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ABSTRACT: Accurate modelling and control of a soft arm has enormous importance because of the
inherent softness and shape adaptability. The goal of this work is to represent an exact position control

Review History:

Received: Apr. 23, 2024

approach based on the precise Cosserat rod modelling method. To this aim, a compact Cosserat model of ~ Revised: Aug. 07, 2024

the pneumatically-actuated soft arm is extracted owing to the viscoelastic behaviour of the constructing
material and the pneumatic pressure effects that appear as external loads. To address high nonlinearity,
a PID sliding controller is suggested and formulated. The PDE equation set is solved by a recursive
numerical method satisfying both boundary and domain requirements. Experimental results represented
good behaviour of the proposed model, and the effectiveness of the control approach is demonstrated by

simulation in both continuous and set-point positioning.
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1- Introduction

Despite the popularity of using rigid robots in the past,
the advent of soft robots has revolutionized the field of
robotics, providing an alternative to traditional rigid systems
in various applications [1]. The intrinsic softness of these
robots, characterized by infinite degrees of freedom, enables
them to adapt seamlessly to their environment, facilitating
extensive and continuous deformation within confined spaces
[2]. Additionally, soft robots excel in applications involving
human interaction, offering enhanced safety features in
diverse fields such as rehabilitation wearable robots, rescue
robots, and industrial manipulators designed to collaborate
with humans as co-workers.

Similar to most soft grippers and locomotion robots, soft
arms draw inspiration from various structures, including
those reminiscent of elephant trunks and octopus arms [3],
[4] and [5]. By combining different arrangements of soft
actuators, these arms can exhibit robust capabilities, allowing
for extension, bending, twisting, or a combination of
movements tailored to specific applications. Notably, linear
actuators play a pivotal role and find widespread application
in medical contexts, serving as artificial muscles with diverse
functionalities [6]. Furthermore, the adaptability of linear soft
arms extends to industrial applications such as grippers and
locomotion robots, showcasing their versatility [7], [8].

*Corresponding author’s email: mzare@aut.ac.ir

Soft robots are predominantly produced from silicon
rubber and powered through various means, including shape
memory alloys [9], cables for tendon-driven robots, and
pneumatic or hydraulic systems. Pneumatically actuated
robots have attracted significant attention from researchers,
owing to their lightweight nature, ability for smooth and
continuous pressurization, and utilization of safe air. The
challenge with this system lies in the use of a valve, which
contributes to an increase in the overall weight of the system.
To overcome this concern in pneumatically actuated robots,
a suggested remedy in [10] introduces a compact power
actuation system that eliminates the requirement for a valve.

The constant curvature (CC) assumption has attracted
considerable attention from soft robotic researchers, leading
to the formulation of an Ordinary Differential Equation
(ODE) model. Jones and Walker have outlined various
methods for selecting suitable joints and Denavit-Hartenberg
parameters, culminating in a transformation matrix derived
from the curvature variables [11]. However, the inherent low
stiffness of the constructing materials poses a challenge, as
external loads like gravity significantly impact the shapes of
soft robots. This influence compromises the validity of the
CC assumption.

On the other hand, Cosserat’s theory, an approach in
continuum mechanics for rods and shells, excels in dynamic
modelling with large deformations while considering various
material behaviours. Renda et al. utilized this theory to model
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Fig. 1. Schematic of the robot affected by pneumatic pressure and weight as external forces

a cable-driven serially soft manipulator [12]. They also
applied the Cosserat method in two dimensions to model a
shell-like soft robot [13]. Expanding their investigation into
solid rods, Till et al. focused on modelling soft and continuum
robots, presenting and implementing a real-time solution
method in C++ [14]. The cosserat modelling method is also
attended to a contact dynamic modelling for a slender soft
robot with shooting-based implementation [15]. Dehghani
and Moosavian developed a Jacobian-based control for
a multi-segment continuum of robotic arms. The control
method is validated with experimental testing for a planar
bending arm [16].

Because of the sensing and actuation in the boundary
of continuous PDE systems in various scenarios, control
requirements were noticed based on the boundary equations
as the primary system with a background of the domain
equations. Gerdts et al. proposed an optimal stabilizing
control approach for a string by transforming PDE-
constrained equations into a nonlinear programming problem
[17]. Axlesson et al. suggested a computational method for
boundary control at approximating a function when dealing
with an inaccessible boundary [18].

In this study, our objective is to implement precise model-
based position control for the end-tip of a pneumatically
actuated soft arm. The continuous deformation of the robot is
modelled using Cosserat rod theory, considering the influence
of pressurized air. To control the end-tip, we propose a
boundary value problem control approach employing a
PID sliding-mode controller. Implementing a model-based
controller for the complicated Cosserat rod model is the most
important novelty of the works.

The paper is organized as follows. In section 2, the
Cosserat rod model of the robot is prepared, and boundary
conditions are specified clearly. In section 3, the control
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problem is presented in detail. The process of solving
equations is discussed in section 4. The results of the cosserat
model and proposed controller for both set point and tracking
requirements are reported in section 5. Finally, the paper is
concluded in the last section.

2- Robot Dynamic Modeling

In this section, the configuration of the problem and the
key variables of the system is outlined. Subsequently, we
formulate the dynamic behaviour of the robot, accounting
for external loads, and present the relation describing
the behaviour of the constructing material. Lastly, all the
equations is consolidated into a concise set with boundary
conditions. Table 1 introduces frequently used variables
throughout the study.

2- 1- Problem Configuration

A schematic of the actuated soft arm is shown in Fig. 1.
Three vectors, d, (s,7).d,(s,t), and d(s,t ) are the basis
of a right-handed local coordinate system at the center of a
robot section. In this manuscript, (ys,t) means continues
relating to the time and the position in the longitudinal
direction. The time and spatial derivative of the directors are
expressed as

dkszdk' d;c=u><dk )

Where two function vectors, U (S Lt ) and a)(s ,t )
respectively are defined as the angular strain and the angular
velocity. The position and orientation relative to the base
coordinate system are expressed by a position vector ¥ (S N )
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Table 1. Frequently used variables

Description

A Area of the cross-section

A; The cross-section area for Pneumatic chambers, fori = 1,2,3

J The second moment of the cross-section

J. The concentrated end-tip inertia

P; Pneumatic chamber pressure, fori = 1,2,3

R Rotation matrix relating to the base

d; Basis of the local coordinate, fori = 1,2,3

e; Unit vector of d;

fr Distributed force of the pneumatic pressure; capital is used for end-tip
fw Distributed weight force; capital is used for concentrated end-mass

m Internal moment, defined in local coordinate
mp Distributed moment of the pneumatic pressure; capital is used for end-tip
m The concentrated end-tip mass

n Internal force, defined in local coordinate

p; The position vector of the chamber center, defined in section for i = 1,2,3
q Linear velocity, defined in local coordinate

r Global position vector

s Spatial distance from the base, on the central arc

t Time

u Angular strain, defined in the local coordinate

v Linear strain, defined in the local coordinate

w Angular velocity, defined in the local coordinate

p Material density

O Differentiation relative to t

@) Differentiation relative to s

(j Vector mapping to the skew-symmetric matrix

and a rotation orthonormal matrix R (s N3 ) . These parameters
are continuously varying as follows.

r =Rv

R = Ra @

Where the linear strain v (S N ) and the linear velocity
q (S,l‘ ) are two function vectors. The Symbol of “ ” is
mapping a vector from R* to s0 (3) for expressing in skew-
symmetric matrix form. All the variables of g, ®,v ,and u

are presented in the local coordinate system, and 7 is
considered in the base coordinate system. The initial, straight,
and unactuated configuration of the robot is considered as
the reference situation which is shown by ro(s):sk,

dlo(s)zi ,df(s):j ,d3°(s)=k , with the related linear

&9

and angular strain of y* = [0, 0,1] o= [(),(),()] .

Using compatibility law, there is taken equality of two
derivation terms for the director vectors in (3-a) and position
vector in (3-b).

d(ad

3\ 35 dy) dy)

= 3513z ¢

SU=w —uxXw

(a)

®)
(0 ]
()

ot \ ds

a()
as\at

SV=uxq-—-wxv+q

(b)
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2- 2- Dynamic Equations of the Motion

For continuous dynamic of the motion, external loads
including gravity and pneumatic pressures for the robot must
be initially investigated. The interaction of the external forces
and inertial effects is subsequently expressed by the motion
laws.

2- 2- 1- Gravity

By considering gravity acceleration as G = [0,0, g]T in
the base coordinate, the weight of the robot is an externally
distributed force generating a moment shown by fw and
m_, respectively. Besides, the weight of the manipulated
payload at the end-effector appears force and moment effects
of F and M in the boundary conditions.

df., = pAG ds,
F, =mG ,

dm,, = x df,

“4)
MW = TL X FW

Where m is concentrated mass at the end, and » and
r, Are used as the position-related vectors for calculating
the moments about the base.

2- 2- 2- Pneumatic pressure effects

The circumferential and longitudinal forces of the
pneumatic chambers result in distributed and boundary
condition loads. For each chamber with the pressure of P,
at the end cap of the robot, the pressure applies a force with
the magnitude of PI.AI. . The force is considered in the center
of the actuation area of A ; transferring to the centroid of the
section in the form of a force-moment couple.

3 3
Fp =ZFPL =ZPiAie3
i=1 i=1

3
Mp = Zpi X Fp;
i=1

where p. is the position vector of the actuation area
center as shown in Fig. 2. M , is about the center of the
section, and it is said about the base as following

)

Mp, = ) (r,+R.p;)) X R Fp,; (6)

3
i=1

2- 2- 3- Equations of motion for the arm domain

Newton’s second law is employed for the dynamic
equations of the motion. m and m are internal force and
moment vectors applied from adjacent elements. The linear
momentum and angular momentum rules are written in (7)
and (8) respectively [19].
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pAG +n' + fp = pAR(Bq + q)

(7
—rxpAG+m +1r' Xxn+mp = pR(®Jw + J )
3
fp = —z PiAiR,e3 (8)
i=1

where the distributed force and moment owing to
pneumatic actuators are shown by f, and m , via definition
as following

3
mp=—§SE&R«”+ﬁm)X%*4”Xﬁ%) ©

i=1

Due to Fig. 2, the position vectors of the actuator’s center
can also be determined as following in a section.

p, = —dey 7
1 3

P, = Edel + 7de2 (10)
1 V3

p3 = Ede1 —7dez

where d is the radius of the circle passing through the
actuator centers in a section of the robot.

2- 3- Constitutive law

Constitutive law describes the relationship between strain
and internal force and torque due to the behavior of the robot
constructive materials. Linear elastic behavior, one of the
most famous models known as Hook law, expresses a linear
relationship between stress and strain with elastic modulus as
the slope of the relation. Kelvin-Voigt is a constitutive model
relating stress and strain by a superposition of two aforesaid
models for an isotropic viscoelastic material as following

n=R(K,(v—v)+VD)

. (11)
m=R(Kg(u—u") +Vyi)
where
K, = diag(AG, AG, AE)
Kg - diag(EIll,Elzz,GI33)
(12)

V, = diag(nA,nA, 3nA)

Vo = diag(3nl11,3nl32,1l33)
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Fig. 2. End-tip loads and actuator position in a section

where K, and K , are the linear and angular effective
stiffness matrixes. V', and V', are the linear and angular
effective viscosity matrixes. £ and G are the Young and
shear modulus, and the second moment of the area is as
J =diag (1,,,1,,,1,;),and 4 is the shear viscosity.

2- 4- Robot compact Cosserat model
The PDE equation set as following describes the dynamic
behavior of the pneumatically actuated soft manipulator. The
independent states completely describing the status of the
robot are [r,R,a),q,n,m].
r = Rv, = Rq
R =Ru, R=R®
o =u+uXw
g =v+uxq-wxv (13)
n' = pAR(@&q + q) — fp — pAG
m =pR(@Jw+]Jw) —1r'Xn—mp+r
X pAG
Another variables such as v and # are dependent

variables. B and m are also explicitly related to the strains
as follows.

n = R(Kl(v - 7.7*) + Vﬂ])

. (14)
m=R(Kg(u—u") +Vyu)

The initial condition of the robot is considered as follows.

r°(s) = sk

do(s) =i, d3(s) =j, d(s) =k= RO(s) =1, (15)
q°(s) = [0,0,0]", @°(s) = [0,0,0]"

Which results iny * = [0,0,1] and u" = [0,0,0].

Because of the robot’s solid base, the position and
velocities are always zero, and R is also the identity for the
boundary conditions.

r(0,t) =0 , R(0,t) =1I;

16
q(0,6)=0 , w(0,t) =0 (1

The internal force and moments are not zero at the base
and have a value of unknown reaction ones. In the other hand,
the free end of the robot has specific equations of motion
which can be written as follows.

-n; +RYF, + Fp =mq,

_ ) (17)
-m; +Mp =], 0,

where m and J ,, are the mass and moment inertia about
the local coordinate region.
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3- End-tip Position Control

The control problem is considered when the robot
clongates in a straight way. The dynamic behaviour of the
end-tip is an ODE equation demonstrating the motion of
the concentrated mass. The mass has a motion with an
acceleration of ¥ 1 under the effect of its weight and a 1,
force from connecting to the rod. Furthermore an actuation
force of F, Enables us to control the position of the mass.
For employing the sliding mode method, firstly, the dynamic
error of the position and velocity attending to a desired value
is written as:

el rL - rLdes ) eZ = rL - rLdeS
. L. (18)
e =e;, €2 =T, —TLjes

where #, ;.. .y, and I Ldes are the desired position,
velocity and acceleration of the end-tip considered to be
tracked. A PID sliding surface 0, is defined taking the
mentioned error to zero.

t

e, dt (19)

0'1 = 0181 + Czez + C3f
0

The integration term guarantees the steady-state error to
be zero.

Theorem 1: For a soft manipulator with dynamic model
as (13)-(17) and considering sliding variable of @, in (19),
the end-tip of the robot can track a desired movement in the
straight elongation path by implementing each pneumatic
pressure to the third element of 1/ (3 Aa) *F, , and

—r ™o — 91 e _
F, =R; k,0, — k,sat ci1€, — C3€4
2 d) (20)
—-F, +medes] +n;

Where the saturation function of a constant as ¢ is

() =[]

01,

sgn (1),

| <0 e

o135 = ¢

Proof: By defining the positive Lyapunov candidate
function, the time derivation of the function must be negative
to imply decaying energy as long as 0, # 0. For that, 0,
selected in a form of (23) to result in proofing negative for
Lyapunov time derivation.
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1 ; .

V1 = qua'l > 0 = Vl = 0"{0'1 (22)

With considering

c

o, = —ky0, — kzsat(al) (23)

thus,

. T (5]
V=03 (—k101 — kzsat(—))

¢ 24)

g
= —k,070, — kyoTsat(—)

¢

The first term of ¥ in (24) is negative thanks to J/
definition, and the second one is negative because of being
sat (o,/¢$) such as o in view of the mathematical sign.
Hence, the problem continues from (23) by:

0..1 = C16‘2 + Czéz + C3€1
= c1e; + ¢ (7, — 1 4,
+ c3eq

(25)

By substitution acceleration and considering (25), the
actuation force must be in the form of the following to achieve
tracking requirements.

. C2 _
o, =ce,+—|(—R,n; +F, + R, F
1 1€2 m[( ny, w LFp) (26)

— M, ] + C3€4

That resulted in (20). In attending to (5), the pneumatic
force at the boundary is perpendicular to the end. Moreover,
there are three pressures that must be equal in order not to
actuate the robot in a bent form.

3PAje3 =Fp, P=P; fori=123 27)

4- Solution Method

The exact modeling of the robot concludes a boundary
value problem of PDEs which has complexity and extra
calculation. By discretization in time, the equation can be
written explicitly as the spatial derivatives and converts to a
set of ordinary differential equations. The & backward finite
differentiation (¢ — BDF ) method is used for calculating the
implicit time derivative of a variable in the following general
form
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Yes

Save results of m,n for
next initial condition

Repeat the Process for the Next Time Step

Initial Condition

Fig. 3. Schematic of recursive solution process

n
My = g, Dy 4 Z ¢y

j=0
o = 15+ a o = i (28)
TSt + )] T T 6t

_ 05+a Q= a
C2_[5t(1+a)] ’ "4 a

Constant ¢z € [-0.5,0] isa parameter which is determining
the portion of each term. Using the method, time derivative
terms including [u VoW, ] are calculated from the
last and current status of the robot. Thus, the PDE equation
set of the robot becomes an ODE of spatial derivative by
substituting time derivative terms.

Now we face a boundary value problem of ODE with the
condition that the known boundary values are in different ends
of the arm. The solution started from the base by guessing a
value for the unknown variable and then forwarding to the
tip. For the known boundary at the end-tip, the errors between
the real and calculated values are used for compensating the
initial guess. The process must be repeated to achieve an
allowable error. It is similar to shooting a target and using the
error of hitting to adjust new shooting. Really, this method
reduces a boundary value problem to an initial value problem.

The mentioned recursive method so-called ‘Shooting
method’ is employed by guessing a value for m ,n at the
base and forwarding to the tip, then compensating the guess
by checking the error between the M, and their real values.
An initial guess of M ,n can be taken due to the last step
time, which decreases the convergence step of the solution.
The error is compensated by the dog-leg trust region, one of
the least-square methods commonly being used as a nonlinear
optimization method. The solution process is shown in the
Fig. 3.
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5- Results

In this section, the capabilities of the cosserat rod
modelling and the proposed controller are investigated. A
version of the pneumatic soft robot was constructed in the lab
for experimental measuring as follows.

5- 1- Experimental results

The robot consists of three linear soft actuators, a
number of intermediate plates, and base and end-effector
solid parts. The fiber-reinforced actuators are constructed
from a two-stage silicon molding in a 3D printed mold. The
linear actuator is stretched without any lateral deformation
by applying pneumatic pressure. Intermediate plates are 3D
printed from TPU (Thermoplastic Poly-Urethane) material,
and guarantee keeping the actuators in the initial equal-
distance arrangement.

To analyze the proposed model capability, an equal
pressure was applied to all of three actuators by a pneumatic
pressure regulator to a maximum 0.6 bar. The end-effector
position from the mathematical model and off-line
measurement by photographing is demonstrated in Fig. 5
presenting good match between the results.

In order to compare the cosserat and other methods, equal
pressure to the 2" and 3™ actuators is applied to produce a
curved form of the arm (Fig. 6). The end-effector position
was calculated from the constant-curvature (CC) method,
cosserat model, and experimental measurement for 0.4 and
0.6 bar in Table 2. The error of the constant-curvature model
is very impressive in comparison of the proposed cosserat
model.

5- 2- Simulation results

To show the function of the suggested controlling method,
there are presented simulation results for both discrete and
continues inputs. The parameters of the system such as mass,
length, area, inertia, etc. are selected matching to the in-hand
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I | Table 2. Comparison modelling methods; end-effector
3 position of the robot for actuated the 2nd and 3rd cyl-
) inders.

(x,z) position of the end-effector mm)

Pressure (bar)

[

Cosserat CcC Experiment
I 0.4 30,13 23,13 30,13
0.6 44,16 38,16 47,17
Fig. 4. Soft pneumatic arm; the outcome of each two-
stage silicone molding and related 3D-printed mold is
presented.
T T T T T T T T T ‘j
40 f - .
— -H— - Exprimental
—©— Model ¥
35 i
b7
7

30 B P2 Z i
—_ Z
€ P
E &l ]
N 25
< 7

201 z -

15 1

1OU Z 1 L 1 L 1 L 1 L 1 =

015 02 025 03 035 04 045 05 055 06 065
P (bar)

Fig. 5. Comparing experimental and mathematical cosserat modelling in extending mode of the arm.
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18 F T T T
—H&— Expriment
— ©— -data1l

25

30
Ax (mm)

35 40 45 50

Fig. 6. End-effector position in the 2nd and 3rd pressurized actuators of the arm; the pressure is
changed from 0.15 to 0.65 bar by 0.05 steps.

Table 3. System parameters value

Parameter description Value Unit
Overall module of elasticity 350e3 Pa
Density 1100 kg/m3
Poison’s ratio 0.48 -
Shear viscosity (1) 1500 Pa.s
Section area (A) 0.6e-3 m?
The second moment for the cross section (J) Diag(3e-6,3¢-6, 6e-6) m*
Radius of the cross section for pressure chambers 0.01 m
Radius for the center point position of the actuator (d) 0.03 m
The concentrated end-tip mass (m) 0.2 kg
The concentrated end-tip inertia (J;) Diag(0.1,0.1,0.2) kg.m?
Initial length of the robot 0.17 m
Number of spatial steps in solution 20 -

robot in Table 3.

The control process is implemented by the mentioned
algorithm, and the constants of the control law are considered
as following. The constants are determinate from an initial
guess, and are adjusted in a recursive process to achieve good
dynamic performance without any steady-state error.

C1=5; C2=0.1; C3=1

k, = 500; k, = 500; ¢ = 10
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The simulations are selected in set-point position control
and tracking dynamic desired input. For the first case,
a discrete input signal is proposed, and the positioning
accuracy of the model-based controller can be seen in Fig. 7
and Fig. 8. The time-displacement results represent a perfect
positioning with a quickly damped overshoot by 5 percent.
The applied pressures for the triple actuators which conclude
to the controlled movement can also be seen in Fig. 9.

For the second case, a desired double-frequency sinus
function tested the functionality of the controller in a
continues maneuver. The formula of the z is
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0.26 T T T T T T
— position z
— — — position z e
0.24 7
0.22 7
0.2 7
0.18 7
0-1 B i i i i i i
] 2 4 6 B 10 12 14
t(sec)
Fig. 7. z component of the end-tip in set-point positioning
=107
T T T T T T
% Error — — —y Error —-—-—z Error

10 12

t (sec)

Fig. 8. Error of the set-point positioning
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i
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_—— Pz
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"
g
Frd i
I
g
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D Il
12 14
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Fig. 9. Pressures in set-point positioning
0.23 T T T T T
positionz — — —positionz,
.E. 0.22
N
5 0.21
E
n
<]
2 0.2
1)
<]
]
0.19
%
=
c
W p18
0.1 ? 1 1 1 1 1
] 2 4 6 8 10 12 14

t(sec)

Fig. 10. z component of the end-tip in double frequency sine input

25 7 3 ) 3
(sm (wlt + 7) + sin (wzt + 7))

where @ =27 /T, for periods of T, =2 and 7,=3
. By an initial positioning from the home to the point of
(0, 0,0,175) , there is expected a full continuous movement.
Fig. 10 shows the desired position and capability of the
controller to track. The error from the desired position is
shown in Fig. 11. Eventually, the control effort which is
appeared by the pressures is shown in Fig. 12. The non-zero

ZLdes =02+
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initial pressures are due to the distance of the start point from
home.

In order to represent the disturbance rejection capability
of the controller an external force was applied to the end-
effector. The force and related moment are

F4is = 20(N) e3, My = 1(N.m)

which is equal to pull the end-effector by a 20N force
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End effector positioning error (m)
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12 14
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Fig. 11. Error of the double frequency sine input

Pressures (bar)

t(sec)

Fig. 12. Pressures in double frequency sine input

in a 5cm distance from the center, between the 2™ and 3+
actuators. The disturbance was applied at the 5" second for
0.5 sec duration as can be seen in Fig. 13. Position of the end-
effector is presented in Fig. 14 which is obviously controlled
to be fixed in the disturbance loading and unloading. The
control effort of the proposed controller can be seen in Fig.
15 belonging to the actuator pressures. The controller reduces
the pressures of the 2" and 3™ actuators, and increases the
pressure of the 1* actuator in this maneuver.
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6- Conclusion

To achieve precise position control for a soft arm, we
proposed a PID sliding mode controller based on the Cosserat
rod theory. The model is comprehensively represented, with
an explicit determination of pneumatic pressure effects as
control elements. The control law is established for achieving
the straight-line motion of the end-tip in the linear dynamic
regime. The solution to the PDE is implemented using the
recursive “Shooting Method” in Python programming.
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Simulation results demonstrate the controller’s capability to
track both continuous trajectories and set-point positioning
accurately. The efficient behaviour of the cosserat model is
presented via experimental results.
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