
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 56(2) (2024) 155-170
DOI: 10.22060/miscj.2024.23316.5366

Improving Software Effort Estimation through a Hybrid Approach of Metaheuristic
Algorithms in Analogy-based Method
Ehsan Nasr, Keyvan Mohebbi *

Faculty of Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

ABSTRACT: Project management in software development is one of the most crucial activities as it
encompasses the entire software development process from start to finish. Estimating the effort required
for software projects is a significant challenge in project management. Managing software projects and
consequently estimating their effort for more efficient and impactful management of such projects is
necessary and unavoidable. Analogy-based estimation in software effort estimation involves comparing
new projects to completed ones. However, this method can be ineffective due to variations in feature
importance and dependencies. To address this, weights are assigned to features using optimization
techniques like meta-heuristic algorithms. Yet, these algorithms may get stuck in local optima, yielding
nonoptimal results. An approach to estimate software effort is proposed in this study. It aims to find
global optimal feature weights by combining particle swarm and genetics metaheuristic algorithms. This
hybrid approach leverages particle motion and composition to enhance solution generation, increasing
the likelihood of finding the global optimum and overcoming local optima issues. The algorithm
calculates feature weights for project estimation using analogy-based methods. The proposed approach
was tested and assessed using two datasets, namely Maxwell and Desharnais. The experimental results
indicated an enhancement in the evaluation criteria, including MMRE, MdMRE, and PRED, compared
to similar research works.

Review History:

Received: Jul. 01, 2024
Revised: Sep. 16, 2024
Accepted: Sep. 23, 2024
Available Online: Nov. 23, 2024

Keywords:

Software Effort Estimation

Analogy-Based Estimation

Non-Algorithmic Model

Genetic Algorithm

Particle Swarm Optimization

155

1- Introduction
Effort estimation is the process of forecasting the

resources, time, and personnel required to develop software.
It is a critical aspect of project management, as incorrect
cost estimates can lead to project failures due to inaccurate
planning and scheduling. Unlike other types of projects
such as construction and manufacturing, the unique
characteristics of software services make effort estimation a
more challenging task. The intangibility of software services
and the high variability and inconsistency of datasets add to
the complexity of the process. As a result, a one-size-fits-all
model cannot be applied to different types of software and
datasets. Poor estimation can result in budget and timeline
overruns or overestimation, which may ultimately lead to
project failure. Therefore, an accurate and optimal approach
to predicting these costs is crucial [1].

Cost estimation models that can accurately predict the
expenses involved in constructing a system during the initial
stages of project development, even with limited project
information, are highly valuable and necessary. It is essential
to have such models that can provide precise cost estimations
during the early stages of project construction, offering
significant benefits and advantages. This is especially true

when there is a lack of data related to the project. By utilizing
cost estimation methods, project managers can effectively
manage the time and construction expenses associated with
building the system. This allows for better planning and
decision-making throughout the project’s lifecycle, ultimately
leading to a more successful outcome. Additionally, accurate
cost estimation can help prevent unexpected expenses and
delays, which can have a significant impact on the overall
success of the project. Therefore, it is important to invest
in reliable cost estimation models to ensure that projects
are completed on time and within budget [2]. According to
Boehm, effort estimation during the early stages of system
construction can range from 25% to 40% of the actual effort
required [3]; This preliminary estimation is often inaccurate
due to the limited knowledge of the project at that stage.
Heemstra has also confirmed this view [4].

Several approaches have been proposed for software
effort estimation, which can be categorized into algorithmic
and non-algorithmic methods. Algorithmic approaches
use mathematical models that define a cost function based
on selected cost factors [5]. The selection of cost factors
and the definition of the cost function vary across different
methods, and they can be analytical or experimental. Popular

*Corresponding author’s email: k.mohebbi@khuisf.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/miscj.2024.23316.5366
https://orcid.org/0000-0002-3545-2491

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

156

algorithmic methods include COCOMO and SLIM. However,
algorithmic approaches are not flexible enough to provide
accurate estimates for large and complex projects. Non-
algorithmic approaches, on the other hand, rely on analytical
comparisons with similar previous projects, using existing
databases to infer the cost of software. These approaches do
not use equations or mathematical models.

Analogy-based estimation is a popular method for
estimating the effort required for software development,
which does not involve the use of algorithms. This approach
involves comparing the features of a new project with those
of previously completed projects to determine the level of
similarity and predict the amount of effort needed for the
new project. By using this method, software developers
can make informed decisions about resource allocation and
project planning, based on past experiences and knowledge.
This approach is particularly useful when dealing with
complex projects that require a high level of expertise and
experience, as it allows developers to draw on their previous
successes and failures to make more accurate predictions
about future outcomes. Overall, analogy-based estimation
is an effective tool for improving software development
processes and ensuring successful project outcomes [6]. The
analogy-based estimation approach comprises four major
components: historical dataset, similarity function, retrieval
rules, and solution function. The estimation process involves
the following steps [7]:

To estimate the effort required for a new software
development project using analogy-based estimation, the
first step is to gather data from previous projects and create
a database of relevant information. This information can
include metrics such as function points and lines of code.
Next, appropriate measurement parameters are selected
based on the requirements of the target project. The historical
dataset is then used to retrieve previous projects and assess
the similarity between those projects and the target project.
Finally, the effort required for the target project is estimated
based on the similarities found in the previous projects.

A technique for estimating software effort is case-based
reasoning (CBR) which is based on adapting previously
successful solutions for similar software projects. The
CBR can be enhanced by combining it with meta-heuristic
algorithms [8]. This study introduces a new method for
estimating software effort that utilizes a case-based approach
and the particle swarm optimization (PSO) algorithm.

The use of PSO has increased due to its simplicity, low
cost of calculations, and also its effect on a wide range of
applications. The advantages of this algorithm compared to
other optimization algorithms can be summarized as follows:
The PSO algorithm contains memory so that all particles
keep good solutions. In this algorithm, the position of each
community member changes based on personal experiences
and the experiences of the whole community. Compared to
other optimization strategies, the PSO algorithm shows more
flexibility by using swarming particles against the local
optimal problem. Finally, this algorithm is simpler than the
other population-based algorithms such as the ant colony

optimization algorithm. In addition, the initial quantification
of the population using this algorithm is simpler than other
intelligent optimization algorithms.

However, to improve the efficiency of this approach,
the study proposes incorporating additional optimization
algorithms, such as genetic algorithms, to enhance the
weighting process. While analogical models typically
perform better with weighted features, the PSO algorithm
may not always produce optimal weights. By combining
PSO with genetic algorithms, the study aims to achieve more
accurate weights and improve overall estimation accuracy.
Hybrid algorithms are particularly useful in this context as
they strive to attain the global optimal point.

The remainder of this paper is structured as follows: In
the subsequent section, notable works related to the topic are
examined. Afterward, a detailed explanation of the suggested
approach is provided. This is followed by an evaluation of the
effectiveness of the approach. Finally, the concluding section
summarizes the paper and provides recommendations for
future research.

2- Related Works
So far, different studies have been conducted in the field

of software development effort estimation, some prominent
works of which are mentioned below.

The first ideas related to estimating software effort
were presented by Dalkey and Helmer (1963) [9] under
the name of the Delphi model, which is a non-algorithmic
classification method. Due to algorithmic methods’ inability
to handle the dynamic behavior of software projects in the
early stages, non-algorithmic methods were introduced. In
this approach, experienced individuals share their estimates
about effort until reaching a final agreement on a common
effort level among all experts. Then, Albrecht (1983) [10]
made a significant impact by introducing Function Point
(FP), allowing measurement in the early stages of projects
and mitigating the negative impacts of the previous method,
lines of code estimation. Previous models required an initial
estimate of lines of code for software, which could not be
accurate until software implementation was completed,
leading to significant estimation errors that were reduced
with feature additions or functional points.

The initial idea of algorithmic methods with the use of
lines of code in law was introduced by Boehm (1984) [11].
He proposed a new model called the Constructive Cost
Model (COCOMO) for estimating software development
effort using empirical equations. COCOMO is an empirical
model derived from collecting data from various software
projects. These data are analyzed to derive formulas that best-
fit observations, relating system and product size, team, and
project factors to the required work for system development.
Other models like SLIM and SEM-SEER continued the
principles of the COCOMO method.

Shepperd et al. (1996) [12] introduced an approach called
ANGEL, which is designed to automatically handle the
collection, storage, and identification of similar past projects
to estimate the effort needed for a new project. ANGEL

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

157

operates by minimizing the Euclidean distance in multi-
dimensional space. This approach is adaptable to various
datasets, regardless of the number of projects or collected
variables. Their method of using analogies was tested with six
diverse datasets from various backgrounds and was proven
to be more effective than alternative methods. In addition,
this research demonstrates that analogical estimation is
a promising approach, especially when supported by an
automated environment.

Walkerden et al. (1999) [13] attempted to predict effort
using similar project efforts as a benchmark. They first
removed features not matching the project from the dataset
and selected projects only within the relevant domain. Their
model compared linear regression on performance points,
showing that comparative estimation might yield better results
than using performance points and algorithmic models, but
they did not consider weighting software project features
in their research. Classified features are evaluated based on
linguistic values like low, complex, and important. Linguistic
values may be derived from numerical values. When derived
from numerical data, they are often represented based on
classic distances. Also, linguistic value representation does
not mimic human interpretation methods, thus encountering
errors and uncertainties. Idri et al. (2006) [14] proposed a
fuzzy comparison method to address this issue, combining
fuzzy logic with comparison-based reasoning. The fuzzy
comparison uses fuzzy sets for linguistic values instead
of classic distances. Furthermore, fuzzy scaling contrasts
numerical values by transforming them into linguistic values.

Azzeh et al. (2008) [15] examined similarities between
two software projects described with numerical and classified
features using fuzzy clustering and logic-based approaches
for similarity measurement. Two approaches regarding
weighting and Euclidean distance were evaluated for
assessing software similarity performance, showing validity
similar to case-based reasoning methods.

Keung et al. (2008) [16] presented a solution named
Analogy-X, which is based on utilizing the Mantel correlation
randomization test. They leverage the correlation strength
between the distance matrices of project characteristics
and the known effort values of the dataset. The approach
demonstrates (1) employing Mantel’s correlation to determine
the suitability of analogies, (2) a systematic feature selection
process, and (3) using a leverage statistic for identifying
outlier data points. Analogy-X establishes a solid statistical
foundation for analogies, eliminates the necessity for
heuristic searches, and significantly enhances its algorithmic
efficiency.

Attarzadeh and Ow (2010) [17] aimed to accurately
estimate software costs using machine learning and pattern
recognition methods. Artificial neural networks can learn
from previous data to find relationships between independent
and dependent variables.

Azzeh et al. (2011) [18] combined a fuzzy number-based
comparison method with all available initial data to enhance
early-stage software effort estimation performance.

Amazel et al. (2014) [19] carried out a study to prove

that using analogy-based techniques is a feasible approach
for estimating software. To handle data that was not obtained
from numerical values and was classified, they utilized a
fuzzy analogy method along with a widely-used clustering
technique known as the fuzzy algorithm, which is particularly
suitable for dealing with extensive datasets containing batch
values. They assessed the similarity of software projects by
analyzing clustering outcomes and determined the effort
required for a new project based on the nearest scales. The
findings of this research indicated that this method led to
enhanced precision in software estimation. Therefore, it can
be concluded that utilizing analogy-based methods can be an
effective strategy for estimating software accurately.

Khatibi Bardsiri and Khatibi (2015) [20] discovered that
comparative methods were overlooked in previous studies
regarding the nature of software projects in estimation
processes. They improved the performance of the comparative
method based on three main project classification features:
development types, organization types, and development
platforms on a dataset of 448 real software projects.

Kumari and Pushkar (2016) [21] developed a framework
for project selection using a multi-objective genetic algorithm
to enhance the analogy-based method. They believed that
project selection was crucial in the analogy-based method,
and the interaction effects between the projects could
significantly influence the estimated software cost. The
proposed framework was tested on COCOMO and NASA
datasets, and it was able to achieve better results. However,
the use of meta-heuristic algorithms may lead to the model
getting stuck in a local optimum.

Idri and Abnane (2017) [22] proposed a fuzzy analogy-
based model that utilizes fuzzy logic to implement the
analogy method. They compared this method with six other
techniques for estimating effort and tested it on various
datasets. The fuzzy analogy-based model outperformed the
other methods, but the model was based only on numerical
features and could not use nominal ones.

Wu et al. (2018) [8] devised a novel strategy to enhance
software cost estimation by integrating case-based reasoning
with the particle swarm meta-heuristic algorithm. The
effectiveness of their approach was evaluated using the
Maxwell and Desharnais datasets, yielding promising
outcomes.

Ezghari and Zahi (2018) [23] introduced a fuzzy analogy-
based technique to improve the precision of software effort
estimation. The effectiveness of their method was evaluated on
13 datasets, and the results showcased superior performance
and accuracy compared to previous studies in the field.

Mustafa and Abdelwahed (2019) [24] presented a
stochastic forest model that underwent experimental
optimization, where key parameters were adjusted to enhance
software project effort estimation. The performance of their
optimized model was compared to that of the traditional
regression tree, revealing that the optimized stochastic forest
model surpassed the regression tree model in all evaluation
criteria.

These studies demonstrate the importance of developing

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

158

new approaches to improve software estimation techniques, as
well as the potential benefits of combining different methods
to achieve better results. In recent years, there has been
considerable research in the field of software development
effort estimation. A review of recent studies reveals that
many researchers are focusing on using meta-heuristic and
optimization algorithms to enhance the efficiency of the
estimation process.

Shah et al. (2020) [25] proposed a similarity-based
estimation method using the artificial bee colony (ABC)
algorithm, while Ranichandra (2020) [26] tried to enhance
the non-orthogonal space distance, a metric indicating how
similar software projects are by analyzing feature weights
and redundancy through the ant colony optimization (ACO)
algorithm.

Shahpar et al. (2021) [27] proposed an evolutionary
ensemble analogy-based method that combines genetic
algorithms with various analogy-based methods. Samavatian
and Mohebbi (2021) [28] used the cuckoo search algorithm to
select software features and then analyzed the results further
using the particle swarm optimization algorithm. In another
study, Shahpar et al. (2021) [29] utilized a combination of
particle swarm optimization and simulated annealing to
calculate project effort using a polynomial ensemble of
different analogy-based estimation models.

A framework was introduced by Dashti et al. (2022)
[30] to calculate the cost of software development. This
framework utilizes the learnable evolution model, which is a
technique that optimizes the weighting of different features.
By implementing this model, software developers can more
accurately estimate the cost of their projects and allocate
resources accordingly. The authors suggest that this approach
can lead to more efficient and effective software development
processes. Additionally, they propose that this framework can
be adapted for use in various industries beyond just software
development.

The CBR technique is centered around adapting successful
solutions from past software projects that are similar in
nature. However, CBR encounters a challenge in the form
of multiple parameters that are difficult to fine-tune. This
underscores the significance of the adaptation and adjustment
process as a fundamental aspect of CBR, aiming to generate
precise and efficient results with minimal estimation error. In
their study, Hameed et al. (2023) [31] employed the Genetic
Algorithm (GA) to aid in identifying the optimal set of
classical CBR parameters, thereby enhancing the accuracy of
effort estimation for software projects. The proposed CBR-
GA model effectively demonstrated the efficacy of utilizing
the GA algorithm to explore the best combination of CBR
parameters, leading to improved accuracy.

Moradbeiky (2023) [32] introduced a novel model, namely
FEEM that incorporates data filtering and feature weighting
techniques across three layers. The initial two layers employ
tools and methods to select key features and assign weights
using the Lightning Search Algorithm (LSA). The third layer
combines LSA with an artificial neural network to create an
estimator model, enhancing final estimation accuracy. This

hierarchical structure enhances accuracy by filtering and
analyzing data from lower layers, as demonstrated through
evaluations of diverse datasets, showcasing improved
software effort estimation precision.

Determining the right quantity of comparable past projects
for reuse is a challenge in Analogy-based software effort
estimation techniques, and the effectiveness and precision
of these methods are significantly impacted by the quality of
software datasets. Thus, Pal et al. (2024) [33] introduced a
new method to determine the appropriate number of analogs
from high-quality datasets in Analogy-based software effort
estimation. Their approach involves using Spearman’s rank-
order correlation and Kruskal-Wallis test during data pre-
processing to handle both numerical/ordinal and nominal
attributes effectively. The method identifies reliable attributes
that have a significant impact on effort estimation, leading to
improved dataset quality, better attribute selection, reduced
anomalies, and lower project development costs according to
experimental results.

Overall, these studies demonstrate a growing interest
in the use of meta-heuristic and optimization algorithms to
improve the accuracy and efficiency of software development
effort estimation.

3- Proposed Approach
Overall, these studies demonstrate a growing interest

in the use of meta-heuristic and optimization algorithms to
improve.

To enhance the precision of software cost estimation,
it is crucial to accurately assign weights to the software
features. To achieve this objective, we suggest a novel
approach that combines Particle Swarm Optimization (PSO)
and genetic algorithm. PSO is a widely recognized meta-
heuristic algorithm that has demonstrated remarkable success
in resolving diverse problems [34]. Similarly, the genetic
algorithm is among the most successful nature-inspired meta-
heuristic algorithms [35]. By integrating PSO and genetic
algorithm, we aim to optimize the weights of the software
features and improve the accuracy of cost estimation. This
approach has the potential to provide a more efficient and
effective solution for software development teams seeking to
improve their cost estimation processes. In addition, we aim to
reduce the probability of getting stuck in a local optimization
point and achieve global optimization in the feature weights.
The process of our proposed approach is depicted in Fig. 1.

The algorithm begins by creating a random population of
particles, each with the following properties:

Position: Indicates the position of each particle in each
iteration of the algorithm.

Best position: The best position that each particle had in
the whole execution of the algorithm.

Velocity: Indicates the amount of displacement of each
particle per iteration of the algorithm. This value is updated
in each iteration.

Cost: The amount of cost that each particle has in its
current position and its amount is calculated by the cost
function.

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

159

Fig. 1. Flowchart of the Proposed Approach

Fig. 1. Flowchart of the Proposed Approach

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

160

Best cost: The lowest cost that each particle had in the
whole execution of the algorithm.

To improve the accuracy of weight generation, it is crucial
to establish a suitable cost function that can effectively
measure the performance of the generated weights. This
study has utilized commonly used evaluation criteria for
software cost estimates to create a function that incorporates
MMRE, MdMRE, and PRED. The formula for this function
is as follows:

Cost = MMRE + MdMRE – PRED 

𝑣𝑣′ = (𝑣𝑣 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

 (1)

Where MMRE represents the mean magnitude of relative
error, MdMRE denotes the median magnitude of relative error,
and PRED reflects the percentage of relative error deviation
[36]. As the objective is to minimize MMRE and MdMRE and
bring PRED closer to zero, their sum is used to define the cost
function. This function assigns higher priority to the weights
that produce lower values.

To start running the algorithm, certain input parameters
need to be defined, such as the number of features to be
weighted (Sizefeature), the initial population size (Sizepopulation),
the lower and upper limits for each feature (Limitlow and
Limitup), and the maximum number of iterations (Itermax).
Once these inputs are specified, the algorithm proceeds to
generate the initial population. This is done by assigning
random positions to particles, which in this case represent
the weights of the features. Afterward, the cost function is
utilized to evaluate the cost of every particle. Subsequently,
the particles are arranged in an ascending order based on
their cost and position so that it becomes more convenient
to access favorable genes within the genetic algorithm. The
best global record of the population, including its position
and cost, is then stored in a variable.

The proposed approach involves three loops as follows:
Main loop: The algorithm has a mechanism to prevent

getting stuck in a local optimal point. If there is no
improvement in the best cost after four iterations, a revolution
occurs. In this revolution, the positions of all particles, except
for one particle that serves as the superior generation, are
randomly reinitialized for the next iteration. The primary loop
carries out both the PSO and genetic loops simultaneously.

PSO loop: the velocity of each particle is adjusted, and
it is verified whether the particle’s movement falls within
the predetermined range for its attributes. Subsequently, the
particles are repositioned according to the calculated velocity,
and their position and cost are recalibrated. If a particle
encounters a more favorable experience compared to its
previous best experience, the latter is replaced with the new
value. Conversely, if the experience is inferior to the best cost
observed by the entire population, the global record of the
best outcome is updated accordingly.

Genetic loop: Here, particles are combined and mutated
to produce a new population. During this process, it is

checked whether each feature is within the specified range.
Particle velocity is also considered in the genetic algorithm,
and thus, it is genetically combined in the crossover and
mutation of the population. The new population is the sum of
the initial, crossed-over, and mutated populations. The best
global record is updated if needed.

Once the feature weights are generated based on their
importance in estimating the effort required, they are used
in the similarity function of the analogy-based method. The
similarity function employs distance measures to compare
equivalent features, and based on the comparison of various
features, the closest project to the current project is found.

4- Evaluation
This section outlines the methodology for assessing the

proposed approach.

4- 1- Implementation Settings
The parameters of the proposed approach are set as

depicted in Table 1.

4- 2- Datasets
Two commonly used datasets, namely Maxwell and

Desharnais have been selected to validate the proposed
approach. The Maxwell dataset contains 62 projects from
one of the biggest commercial banks in Finland [37]. For
each project, there are 25 features. The effort is determined
by the number of working hours performed by the software
developer, from the specifications to the time of delivery.
The Desharnais dataset contains 81 projects from a Canadian
Software house [38]. For each project, there exist 10 features.
The effort is measured in person-hours.

4- 3- Data Preprocessing
In this research, normalization has been utilized as

a crucial step for data preparation and preprocessing.
Normalization is an essential technique that helps ensure
that data is consistent and comparable across different scales
and units of measurement. Among the various normalization
methods available, the Min-Max method has been chosen.
This method involves mapping each set of data to arbitrary
intervals with known minimum and maximum values. By
using a simple conversion formula, any desired interval can
be mapped to a new one. For instance, if we want to map
feature A, which falls between min_A and max_A, to a new
range between new_Min and new_Max, we can use Eq. (2)
to convert any initial value v in the initial interval to its
corresponding value v′in the new interval.Cost = MMRE + MdMRE – PRED 

𝑣𝑣′ = (𝑣𝑣 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

 (2)

4- 4- Evaluation Criteria
The criteria used to evaluate the software development

effort in this study are depicted in Table 2 [39].

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

161

4- 5- Evaluation Method
Previous research works have highlighted that techniques

like n-fold can result in highly variable software effort
estimates [40]. To achieve more precise results, methods
like Leave-One-Out Cross-Validation (LOOCV) or Hold-
out should be utilized [41]. In this study, as the dataset
is not extensive and all samples can be treated as test data
simultaneously, the LOOCV approach was employed to
validate the algorithm.

4- 6- Experimental Results
The first criterion to evaluate the proposed approach is

the MRE, which shows the deviation of the predicted from
the actual estimation. The best case is zero, and this value
increases when the estimates get further from reality. The
calculated MRE for the two datasets is shown in Fig. 2.

This figure highlights that a few projects from both
datasets contain a significant number of errors, as they have
very different effort levels compared to other projects. In
some research areas, these cases may be identified as outliers
and either normalized or removed from the dataset. However,
since the Desharnais and Maxwell datasets are based on real
projects with highly precise data, it is unlikely that errors
occurred. Although these cases are rare, they can result
in high error rates when implementing the analogy-based
method, as it may not find similar projects to compare them
with. Therefore, it is normal for the error rate of these cases
to be high.

Afterward, we evaluated the proposed approach using
the MMRE, MdMRE, and PRED(0.25) criteria. The result is
shown in Fig. 3.

While the MRE calculates the difference in effort for a
project, MMRE and MdMRE are cumulative measures that
represent the relative error magnitude for all projects in the
dataset. PRED(0.25) measures the percentage of predicted
values within 25 percent of the actual value. We tried to keep
MMRE and MdMRE values as close to zero as possible. In
contrast, PRED(0.25) aims to achieve the highest possible
value of one.

We also introduced the TotalCost criterion, which is the
overall measure of the previous criteria, calculated using (1).
TotalCost values for both datasets have improved over the
similar work. The Desharnais dataset’s TotalCost is negative,
which is expected, as the best possible values for MMRE,
MdMRE, and PRED are 0, 0, and 1, respectively. Hence,
TotalCost is equal to -1 in the best case.

In the following, the performance of the proposed
approach has been compared with previous methods. To do
this, it is necessary for the compared methods to use the same
evaluation criteria as well as the datasets. Therefore, we have
decided to compare them based on each of the evaluation
criteria MMRE, MdMRE, and PRED(0.25), selecting some
of the most prominent works for each criterion.

Table III shows the evaluation result of MMRE in different
methods for each dataset.

The comparison of MMRE in different methods for each

Table 2. Evaluation CriteriaTable 2. Evaluation Criteria

Criteria Equation

Magnitude of Relative Error (MRE)
|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 – 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 |

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖

Mean Magnitude of Relative Error (MMRE)
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁

𝑘𝑘=1
𝑁𝑁

Median Magnitude of Relative Error (MdMRE) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)

Percentage of the Prediction (PRED 0.25)
100

𝑁𝑁 ∑ {1 𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 25
100

0 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
}

𝑁𝑁

𝑖𝑖=1

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

162

Fig. 2. MRE of the Proposed Approach

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

M
R

E

Project Number

Maxwell Dataset

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

M
R

E

Project Number

Desharnais Dataset

Fig. 2. MRE of the Proposed Approach

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

163

dataset is depicted in Fig. 4.
Table 4 shows the evaluation result of MdMRE in different

methods for each dataset.
The comparison of MdMRE in different methods for each

dataset is depicted in Fig. 5.
Table 5 shows the evaluation result of PRED in different

methods for each dataset.
The comparison of PRED in different methods for each

dataset is depicted in Fig. 6.
The evaluation results indicate that the integration of PSO

and genetic algorithms yields improved points of optimization
and reduces the chances of being trapped in local optima, as
compared to using these algorithms individually. As a result,
by utilizing the global optimization weights for project

features and applying them in the analogy-based method,
more accurate estimations can be made with fewer errors.

Furthermore, we conducted additional experiments to
determine the best match between different cases for solution
and similarity functions. This involved implementing a grid
search of all possible cases, including the number of projects
selected that are most similar to the target project ranging
from 1 to 4. Six distance functions, including Euclidean,
Manhattan, Gray relational grade, Minkowski, Canberra, and
Bray-Curtis, are being considered as similarity functions.
Additionally, four statistical functions - mean, median,
weighted mean, and inverse distance weighted mean - are
being considered in relation to the number of projects. The
results of implementing the grid search for the Maxwell

Fig. 3. Evaluation of the Proposed Approach

MMRE MdMRE PRED TotalCost
Desharnais 0.314 0.196 0.555 -0.045
Maxwell 0.5 0.204 0.548 0.155

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 3. Evaluation of the Proposed Approach

Table 3. Evaluation of MMRE in Different MethodsTable 3. Evaluation of MMRE in Different Methods
Method Desharnais Maxwell

PSO+CBR [8] 0.57 0.53

ANGEL [12] 0.38 0.61

Analogy-X [16] 0.38 0.91

Pal et al. [33] 0.31 0.46

Proposed Approach 0.31 0.5

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

164

and Desharnais dataset can be found in Fig. 7 and Fig. 8,
respectively.

It is apparent that the cost of estimation varies depending
on the similarity and solution functions utilized. However,
the number of projects considered for cost estimation has
a significant impact on the error rate. In both the Maxwell
and Desharnais datasets, the error rate reaches its minimum
when four similar projects are chosen. In these instances,
making changes to the similarity or solution functions does
not significantly affect the error rate. However, if the number
of selected projects is less than four, the error rate increases,
and modifications to the similarity or solution functions may
have minimal influence on it. Therefore, in the analogy-based
method, the crucial factor for cost estimation is the number of

similar projects selected, rather than the choice of similarity
and solution functions.

5- Conclusion and Future Works
The analogy-based estimation method is a popular

and valuable non-algorithmic approach employed for
software effort estimation, primarily due to its practicality
and effectiveness. However, this method faces challenges
in accurately estimating effort when project features are
not independent or have different levels of importance.
To overcome this challenge, this paper proposes a new
approach for analogy-based estimation by combining PSO
and genetic algorithms to improve feature weighting and
prevent local optimum trapping. The evaluation results show

Fig. 4. Comparison of MMRE in Different Methods

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PSO+CBR [8] ANGEL [12] Analogy-X [16] Pal et al. [33] Proposed
Approach

Desharnais Maxwell

Fig. 4. Comparison of MMRE in Different Methods

Table 4. Evaluation of MdMRE in Different MethodsTable 4. Evaluation of MdMRE in Different Methods

Method Desharnais Maxwell

PSO + ABE [7] 0.4 0.47

PSO+CBR [8] 0.41 0.44

RF [24] 0.39 0.32

ACO + ABE [26] 0.36 0.48

FEEM [32] 0.22 0.24

Proposed Approach 0.2 0.2

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

165

Fig. 5. Comparison of MdMRE in Different Methods

0

0.1

0.2

0.3

0.4

0.5

0.6

PSO + ABE
[7]

PSO+CBR [8] RF [24] ACO + ABE
[26]

FEEM [32] Proposed
Approach

Desharnais Maxwell

Fig. 5. Comparison of MdMRE in Different Methods

Table 5. Evaluation of PRED in Different MethodsTable 5. Evaluation of PRED in Different Methods
Method Desharnais Maxwell

PSO + ABE [7] 0.4 0.29

PSO+CBR [8] 0.36 0.32

ANGEL [12] 0.43 0.21

Analogy-X [16] 0.43 0.23

RF [24] 0.36 0.4

ACO + ABE [26] 0.36 0.32

FEEM [32] 0.51 0.5

Pal et al. [33] 0.45 0.33

Proposed Approach 0.56 0.55

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

166

Fig. 6. Comparison of PRED in Different Methods

0

0.1

0.2

0.3

0.4

0.5

0.6

Desharnais Maxwell

Fig. 6. Comparison of PRED in Different Methods

Fig. 7. Grid Search Result for Maxwell Dataset

Fig. 7. Grid Search Result for Maxwell Dataset

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

167

that this approach outperforms similar works. The grid search
analysis reveals that the number of similar projects selected
for estimating effort is more important than the choice of
similarity and solution functions.

Future research could explore the use of other optimization
algorithms for feature weighting or investigate the limitations
and challenges of using machine learning methods for
estimating software efforts, such as small training datasets,
data uncertainties, qualitative metrics, and human factors.

References
[1] 	A. Sharma, D.S. Kushwaha, Estimation of software

development effort from requirements based complexity,
Procedia Technology, 4 (2012) 716-722.

[2] G.-H. Kim, S.-H. An, K.-I. Kang, Comparison of
construction cost estimating models based on regression
analysis, neural networks, and case-based reasoning,
Building and environment, 39(10) (2004) 1235-1242.

[3] B. Boehm, Cost estimation with COCOMO II, in,
University of Southern California, Center for Software
Engineering, 2002.

[4] F.J. Heemstra, Software cost estimation, Information and

software technology, 34(10) (1992) 627-639.
[5] I. Sommerville, Software engineering 9th Edition, ISBN-

10, 137035152 (2011) 18.
[6] A.R. Gray, S.G. MacDonell, A comparison of techniques

for developing predictive models of software metrics,
Information and software technology, 39(6) (1997) 425-
437.

[7] V.K. Bardsiri, D.N.A. Jawawi, S.Z.M. Hashim, E.
Khatibi, A PSO-based model to increase the accuracy
of software development effort estimation, Software
Quality Journal, 21(3) (2013) 501-526.

[8] D. Wu, J. Li, C. Bao, Case-based reasoning with
optimized weight derived by particle swarm optimization
for software effort estimation, Soft Computing, 22(16)
(2018) 5299-5310.

[9] N. Dalkey, O. Helmer, An experimental application of
the Delphi method to the use of experts, Management
science, 9(3) (1963) 458-467.

[10] A.J. Albrecht, J.E. Gaffney, Software function, source
lines of code, and development effort prediction: a
software science validation, IEEE transactions on
software engineering, (6) (1983) 639-648.

Fig. 8. Grid Search Result for Desharnais Dataset

Fig. 8. Grid Search Result for Desharnais Dataset

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

168

[11] B.W. Boehm, Software engineering economics, IEEE
transactions on Software Engineering, (1) (1984) 4-21.

[12] M. Shepperd, C. Schofield, B. Kitchenham, Effort
estimation using analogy, in: Proceedings of IEEE 18th
International Conference on Software Engineering,
IEEE, 1996, pp. 170-178.

[13] F. Walkerden, R. Jeffery, An empirical study of analogy-
based software effort estimation, Empirical software
engineering, 4 (1999) 135-158.

[14] A. Idri, A. Zahi, A. Abran, Generating fuzzy term sets
for software project attributes using fuzzy c-means
and real coded genetic algorithms, in: Proceedings
of the International Conference on Information and
Communication Technology for the Muslim World
(ICT4M), Malaysia, 2006, pp. 120-127.

[15] M. Azzeh, D. Neagu, P. Cowling, Software project
similarity measurement based on fuzzy C-means, in:
Making Globally Distributed Software Development
a Success Story: International Conference on Software
Process, ICSP 2008 Leipzig, Germany, May 10-11, 2008
Proceedings, Springer, 2008, pp. 123-134.

[16] J.W. Keung, B.A. Kitchenham, D.R. Jeffery, Analogy-X:
providing statistical inference to analogy-based software
cost estimation, IEEE Transactions on Software
Engineering, 34(4) (2008) 471-484.

[17] I. Attarzadeh, S.H. Ow, Proposing a new software cost
estimation model based on artificial neural networks,
in: 2010 2nd International Conference on Computer
Engineering and Technology, IEEE, 2010, pp. V3-
487-V483-491.

[18] M. Azzeh, D. Neagu, P.I. Cowling, Analogy-based
software effort estimation using Fuzzy numbers, Journal
of Systems and Software, 84(2) (2011) 270-284.

[19] F.-A. Amazal, A. Idri, A. Abran, An analogy-based
approach to estimation of software development effort
using categorical data, in: 2014 Joint Conference of the
International Workshop on Software Measurement and
the International Conference on Software Process and
Product Measurement, IEEE, 2014, pp. 252-262.

[20] V. Khatibi Bardsiri, E. Khatibi, Insightful analogy-based
software development effort estimation through selective
classification and localization, Innovations in Systems
and Software Engineering, 11 (2015) 25-38.

[21] S. Kumari, S. Pushkar, A framework for analogy-based
software cost estimation using multi-objective genetic
algorithm, in: Proceedings of the world congress on
engineering and computer Science, 2016.

[22] A. Idri, I. Abnane, Fuzzy analogy based effort
estimation: An empirical comparative study, in: 2017
IEEE International Conference on Computer and
Information Technology (CIT), IEEE, 2017, pp. 114-121.

[23] S. Ezghari, A. Zahi, Uncertainty management in software
effort estimation using a consistent fuzzy analogy-based
method, Applied Soft Computing, 67 (2018) 540-557.

[24] H. Mustapha, N. Abdelwahed, Investigating the use of
random forest in software effort estimation, Procedia
computer science, 148 (2019) 343-352.

[25] M.A. Shah, D.N.A. Jawawi, M.A. Isa, M. Younas,
A. Abdelmaboud, F. Sholichin, Ensembling artificial
bee colony with analogy-based estimation to improve
software development effort prediction, IEEE Access, 8
(2020) 58402-58415.

[26] S. Ranichandra, Optimizing non-orthogonal space
distance using ACO in software cost estimation, Mukt
Shabd J, 9(4) (2020) 1592-1604.

[27] Z. Shahpar, V.K. Bardsiri, A.K. Bardsiri, An evolutionary
ensemble analogy-based software effort estimation,
Software: Practice and Experience, (2021).

[28] S. Samavatian, K. Mohebbi, Improving the Estimation
of Software Development Effort Using the Combination
of Cuckoo Search and Particle Swarm Optimization
Algorithms, Journal of Soft Computing and Information
Technology, 10(3) (2021) 86-98.

[29] Z. Shahpar, V.K. Bardsiri, A.K. Bardsiri, Polynomial
analogy-based software development effort estimation
using combined particle swarm optimization and
simulated annealing, Concurrency and Computation:
Practice and Experience, 33(20) (2021) e6358.

[30] M. Dashti, T.J. Gandomani, D.H. Adeh, H. Zulzalil,
A.B.M. Sultan, LEMABE: a novel framework to
improve analogy-based software cost estimation using
learnable evolution model, PeerJ Computer Science, 7
(2022) e800.

[31] S. Hameed, Y. Elsheikh, M. Azzeh, An optimized case-
based software project effort estimation using genetic
algorithm, Information and Software Technology, 153
(2023) 107088.

[32] A. Moradbeiky, FEEM: A Flexible Model based on
Artificial Intelligence for Software Effort Estimation,
Journal of AI and Data Mining, 11(1) (2023) 39-51.

[33] N. Pal, M.P. Yadav, D.K. Yadav, Appropriate number
of analogues in analogy based software effort estimation
using quality datasets, Cluster Computing, 27(1) (2024)
531-546.

[34] R. Eberhart, J. Kennedy, Particle swarm optimization,
in: Proceedings of the IEEE international conference on
neural networks, Citeseer, 1995, pp. 1942-1948.

[35] M. Mitchell, An introduction to genetic algorithms,
MIT press, 1998.

[36] S.D. Conte, H.E. Dunsmore, V.Y. Shen, Software
engineering metrics and models, Benjamin-Cummings
Publishing Co., Inc., 1986.

[37] K.D. Maxwell, Applied statistics for software managers,
Applied Statistics for Software Managers, (2002).

[38] J. Desharnais, Analyse statistique de la productivitie des
projects informatique a partie de la technique des point
des function, Masters Thesis University of Montreal,
(1989).

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

169

[39] K. Khan, The Evaluation of Well-known Effort
Estimation Models based on Predictive Accuracy
Indicators, in, 2010.

[40] E. Kocaguneli, T. Menzies, Software effort models
should be assessed via leave-one-out validation, Journal

of Systems and Software, 86(7) (2013) 1879-1890.
[41] J. Wen, S. Li, Z. Lin, Y. Hu, C. Huang, Systematic

literature review of machine learning based software
development effort estimation models, Information and
Software Technology, 54(1) (2012) 41-59.

HOW TO CITE THIS ARTICLE
E. Nasr, K. Mohebbi, Improving Software Effort Estimation through a Hybrid Approach of
Metaheuristic Algorithms in Analogy-based Method, AUT J. Model. Simul., 56(2) (2024)
155-170.

DOI: 10.22060/miscj.2024.23316.5366

https://dx.doi.org/10.22060/miscj.2024.23316.5366

E. Nasr and K. Mohebbi, AUT J. Model. Simul., 56(2) (2024) 155-170, DOI: 10.22060/miscj.2024.23316.5366

170

