A Guassian Mixture Variational Graph Autoencoder for Node Classification

Document Type : Research Article

Authors

Department of Computer Engineering, Amirkabir University of Technology 424, Hafez Ave., Tehran, Iran.

Abstract

Graph embedding is the procedure of transforming a graph into a low-dimensional, informative representation. The majority of existing graph embedding techniques have given less consideration to the embedding distribution of the latent codes and more attention to the graph’s structure. Recently, Variational Graph AutoEncoders (VGAEs) have demonstrated good performance by learning smooth representations from unlabeled training samples. On the other hand, in regular VGAEs, the prior distribution over latent variables is generally a single Gaussian distribution. However, complex data distributions cannot be well-modelled under the assumption of a single Gaussian distribution. This choice of prior distribution is important because each dimension of a multivariate Gaussian can learn a separate continuous latent feature, which can result more structured and disentangled representation. In this paper, we employ the Gaussian Mixture Model (GMM) as the prior distribution in a Variational Graph Autoencoder (GMM-VGAE) framework for node classification in graphs. In this framework, GMM effectively discovers the inherent complex data distribution, and graph convolutional networks (GCNs) exploit the structure of the nodes of a graph to learn more informative representations. The proposed model incorporates several Graph Convolutional Networks (GCNs): one to map the input feature vector to the latent representation utilized for classification, another to generate the parameters of the latent distribution for learning from unlabeled data, and finally, an additional GCN is employed for reconstructing the input and delivering the reconstruction loss. Through extensive experiments on well-known Citations, Co-authorship, and Social network graphs, GMM-VGAE’s superiority over state-of-the-art methods is demonstrated.

Keywords

Main Subjects


[1] Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., & Zhang, C. (2018). Adversarially regularized graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407.
[2]   Kipf, T. N., & Welling, M. (2016). Variational graph auto-encoders. arXiv preprint arXiv:1611.07308.
[3]   Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
[4]  Wang, C., Pan, S., Long, G., Zhu, X., & Jiang, J. (2017). MGAE: Marginalized graph autoencoder for graph clustering, 889–898.
[5]  Li, F., Zhu, Z., Zhang, X., Cheng, J., & Zhao, Y. (2019). Diffusion-induced graph representation learning. Neurocomputing, 360, 220–229.
[6]  Park, J., Lee, M., Chang, H. J., Lee, K., & Choi, J. Y. (2019). Symmetric graph convolutional autoencoder for unsupervised graph representation learning, 6519–6528.
[7]  Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In International Conference on Machine Learning (pp. 1278–1286). PMLR.
[8]  Xie, Q., Huang, J., Du, P., & Peng, M. (2021). Graph relational topic model with higher-order graph attention auto-encoders, 2604–2613.
[9]  He, L., Bai, L., Yang, X., Du, H., & Liang, J. (2023). High-order graph attention network. Information Sciences, 630, 222–234.
[10]  Li, B., Jiao, P., He, D., Zhang, W., & 0001, D. J. (2019). Network-specific variational autoencoder for embedding in attribute networks, 2663–2669.
[11]  Niknam, G., Molaei, S., Zare, H., Clifton, D., & Pan, S. (2023). Graph representation learning based on deep generative Gaussian mixture models. Neurocomputing, 523, 157–169.
[12]  Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J. M. (2018). Hyperspherical variational auto-encoders. arXiv preprint arXiv:1804.00891.
[13]  Zheng, S., Zhu, Z., Zhang, X., Liu, Z., Cheng, J., & Zhao, Y. (2020). Distribution-induced bidirectional generative adversarial network for graph representation learning, 7224–7233.
 
[14]  Dilokthanakul, N., Mediano, P. A., Garnelo, M., Lee, M. C., Salimbeni, H., Arulkumaran, K., & Shanahan, M. (2016). Deep unsupervised clustering with Gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648.
[15]  Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114.
[16]  Bojchevski, A., & Günnemann, S. (2017). Deep Gaussian embedding of graphs: Unsupervised inductive learning via ranking. arXiv preprint arXiv:1707.03815.
[17]  Namata, G., London, B., Getoor, L., & Huang, B. (2012). Query-driven active surveying for collective classification, 8(1).
[18]  Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93–93.
[19]  Wang, W., Liu, X., Jiao, P., Chen, X., & Jin, D. (2018). A unified weakly supervised framework for community detection and semantic matching, 218–230. Springer.
[20]  Shchur, O., Mumme, M., Bojchevski, A., & Günnemann, S. (2018). Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868.
[21]  Tang, L., & Liu, H. (2009). Relational learning via latent social dimensions, 817–826.
[22]  Huang, X., Li, J., & Hu, X. (2017). Label informed attributed network embedding, 731–739.
[23]  Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[24]  Yang, Z., Cohen, W., & Salakhudinov, R. (2016). Revisiting semi-supervised learning with graph embeddings, 40–48. PMLR.
[25]  Ma, J., Tang, W., Zhu, J., & Mei, Q. (2019). A flexible generative framework for graph-based semi-supervised learning. Advances in Neural Information Processing Systems, 32.
[26]  Zhang, Z., Cui, P., Pei, J., Wang, X., & Zhu, W. (2021). Eigen-GNN: A graph structure preserving plug-in for GNNs. IEEE Transactions on Knowledge and Data Engineering.
[27]  Zhu, M., Wang, X., Shi, C., Ji, H., & Cui, P. (2021). Interpreting and unifying graph neural networks with an optimization framework. In Proceedings of the Web Conference 2021 (pp. 1215–1226).
[28]  Song, Z., Zhang, Y., & King, I. (2022). Towards an optimal asymmetric graph structure for robust semi-supervised node classification. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1656–1665).15161616
[29]  Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., & Jegelka, S. (2018). Representation learning on graphs with jumping knowledge networks. In International Conference on Machine Learning (pp. 5453–5462). PMLR.
[30] Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020). Simple and deep graph convolutional networks. In International Conference on Machine Learning (pp. 1725–1735). PMLR.
[31]  Wang, Y., Yi, K., Liu, X., Wang, Y. G., & Jin, S. (2022). ACMP: Allen-Cahn message passing with attractive and repulsive forces for graph neural networks. In The Eleventh International Conference on Learning Representations.
[32]  Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., & Shah, N. (2021). Data augmentation for graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 35, 11015–11023.
[33]  Liu, M., Gao, H., & Ji, S. (2020). Towards deeper graph neural networks, 338–348.
[34]  Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric deep learning on graphs and manifolds using mixture model CNNs, 5115–5124.
[35]  Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. stat, 1050, 20.
[36]  Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in Neural Information Processing Systems, 30.
[37]  Verma, V., Qu, M., Kawaguchi, K., Lamb, A., Bengio, Y., Kannala, J., & Tang, J. (2021). GraphMix: Improved training of GNNs for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 35, 10024–10032.
[38]  Chapelle, O., Scholkopf, B., & Zien, A. (2009). Semi-supervised learning (Chapelle, O. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3), 542–542.
[39]  Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., & Pei, J. (2020). AM-GCN: Adaptive multi-channel graph convolutional networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1243–1253).
[40]  Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in Neural Information Processing Systems, 29.
[41]  Wu, J., He, J., & Xu, J. (2019). Net: Degree-specific graph neural networks for node and graph classification, 406–415.
[42]  Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Lerman, K., Harutyunyan, H., Ver Steeg, G., & Galstyan, A. (2019). MixHop: Higher-order graph convolutional architectures via sparsified neighborhood mixing, 21–29. PMLR.
[43]  Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social representations, 701–710.
[44]  Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale information network embedding, 1067–1077.
[45]  Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., & Wang, L. (2020). Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131.
[46]  Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., & Wang, L. (2021). Graph contrastive learning with adaptive augmentation. In Proceedings of the Web Conference 2021 (pp. 2069–2080).
[47] Peng, Z., Huang, W., Luo, M., Zheng, Q., Rong, Y., Xu, T., & Huang, J. (2020). Graph representation learning via graphical mutual information maximization. In Proceedings of The Web Conference 2020 (pp. 259–270).
[48]  Fatemi, B., El Asri, L., & Kazemi, S. M. (2021). SLAPS: Self-supervision improves structure learning for graph neural networks. Advances in Neural Information Processing Systems, 34, 22667–22681.