CoreXY system, including 
both the mechanical motion variables and motor behavior, 
are presented in Fig. 10. As shown in Fig. 10-a, the angular 
acceleration, angular velocity, and angular position of both 
motors are plotted over time. Initially, both motors are in a 
rolling state, with their kinematic behavior matching that 
of the virtual pulleys. However, after about 2 seconds, both 
motors shift into a slipping state. Following this transition, 
the virtual pulleys remain stationary, indicating that the 
central mechanism has become immobilized. It is important 
to note that the frictional torque generated from dry frictional 
contacts was insufficient to overcome the immobilization of 
the central mechanism, causing it to stay within the dead zone. 
Moreover, Fig. 10-b shows the trajectories of acceleration, 
velocity, and position for the central mechanism’s degrees 

 
Fig. 6. State-switching dynamic model diagram of the CoreXY mechanism in Scenario 1, where 1 represents the RR 

state, 2 represents the SR state, 3 represents the RS state, and 4 represents the SS state 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. State-switching dynamic model diagram of the CoreXY mechanism in Scenario 1, where 1 represents 
the RR state, 2 represents the SR state, 3 represents the RS state, and 4 represents the SS state
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(b) 

 

Fig. 7. Simulation results of the CoreXY mechanism in Scenario 2. (a) Angular acceleration, angular velocity, and 
motor angles, along with the corresponding virtual pulley values. (b) Calculated torques in the DOF of the central 

mechanism, along with the deadzone boundaries resulting from friction with the ground, acceleration, velocity, and 
position in the DOF of the central mechanism due to applied torques over time 

 

 

 

Fig. 7. Simulation results of the CoreXY mechanism in Scenario 2. (a) Angular acceleration, angular ve-
locity, and motor angles, along with the corresponding virtual pulley values. (b) Calculated torques in the 
DOF of the central mechanism, along with the deadzone boundaries resulting from friction with the ground, 
acceleration, velocity, and position in the DOF of the central mechanism due to applied torques over time
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(a) 

 
(b) 

Fig. 8. Simulation results of the CoreXY mechanism in Scenario 2. (a) Trajectories of the CoreXY mechanism's 
DOF, including position, velocity, and acceleration in the xy planes, along with the generated voltage inputs 

represented on the v1v2 plane. (b) Voltage inputs applied to the actuator motors over time, along with mapped 
deadzone boundaries on the voltages, and the transferred torques to the belts due to contact with the motor pulleys, 

which consist of motor driving torque and friction-induced motion torque 

 

 

 

 

Fig. 8. Simulation results of the CoreXY mechanism in Scenario 2. (a) Trajectories of the CoreXY mecha-
nism’s DOF, including position, velocity, and acceleration in the xy planes, along with the generated voltage 
inputs represented on the v_1 v_2 plane. (b) Voltage inputs applied to the actuator motors over time, along 
with mapped deadzone boundaries on the voltages, and the transferred torques to the belts due to contact 

with the motor pulleys, which consist of motor driving torque and friction-induced motion torque
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of freedom, along with the torques applied in each direction 
over time. These plots reveal that after the 2-second mark, the 
velocity in both directions drops to zero. While some points 
show torques that briefly escape the dead zone, generating 
non-zero acceleration, the central mechanism remains in a 
static state.

Fig. 11-a includes the trajectories of the central mechanism 
in the xy plane and the voltage inputs represented in the 1 2v v  
plane. It is observed that by applying voltage inputs in a piece-
wise step manner, the mechanism was able to exhibit motion, 
which, as per Fig. 10, came to a halt after 2 seconds. Fig. 11-b 
illustrates the voltage inputs applied to the motors, along with 
the torques transferred to the belts from the motor pulleys. 
It is noticeable that during the initial 2 seconds of motion, 
the voltage inputs exceeded the mapped deadzone boundaries 
and were able to set the mechanism in motion. However, after 
that, the motors experienced slipping. Furthermore, in Fig. 
11-b, it can be observed that during the initial 2 seconds when 
both motors were in the rolling state, the torques transferred 
to the belts were essentially the motor drive torques. Yet, with 
the slipping of the motor pulleys, the torques transferred to 
the belts due to frictional interaction were calculated. These 
torques have a significantly smaller range than before and 
were unable to put the central mechanism into motion.

As observed in the results of the third scenario, both 
motors were initially in the RR state, but due to the resistant 
torques resulting from inertia and the accelerations of the 

central mechanism, they started slipping and transitioned to 
the SS state. This transition is clearly depicted in Fig. 12.

4- Conclusion
In this paper, the modeling and dynamic analysis of 

the CoreXY mechanism, which includes the possibility of 
motor pulley slipping, were investigated. The work began 
with extracting the kinematic relationships of the system 
components and defining virtual pulleys. After determining the 
static and kinetic frictions for each of the system components, 
various rolling/slipping states of the system were examined. 
In the equations of motion for the central mechanism, 
which includes all components except the motor pulleys, it 
was observed that due to the friction between the actuator 
components and the ground, the system is susceptible to the 
nonlinear phenomenon of stick-slip, leading to the creation 
of deadzones in the actuator system during motion initiation. 
Therefore, a new friction model was introduced, including 
the deadzone, and the equations accounting for the stick-slip 
phenomenon were derived. Additionally, considering that 
each of the actuator motors can be in a rolling or slipping 
state, it was determined that the CoreXY mechanism is, in 
fact, a hybrid-DOF dynamic system. Its equations switch 
among four modes: RR, SR, RS, and SS. The specific mode 
the system adopts depends on the input voltages of each 
motor, kinematic and dynamic variables at the current time, 
as well as the friction coefficients between the motor pulleys 

 
Fig. 9. The switching model dynamics plot for the CoreXY mechanism in the second scenario, where 1 represents 

the RR state, 2 represents the SR state, 3 represents the RS state, and 4 represents the SS state 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The switching model dynamics plot for the CoreXY mechanism in the second scenario, where 1 
represents the RR state, 2 represents the SR state, 3 represents the RS state, and 4 represents the SS state
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(b) 

 

Fig. 10. Simulation results of the CoreXY mechanism in Scenario 3. (a) Angular acceleration, angular velocity, and 
motor angles with corresponding virtual pulley values. (b) Computed torques in the DOF of the central mechanism 

along with the deadzone intervals resulting from the friction between mechanical components and the ground, 
acceleration, velocity, and position in the DOF of the central mechanism due to the application of torques over time 

 

 

Fig. 10. Simulation results of the CoreXY mechanism in Scenario 3. (a) Angular acceleration, angular ve-
locity, and motor angles with corresponding virtual pulley values. (b) Computed torques in the DOF of 
the central mechanism along with the deadzone intervals resulting from the friction between mechanical 
components and the ground, acceleration, velocity, and position in the DOF of the central mechanism due 

to the application of torques over time
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Fig. 11. Simulation Results of the CoreXY Mechanism in Scenario Three. (a) Trajectories of the DOF of the 
CoreXY mechanism, including position, velocity, and acceleration in the xy planes, along with the generated voltage 

inputs represented in the v1v2 plane. (b) Voltage inputs applied to the operative motors of the system over time, 
along with the mapped deadzone boundaries on the voltage inputs, and the transferred torques to the belts due to 

interactions with the motor pulleys, either in the form of motor drive torque or frictional torque 

 

Fig. 11. Simulation Results of the CoreXY Mechanism in Scenario Three. (a) Trajectories of the DOF of the 
CoreXY mechanism, including position, velocity, and acceleration in the xy planes, along with the generated 
voltage inputs represented in the v_1 v_2 plane. (b) Voltage inputs applied to the operative motors of the 
system over time, along with the mapped deadzone boundaries on the voltage inputs, and the transferred 
torques to the belts due to interactions with the motor pulleys, either in the form of motor drive torque or 

frictional torque
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and the belts. Thus, it is necessary to calculate the required 
friction to keep a motor in the rolling state. If the existing 
friction between the motor pulley and the belt is insufficient, 
the motor slips. This determination for the next step of the 
system’s dynamics was performed as a combination of 
different states of the two motors, taking into account the 
change in the system’s DOF in each state and the presence of 
the stick-slip phenomenon along with the deadzone. Finally, 
dynamic analysis of the CoreXY mechanism in various 
scenarios was conducted by simulating the derived equations 
in three different scenarios, effectively illuminating all the 
nonlinear effects and complexities of this mechanism. In 
summary, the results obtained from the mentioned scenarios 
are as below. 
•	 Scenario 1 (Harmonic Voltage Inputs and Slip Dynamics): 

Motor 1 was rolling, but Motor 2 slipped immediately. 
Increasing the voltage led motor 1 to also begin slipping. 
The central mechanism started moving due to motor 1 and 
the Coulomb friction torque of motor 2 but stopped shortly 
after motor 1’s power was reduced, entering a dead zone 
with zero velocity. Despite multiple stick-slip events, the 
mechanism exhibited continuous and relatively smooth 
motion, thanks to the harmonic voltage inputs.

•	 Scenario 2 (Harmonic Voltage Inputs with Varying 
Range): With the harmonic voltage inputs, both motors 
slipped immediately, leading to differing velocities 
between the motor pulley and the virtual pulley. 
Occasional exits from the dead zone along the y-axis 

resulted in small, millimeter-scale movements due to 
impulsive accelerations. Transferred torques to the belts 
were primarily due to motion-induced friction, which 
drove the central mechanism in the y-direction. Motors 
remained in a slipping state most of the time.

•	 Scenario 3 (Piece-wise Inputs): Initially, both motors 
were in a rolling state with their kinematic behavior 
matching the virtual pulleys. After about 2 seconds, both 
motors transitioned to slipping. Following the motor slip, 
the virtual pulleys remained stationary, immobilizing 
the central mechanism. The frictional torque from dry 
contacts was insufficient to restart the motion, keeping 
the mechanism in the dead zone. Both motors began in a 
rolling state (RR), but inertia and acceleration forces led 
to slipping, transitioning the motors into a slipping state 
(SS).

Future Works
This team, considering the findings of this paper, has 

so far addressed the modeling of the CoreXY mechanism, 
taking into account the stick-slip phenomenon along with the 
deadzone and the presence of various rolling/slipping states 
for the system’s motors. This has led to the development of 
a hybrid-DOF dynamic model. In future work, further non-
linear effects of the CoreXY mechanism, such as the impact 
of belt tension and weight, could be incorporated into the 
modeling. Furthermore, with the formulation of the equations 
for this mechanism as a hybrid-DOF dynamic model, the 

 
Fig. 12. The switch model dynamic diagram of the CoreXY mechanism in the third scenario, where 1 represents the 

RR state, 2 represents the SR state, 3 represents the RS state, and 4 represents the SS state. 

 

Fig. 12. The switch model dynamic diagram of the CoreXY mechanism in the third scenario, where 1 repre-
sents the RR state, 2 represents the SR state, 3 represents the RS state, and 4 represents the SS state.
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control of such a system with two control inputs will present 
substantial challenges that need to be addressed.
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