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ABSTRACT: Project management in software development is one of the most crucial activities as it 
encompasses the entire software development process from start to finish. Estimating the effort required 
for software projects is a significant challenge in project management. Managing software projects and 
consequently estimating their effort for more efficient and impactful management of such projects is 
necessary and unavoidable. Analogy-based estimation in software effort estimation involves comparing 
new projects to completed ones. However, this method can be ineffective due to variations in feature 
importance and dependencies. To address this, weights are assigned to features using optimization 
techniques like meta-heuristic algorithms. Yet, these algorithms may get stuck in local optima, yielding 
nonoptimal results. An approach to estimate software effort is proposed in this study. It aims to find 
global optimal feature weights by combining particle swarm and genetics metaheuristic algorithms. This 
hybrid approach leverages particle motion and composition to enhance solution generation, increasing 
the likelihood of finding the global optimum and overcoming local optima issues. The algorithm 
calculates feature weights for project estimation using analogy-based methods. The proposed approach 
was tested and assessed using two datasets, namely Maxwell and Desharnais. The experimental results 
indicated an enhancement in the evaluation criteria, including MMRE, MdMRE, and PRED, compared 
to similar research works.
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1- Introduction
Effort estimation is the process of forecasting the 

resources, time, and personnel required to develop software. 
It is a critical aspect of project management, as incorrect 
cost estimates can lead to project failures due to inaccurate 
planning and scheduling. Unlike other types of projects 
such as construction and manufacturing, the unique 
characteristics of software services make effort estimation a 
more challenging task. The intangibility of software services 
and the high variability and inconsistency of datasets add to 
the complexity of the process. As a result, a one-size-fits-all 
model cannot be applied to different types of software and 
datasets. Poor estimation can result in budget and timeline 
overruns or overestimation, which may ultimately lead to 
project failure. Therefore, an accurate and optimal approach 
to predicting these costs is crucial [1].

Cost estimation models that can accurately predict the 
expenses involved in constructing a system during the initial 
stages of project development, even with limited project 
information, are highly valuable and necessary. It is essential 
to have such models that can provide precise cost estimations 
during the early stages of project construction, offering 
significant benefits and advantages. This is especially true 

when there is a lack of data related to the project. By utilizing 
cost estimation methods, project managers can effectively 
manage the time and construction expenses associated with 
building the system. This allows for better planning and 
decision-making throughout the project’s lifecycle, ultimately 
leading to a more successful outcome. Additionally, accurate 
cost estimation can help prevent unexpected expenses and 
delays, which can have a significant impact on the overall 
success of the project. Therefore, it is important to invest 
in reliable cost estimation models to ensure that projects 
are completed on time and within budget [2]. According to 
Boehm, effort estimation during the early stages of system 
construction can range from 25% to 40% of the actual effort 
required [3]; This preliminary estimation is often inaccurate 
due to the limited knowledge of the project at that stage. 
Heemstra has also confirmed this view [4].

Several approaches have been proposed for software 
effort estimation, which can be categorized into algorithmic 
and non-algorithmic methods. Algorithmic approaches 
use mathematical models that define a cost function based 
on selected cost factors [5]. The selection of cost factors 
and the definition of the cost function vary across different 
methods, and they can be analytical or experimental. Popular 
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algorithmic methods include COCOMO and SLIM. However, 
algorithmic approaches are not flexible enough to provide 
accurate estimates for large and complex projects. Non-
algorithmic approaches, on the other hand, rely on analytical 
comparisons with similar previous projects, using existing 
databases to infer the cost of software. These approaches do 
not use equations or mathematical models.

Analogy-based estimation is a popular method for 
estimating the effort required for software development, 
which does not involve the use of algorithms. This approach 
involves comparing the features of a new project with those 
of previously completed projects to determine the level of 
similarity and predict the amount of effort needed for the 
new project. By using this method, software developers 
can make informed decisions about resource allocation and 
project planning, based on past experiences and knowledge. 
This approach is particularly useful when dealing with 
complex projects that require a high level of expertise and 
experience, as it allows developers to draw on their previous 
successes and failures to make more accurate predictions 
about future outcomes. Overall, analogy-based estimation 
is an effective tool for improving software development 
processes and ensuring successful project outcomes [6]. The 
analogy-based estimation approach comprises four major 
components: historical dataset, similarity function, retrieval 
rules, and solution function. The estimation process involves 
the following steps [7]:

To estimate the effort required for a new software 
development project using analogy-based estimation, the 
first step is to gather data from previous projects and create 
a database of relevant information. This information can 
include metrics such as function points and lines of code. 
Next, appropriate measurement parameters are selected 
based on the requirements of the target project. The historical 
dataset is then used to retrieve previous projects and assess 
the similarity between those projects and the target project. 
Finally, the effort required for the target project is estimated 
based on the similarities found in the previous projects.

A technique for estimating software effort is case-based 
reasoning (CBR) which is based on adapting previously 
successful solutions for similar software projects. The 
CBR can be enhanced by combining it with meta-heuristic 
algorithms [8]. This study introduces a new method for 
estimating software effort that utilizes a case-based approach 
and the particle swarm optimization (PSO) algorithm. 

The use of PSO has increased due to its simplicity, low 
cost of calculations, and also its effect on a wide range of 
applications. The advantages of this algorithm compared to 
other optimization algorithms can be summarized as follows: 
The PSO algorithm contains memory so that all particles 
keep good solutions. In this algorithm, the position of each 
community member changes based on personal experiences 
and the experiences of the whole community. Compared to 
other optimization strategies, the PSO algorithm shows more 
flexibility by using swarming particles against the local 
optimal problem. Finally, this algorithm is simpler than the 
other population-based algorithms such as the ant colony 

optimization algorithm. In addition, the initial quantification 
of the population using this algorithm is simpler than other 
intelligent optimization algorithms.

However, to improve the efficiency of this approach, 
the study proposes incorporating additional optimization 
algorithms, such as genetic algorithms, to enhance the 
weighting process. While analogical models typically 
perform better with weighted features, the PSO algorithm 
may not always produce optimal weights. By combining 
PSO with genetic algorithms, the study aims to achieve more 
accurate weights and improve overall estimation accuracy. 
Hybrid algorithms are particularly useful in this context as 
they strive to attain the global optimal point.

The remainder of this paper is structured as follows: In 
the subsequent section, notable works related to the topic are 
examined. Afterward, a detailed explanation of the suggested 
approach is provided. This is followed by an evaluation of the 
effectiveness of the approach. Finally, the concluding section 
summarizes the paper and provides recommendations for 
future research.

2- Related Works
So far, different studies have been conducted in the field 

of software development effort estimation, some prominent 
works of which are mentioned below.

The first ideas related to estimating software effort 
were presented by Dalkey and Helmer (1963) [9] under 
the name of the Delphi model, which is a non-algorithmic 
classification method. Due to algorithmic methods’ inability 
to handle the dynamic behavior of software projects in the 
early stages, non-algorithmic methods were introduced. In 
this approach, experienced individuals share their estimates 
about effort until reaching a final agreement on a common 
effort level among all experts. Then, Albrecht (1983) [10] 
made a significant impact by introducing Function Point 
(FP), allowing measurement in the early stages of projects 
and mitigating the negative impacts of the previous method, 
lines of code estimation. Previous models required an initial 
estimate of lines of code for software, which could not be 
accurate until software implementation was completed, 
leading to significant estimation errors that were reduced 
with feature additions or functional points.

The initial idea of algorithmic methods with the use of 
lines of code in law was introduced by Boehm (1984) [11]. 
He proposed a new model called the Constructive Cost 
Model (COCOMO) for estimating software development 
effort using empirical equations. COCOMO is an empirical 
model derived from collecting data from various software 
projects. These data are analyzed to derive formulas that best- 
fit observations, relating system and product size, team, and 
project factors to the required work for system development. 
Other models like SLIM and SEM-SEER continued the 
principles of the COCOMO method.

Shepperd et al. (1996) [12] introduced an approach called 
ANGEL, which is designed to automatically handle the 
collection, storage, and identification of similar past projects 
to estimate the effort needed for a new project. ANGEL 
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operates by minimizing the Euclidean distance in multi-
dimensional space. This approach is adaptable to various 
datasets, regardless of the number of projects or collected 
variables. Their method of using analogies was tested with six 
diverse datasets from various backgrounds and was proven 
to be more effective than alternative methods. In addition, 
this research demonstrates that analogical estimation is 
a promising approach, especially when supported by an 
automated environment.

Walkerden et al. (1999) [13] attempted to predict effort 
using similar project efforts as a benchmark. They first 
removed features not matching the project from the dataset 
and selected projects only within the relevant domain. Their 
model compared linear regression on performance points, 
showing that comparative estimation might yield better results 
than using performance points and algorithmic models, but 
they did not consider weighting software project features 
in their research. Classified features are evaluated based on 
linguistic values like low, complex, and important. Linguistic 
values may be derived from numerical values. When derived 
from numerical data, they are often represented based on 
classic distances. Also, linguistic value representation does 
not mimic human interpretation methods, thus encountering 
errors and uncertainties. Idri et al. (2006) [14] proposed a 
fuzzy comparison method to address this issue, combining 
fuzzy logic with comparison-based reasoning. The fuzzy 
comparison uses fuzzy sets for linguistic values instead 
of classic distances. Furthermore, fuzzy scaling contrasts 
numerical values by transforming them into linguistic values.

Azzeh et al. (2008) [15] examined similarities between 
two software projects described with numerical and classified 
features using fuzzy clustering and logic-based approaches 
for similarity measurement. Two approaches regarding 
weighting and Euclidean distance were evaluated for 
assessing software similarity performance, showing validity 
similar to case-based reasoning methods.

Keung et al. (2008) [16] presented a solution named 
Analogy-X, which is based on utilizing the Mantel correlation 
randomization test. They leverage the correlation strength 
between the distance matrices of project characteristics 
and the known effort values of the dataset. The approach 
demonstrates (1) employing Mantel’s correlation to determine 
the suitability of analogies, (2) a systematic feature selection 
process, and (3) using a leverage statistic for identifying 
outlier data points. Analogy-X establishes a solid statistical 
foundation for analogies, eliminates the necessity for 
heuristic searches, and significantly enhances its algorithmic 
efficiency.

Attarzadeh and Ow (2010) [17] aimed to accurately 
estimate software costs using machine learning and pattern 
recognition methods. Artificial neural networks can learn 
from previous data to find relationships between independent 
and dependent variables.

Azzeh et al. (2011) [18] combined a fuzzy number-based 
comparison method with all available initial data to enhance 
early-stage software effort estimation performance.

Amazel et al. (2014) [19] carried out a study to prove 

that using analogy-based techniques is a feasible approach 
for estimating software. To handle data that was not obtained 
from numerical values and was classified, they utilized a 
fuzzy analogy method along with a widely-used clustering 
technique known as the fuzzy algorithm, which is particularly 
suitable for dealing with extensive datasets containing batch 
values. They assessed the similarity of software projects by 
analyzing clustering outcomes and determined the effort 
required for a new project based on the nearest scales. The 
findings of this research indicated that this method led to 
enhanced precision in software estimation. Therefore, it can 
be concluded that utilizing analogy-based methods can be an 
effective strategy for estimating software accurately. 

Khatibi Bardsiri and Khatibi (2015) [20] discovered that 
comparative methods were overlooked in previous studies 
regarding the nature of software projects in estimation 
processes. They improved the performance of the comparative 
method based on three main project classification features: 
development types, organization types, and development 
platforms on a dataset of 448 real software projects.

Kumari and Pushkar (2016) [21] developed a framework 
for project selection using a multi-objective genetic algorithm 
to enhance the analogy-based method. They believed that 
project selection was crucial in the analogy-based method, 
and the interaction effects between the projects could 
significantly influence the estimated software cost. The 
proposed framework was tested on COCOMO and NASA 
datasets, and it was able to achieve better results. However, 
the use of meta-heuristic algorithms may lead to the model 
getting stuck in a local optimum.

Idri and Abnane (2017) [22] proposed a fuzzy analogy-
based model that utilizes fuzzy logic to implement the 
analogy method. They compared this method with six other 
techniques for estimating effort and tested it on various 
datasets. The fuzzy analogy-based model outperformed the 
other methods, but the model was based only on numerical 
features and could not use nominal ones.

Wu et al. (2018) [8] devised a novel strategy to enhance 
software cost estimation by integrating case-based reasoning 
with the particle swarm meta-heuristic algorithm. The 
effectiveness of their approach was evaluated using the 
Maxwell and Desharnais datasets, yielding promising 
outcomes.

Ezghari and Zahi (2018) [23] introduced a fuzzy analogy-
based technique to improve the precision of software effort 
estimation. The effectiveness of their method was evaluated on 
13 datasets, and the results showcased superior performance 
and accuracy compared to previous studies in the field.

Mustafa and Abdelwahed (2019) [24] presented a 
stochastic forest model that underwent experimental 
optimization, where key parameters were adjusted to enhance 
software project effort estimation. The performance of their 
optimized model was compared to that of the traditional 
regression tree, revealing that the optimized stochastic forest 
model surpassed the regression tree model in all evaluation 
criteria. 

These studies demonstrate the importance of developing 
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new approaches to improve software estimation techniques, as 
well as the potential benefits of combining different methods 
to achieve better results. In recent years, there has been 
considerable research in the field of software development 
effort estimation. A review of recent studies reveals that 
many researchers are focusing on using meta-heuristic and 
optimization algorithms to enhance the efficiency of the 
estimation process. 

Shah et al. (2020) [25] proposed a similarity-based 
estimation method using the artificial bee colony (ABC) 
algorithm, while Ranichandra (2020) [26] tried to enhance 
the non-orthogonal space distance, a metric indicating how 
similar software projects are by analyzing feature weights 
and redundancy through the ant colony optimization (ACO) 
algorithm.

Shahpar et al. (2021) [27] proposed an evolutionary 
ensemble analogy-based method that combines genetic 
algorithms with various analogy-based methods. Samavatian 
and Mohebbi (2021) [28] used the cuckoo search algorithm to 
select software features and then analyzed the results further 
using the particle swarm optimization algorithm. In another 
study, Shahpar et al. (2021) [29] utilized a combination of 
particle swarm optimization and simulated annealing to 
calculate project effort using a polynomial ensemble of 
different analogy-based estimation models.

A framework was introduced by Dashti et al. (2022) 
[30] to calculate the cost of software development. This 
framework utilizes the learnable evolution model, which is a 
technique that optimizes the weighting of different features. 
By implementing this model, software developers can more 
accurately estimate the cost of their projects and allocate 
resources accordingly. The authors suggest that this approach 
can lead to more efficient and effective software development 
processes. Additionally, they propose that this framework can 
be adapted for use in various industries beyond just software 
development.

The CBR technique is centered around adapting successful 
solutions from past software projects that are similar in 
nature. However, CBR encounters a challenge in the form 
of multiple parameters that are difficult to fine-tune. This 
underscores the significance of the adaptation and adjustment 
process as a fundamental aspect of CBR, aiming to generate 
precise and efficient results with minimal estimation error. In 
their study, Hameed et al. (2023) [31] employed the Genetic 
Algorithm (GA) to aid in identifying the optimal set of 
classical CBR parameters, thereby enhancing the accuracy of 
effort estimation for software projects. The proposed CBR-
GA model effectively demonstrated the efficacy of utilizing 
the GA algorithm to explore the best combination of CBR 
parameters, leading to improved accuracy.

Moradbeiky (2023) [32] introduced a novel model, namely 
FEEM that incorporates data filtering and feature weighting 
techniques across three layers. The initial two layers employ 
tools and methods to select key features and assign weights 
using the Lightning Search Algorithm (LSA). The third layer 
combines LSA with an artificial neural network to create an 
estimator model, enhancing final estimation accuracy. This 

hierarchical structure enhances accuracy by filtering and 
analyzing data from lower layers, as demonstrated through 
evaluations of diverse datasets, showcasing improved 
software effort estimation precision.

Determining the right quantity of comparable past projects 
for reuse is a challenge in Analogy-based software effort 
estimation techniques, and the effectiveness and precision 
of these methods are significantly impacted by the quality of 
software datasets. Thus, Pal et al. (2024) [33]  introduced a 
new method to determine the appropriate number of analogs 
from high-quality datasets in Analogy-based software effort 
estimation. Their approach involves using Spearman’s rank-
order correlation and Kruskal-Wallis test during data pre-
processing to handle both numerical/ordinal and nominal 
attributes effectively. The method identifies reliable attributes 
that have a significant impact on effort estimation, leading to 
improved dataset quality, better attribute selection, reduced 
anomalies, and lower project development costs according to 
experimental results.

Overall, these studies demonstrate a growing interest 
in the use of meta-heuristic and optimization algorithms to 
improve the accuracy and efficiency of software development 
effort estimation.

3- Proposed Approach
Overall, these studies demonstrate a growing interest 

in the use of meta-heuristic and optimization algorithms to 
improve.

To enhance the precision of software cost estimation, 
it is crucial to accurately assign weights to the software 
features. To achieve this objective, we suggest a novel 
approach that combines Particle Swarm Optimization (PSO) 
and genetic algorithm. PSO is a widely recognized meta-
heuristic algorithm that has demonstrated remarkable success 
in resolving diverse problems [34]. Similarly, the genetic 
algorithm is among the most successful nature-inspired meta-
heuristic algorithms [35]. By integrating PSO and genetic 
algorithm, we aim to optimize the weights of the software 
features and improve the accuracy of cost estimation. This 
approach has the potential to provide a more efficient and 
effective solution for software development teams seeking to 
improve their cost estimation processes. In addition, we aim to 
reduce the probability of getting stuck in a local optimization 
point and achieve global optimization in the feature weights. 
The process of our proposed approach is depicted in Fig. 1.

The algorithm begins by creating a random population of 
particles, each with the following properties:

Position: Indicates the position of each particle in each 
iteration of the algorithm.

Best position: The best position that each particle had in 
the whole execution of the algorithm.

Velocity: Indicates the amount of displacement of each 
particle per iteration of the algorithm. This value is updated 
in each iteration.

Cost: The amount of cost that each particle has in its 
current position and its amount is calculated by the cost 
function.
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Fig. 1. Flowchart of the Proposed Approach 

 

 

 

Fig. 1. Flowchart of the Proposed Approach
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Best cost: The lowest cost that each particle had in the 
whole execution of the algorithm.

To improve the accuracy of weight generation, it is crucial 
to establish a suitable cost function that can effectively 
measure the performance of the generated weights. This 
study has utilized commonly used evaluation criteria for 
software cost estimates to create a function that incorporates 
MMRE, MdMRE, and PRED. The formula for this function 
is as follows:

Cost = MMRE + MdMRE – PRED 
 

𝑣𝑣′ = (𝑣𝑣 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

 

 (1)

Where MMRE represents the mean magnitude of relative 
error, MdMRE denotes the median magnitude of relative error, 
and PRED reflects the percentage of relative error deviation 
[36]. As the objective is to minimize MMRE and MdMRE and 
bring PRED closer to zero, their sum is used to define the cost 
function. This function assigns higher priority to the weights 
that produce lower values.

To start running the algorithm, certain input parameters 
need to be defined, such as the number of features to be 
weighted (Sizefeature), the initial population size (Sizepopulation), 
the lower and upper limits for each feature (Limitlow and 
Limitup), and the maximum number of iterations (Itermax). 
Once these inputs are specified, the algorithm proceeds to 
generate the initial population. This is done by assigning 
random positions to particles, which in this case represent 
the weights of the features. Afterward, the cost function is 
utilized to evaluate the cost of every particle. Subsequently, 
the particles are arranged in an ascending order based on 
their cost and position so that it becomes more convenient 
to access favorable genes within the genetic algorithm. The 
best global record of the population, including its position 
and cost, is then stored in a variable.

The proposed approach involves three loops as follows:
Main loop: The algorithm has a mechanism to prevent 

getting stuck in a local optimal point. If there is no 
improvement in the best cost after four iterations, a revolution 
occurs. In this revolution, the positions of all particles, except 
for one particle that serves as the superior generation, are 
randomly reinitialized for the next iteration. The primary loop 
carries out both the PSO and genetic loops simultaneously.

PSO loop: the velocity of each particle is adjusted, and 
it is verified whether the particle’s movement falls within 
the predetermined range for its attributes. Subsequently, the 
particles are repositioned according to the calculated velocity, 
and their position and cost are recalibrated. If a particle 
encounters a more favorable experience compared to its 
previous best experience, the latter is replaced with the new 
value. Conversely, if the experience is inferior to the best cost 
observed by the entire population, the global record of the 
best outcome is updated accordingly.

Genetic loop: Here, particles are combined and mutated 
to produce a new population. During this process, it is 

checked whether each feature is within the specified range. 
Particle velocity is also considered in the genetic algorithm, 
and thus, it is genetically combined in the crossover and 
mutation of the population. The new population is the sum of 
the initial, crossed-over, and mutated populations. The best 
global record is updated if needed. 

Once the feature weights are generated based on their 
importance in estimating the effort required, they are used 
in the similarity function of the analogy-based method. The 
similarity function employs distance measures to compare 
equivalent features, and based on the comparison of various 
features, the closest project to the current project is found.

4- Evaluation
This section outlines the methodology for assessing the 

proposed approach.

4- 1- Implementation Settings
The parameters of the proposed approach are set as 

depicted in Table 1.

4- 2- Datasets
Two commonly used datasets, namely Maxwell and 

Desharnais have been selected to validate the proposed 
approach. The Maxwell dataset contains 62 projects from 
one of the biggest commercial banks in Finland [37]. For 
each project, there are 25 features. The effort is determined 
by the number of working hours performed by the software 
developer, from the specifications to the time of delivery. 
The Desharnais dataset contains 81 projects from a Canadian 
Software house [38]. For each project, there exist 10 features. 
The effort is measured in person-hours.

4- 3- Data Preprocessing
In this research, normalization has been utilized as 

a crucial step for data preparation and preprocessing. 
Normalization is an essential technique that helps ensure 
that data is consistent and comparable across different scales 
and units of measurement. Among the various normalization 
methods available, the Min-Max method has been chosen. 
This method involves mapping each set of data to arbitrary 
intervals with known minimum and maximum values. By 
using a simple conversion formula, any desired interval can 
be mapped to a new one. For instance, if we want to map 
feature A, which falls between min_A and max_A, to a new 
range between new_Min and new_Max, we can use Eq. (2) 
to convert any initial value v in the initial interval to its 
corresponding value v′in the new interval.Cost = MMRE + MdMRE – PRED 
 

𝑣𝑣′ = (𝑣𝑣 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

 

 (2)

4- 4- Evaluation Criteria
The criteria used to evaluate the software development 

effort in this study are depicted in Table 2 [39].
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4- 5- Evaluation Method
Previous research works have highlighted that techniques 

like n-fold can result in highly variable software effort 
estimates [40]. To achieve more precise results, methods 
like Leave-One-Out Cross-Validation (LOOCV) or Hold-
out should be utilized [41]. In this study, as the dataset 
is not extensive and all samples can be treated as test data 
simultaneously, the LOOCV approach was employed to 
validate the algorithm.

4- 6- Experimental Results
The first criterion to evaluate the proposed approach is 

the MRE, which shows the deviation of the predicted from 
the actual estimation. The best case is zero, and this value 
increases when the estimates get further from reality. The 
calculated MRE for the two datasets is shown in Fig. 2.

This figure highlights that a few projects from both 
datasets contain a significant number of errors, as they have 
very different effort levels compared to other projects. In 
some research areas, these cases may be identified as outliers 
and either normalized or removed from the dataset. However, 
since the Desharnais and Maxwell datasets are based on real 
projects with highly precise data, it is unlikely that errors 
occurred. Although these cases are rare, they can result 
in high error rates when implementing the analogy-based 
method, as it may not find similar projects to compare them 
with. Therefore, it is normal for the error rate of these cases 
to be high.

Afterward, we evaluated the proposed approach using 
the MMRE, MdMRE, and PRED(0.25) criteria. The result is 
shown in Fig. 3.

While the MRE calculates the difference in effort for a 
project, MMRE and MdMRE are cumulative measures that 
represent the relative error magnitude for all projects in the 
dataset. PRED(0.25) measures the percentage of predicted 
values within 25 percent of the actual value. We tried to keep 
MMRE and MdMRE values as close to zero as possible. In 
contrast, PRED(0.25) aims to achieve the highest possible 
value of one. 

We also introduced the TotalCost criterion, which is the 
overall measure of the previous criteria, calculated using (1). 
TotalCost values for both datasets have improved over the 
similar work. The Desharnais dataset’s TotalCost is negative, 
which is expected, as the best possible values for MMRE, 
MdMRE, and PRED are 0, 0, and 1, respectively. Hence, 
TotalCost is equal to -1 in the best case.

In the following, the performance of the proposed 
approach has been compared with previous methods. To do 
this, it is necessary for the compared methods to use the same 
evaluation criteria as well as the datasets. Therefore, we have 
decided to compare them based on each of the evaluation 
criteria MMRE, MdMRE, and PRED(0.25), selecting some 
of the most prominent works for each criterion. 

Table III shows the evaluation result of MMRE in different 
methods for each dataset.

The comparison of MMRE in different methods for each 

Table 2. Evaluation CriteriaTable 2. Evaluation Criteria 

Criteria Equation 

Magnitude of Relative Error (MRE) 
|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 – 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 |

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖
 

Mean Magnitude of Relative Error (MMRE) 
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁

𝑘𝑘=1
𝑁𝑁  

Median Magnitude of Relative Error (MdMRE) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 

Percentage of the Prediction (PRED 0.25) 
100

𝑁𝑁 ∑ {1 𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  ≤ 25
100

0 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
}

𝑁𝑁

𝑖𝑖=1
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Fig. 2. MRE of the Proposed Approach 
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dataset is depicted in Fig. 4.
Table 4 shows the evaluation result of MdMRE in different 

methods for each dataset.
The comparison of MdMRE in different methods for each 

dataset is depicted in Fig. 5.
Table 5 shows the evaluation result of PRED in different 

methods for each dataset.
The comparison of PRED in different methods for each 

dataset is depicted in Fig. 6.
The evaluation results indicate that the integration of PSO 

and genetic algorithms yields improved points of optimization 
and reduces the chances of being trapped in local optima, as 
compared to using these algorithms individually. As a result, 
by utilizing the global optimization weights for project 

features and applying them in the analogy-based method, 
more accurate estimations can be made with fewer errors.

Furthermore, we conducted additional experiments to 
determine the best match between different cases for solution 
and similarity functions. This involved implementing a grid 
search of all possible cases, including the number of projects 
selected that are most similar to the target project ranging 
from 1 to 4. Six distance functions, including Euclidean, 
Manhattan, Gray relational grade, Minkowski, Canberra, and 
Bray-Curtis, are being considered as similarity functions. 
Additionally, four statistical functions - mean, median, 
weighted mean, and inverse distance weighted mean - are 
being considered in relation to the number of projects. The 
results of implementing the grid search for the Maxwell 

 

Fig. 3. Evaluation of the Proposed Approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MMRE MdMRE PRED TotalCost
Desharnais 0.314 0.196 0.555 -0.045
Maxwell 0.5 0.204 0.548 0.155
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Table 3. Evaluation of MMRE in Different MethodsTable 3. Evaluation of MMRE in Different Methods 
Method Desharnais Maxwell 

PSO+CBR [8] 0.57 0.53 

ANGEL [12] 0.38 0.61 

Analogy-X [16] 0.38 0.91 

Pal et al. [33] 0.31 0.46 

Proposed Approach 0.31 0.5 
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and Desharnais dataset can be found in Fig. 7 and Fig. 8, 
respectively.

It is apparent that the cost of estimation varies depending 
on the similarity and solution functions utilized. However, 
the number of projects considered for cost estimation has 
a significant impact on the error rate. In both the Maxwell 
and Desharnais datasets, the error rate reaches its minimum 
when four similar projects are chosen. In these instances, 
making changes to the similarity or solution functions does 
not significantly affect the error rate. However, if the number 
of selected projects is less than four, the error rate increases, 
and modifications to the similarity or solution functions may 
have minimal influence on it. Therefore, in the analogy-based 
method, the crucial factor for cost estimation is the number of 

similar projects selected, rather than the choice of similarity 
and solution functions.

5- Conclusion and Future Works
The analogy-based estimation method is a popular 

and valuable non-algorithmic approach employed for 
software effort estimation, primarily due to its practicality 
and effectiveness. However, this method faces challenges 
in accurately estimating effort when project features are 
not independent or have different levels of importance. 
To overcome this challenge, this paper proposes a new 
approach for analogy-based estimation by combining PSO 
and genetic algorithms to improve feature weighting and 
prevent local optimum trapping. The evaluation results show 

 

Fig. 4. Comparison of MMRE in Different Methods 
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Table 4. Evaluation of MdMRE in Different MethodsTable 4. Evaluation of MdMRE in Different Methods 

Method Desharnais Maxwell 

PSO + ABE [7]  0.4 0.47 

PSO+CBR [8] 0.41 0.44 

RF [24]  0.39 0.32 

ACO + ABE [26]  0.36 0.48 

FEEM [32] 0.22 0.24 

Proposed Approach 0.2 0.2 
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Fig. 5. Comparison of MdMRE in Different Methods 
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Table 5. Evaluation of PRED in Different MethodsTable 5. Evaluation of PRED in Different Methods 
Method Desharnais Maxwell 

PSO + ABE [7]  0.4 0.29 

PSO+CBR [8] 0.36 0.32 

ANGEL [12] 0.43 0.21 

Analogy-X [16] 0.43 0.23 

RF [24]  0.36 0.4 

ACO + ABE [26]  0.36 0.32 

FEEM [32] 0.51 0.5 

Pal et al. [33] 0.45 0.33 

Proposed Approach 0.56 0.55 
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Fig. 6. Comparison of PRED in Different Methods 
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Fig. 7. Grid Search Result for Maxwell Dataset 
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that this approach outperforms similar works. The grid search 
analysis reveals that the number of similar projects selected 
for estimating effort is more important than the choice of 
similarity and solution functions.

Future research could explore the use of other optimization 
algorithms for feature weighting or investigate the limitations 
and challenges of using machine learning methods for 
estimating software efforts, such as small training datasets, 
data uncertainties, qualitative metrics, and human factors.
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