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ABSTRACT: Skeleton-based action recognition has attracted significant attention in the field of 
computer vision. In recent years, Transformer networks have improved action recognition as a result of 
their ability to capture long-range dependencies and relationships in sequential data. In this context, a 
novel approach is proposed to enhance skeleton-based activity recognition by introducing Transformer 
self-attention alongside Convolutional Neural Network (CNN) architectures. The proposed method 
capitalizes on the 3D distances between pair-wise joints, utilizing this information to generate Joint 
Distance Images (JDIs) for each frame. These JDIs offer a relatively view-independent representation, 
allowing the model to discern intricate details of human actions. To further enhance the model’s 
understanding of spatial features and relationships, the extracted JDIs from different frames are processed. 
They can be directly input into the Transformer network or first fed into a CNN, enabling the extraction 
of crucial spatial features. The obtained features, combined with positional embeddings, serve as input to 
a Transformer encoder, enabling the model to reconstruct the underlying structure of the action from the 
training data. Experimental results showcase the effectiveness of the proposed method, demonstrating 
performance comparable to other state-of-the-art transformer-based approaches on benchmark datasets 
such as NTU RGB+D and NTU RGB+D120. The incorporation of Transformer networks and Joint 
Distance Images presents a promising avenue for advancing the field of skeleton-based human action 
recognition, offering robust performance and improved generalization across diverse action datasets.
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1- Introduction
Over the past few years, there has been notable enthusiasm 

in the domain of 3D skeleton-based human action recognition 
[1]. This heightened interest can be attributed primarily 
to the concurrent advancements in sensor technology and 
the accessibility of extensive datasets. Additionally, the 
noteworthy achievements of deep learning techniques, 
particularly Convolutional Neural Networks (CNNs), have 
demonstrated remarkable success, particularly in tasks 
centered around image-based processing [2, 3].

In the realm of skeleton-based motion recognition using 
Convolutional Neural Networks (CNNs), skeletons are 
usually converted into images, where relevant information 
is reflected within image colour and texture. Undoubtedly, 
the characteristics of these transformed images play a crucial 
role in the effectiveness of convolutional networks. For this 
purpose, two approaches are common. The first approach 
aims to capture both spatial and temporal information from 
skeleton sequences and convert them into image properties 
[4, 5]. Typically, these methods map the 5D space of skeletons 
(comprising three spatial coordinates, time, and joint index) 

onto a collection of colour images. Unfortunately, this 
projection process is not lossless, resulting in the loss of certain 
information during the transformation. The second approach 
considers spatial and temporal information independently, 
subsequently merging the extracted features or decisions 
based on each data. While CNNs encode spatial information 
effectively, existing deep architectures often employ limited 
solutions to encode temporal information, such as 3D 
filters, precomputed motion features, and Recurrent Neural 
Networks (RNNs) [6].

The transformer represents a novel encoder-decoder 
architecture that leverages the attention mechanism to 
differentially assign importance to various components of the 
input data [7]. Unlike traditional recurrent neural networks 
(RNNs), transformers are adept at processing sequential 
input data without strict requirements for sequential order. 
By utilizing the attention mechanism, transformers offer 
contextual information for any position within the input 
sequence, enabling increased parallelization and reduced 
training time compared to RNNs. Transformers have 
demonstrated remarkable success in Natural Language 
Processing (NLP) [7] and have expanded their application 
domain to vision tasks [8, 9]. Video recognition presents a *Corresponding author’s email: e.shabaninia@kgut.ac.ir
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compelling case as the application of transformers. Videos 
can be considered as a sequence of images, akin to how 
language processing involves sequences of tokens [10]. 

This paper extends our previous work [11] by exploring 
the effects of using transformers in skeleton-based action 
recognition. In this approach, the 3D distances between 
pairs of joints are converted into Joint Distance Images 
(JDIs) for individual frames, and a vision transformer (ViT) 
is employed to encode temporal information within the 
sequence. Compared to [11], the primary novelty of this 
study lies in the comprehensive analysis and expansion of 
our findings, providing a more detailed understanding of the 
model’s performance across diverse datasets and scenarios. 
In addition to employing various transformer-based 
networks, the proposed method demonstrates its capability in 
conjunction with different transformer architectures, such as 
the Vision Transformer. The key advancements in this version 
revolve around an in-depth exploration of the experimental 
outcomes, offering nuanced insights into the effectiveness of 
our proposed methodology.

The subsequent sections of this paper are organized as 
follows. Section 2 reviews related work. The proposed method 
is discussed in detail in section 3. Experimental results are 
provided in section 4. The paper concludes in section 5.

2- Related work
In vision-based human activity recognition, different 

modalities are used, such as RGB, depth, skeleton, and 
IR. While RGB data provide the shape, colour, and texture 
information, they are sensitive to viewpoint, illumination, 
and background variations. The depth modality is invariant 
to illumination and appearance changes, offering useful 3D 
structural information about the scene [2]. However, depth 
data are noisy and lack of colour and texture details. On the 
other hand, the positions of human joints in the skeletal data 
provide high-level information for motion recognition [2]. 
Skeletal data, on the other hand, provide information about 
the positions of human joints, which is crucial for motion 
recognition. Skeletal data require a low-dimensional space 
and are insensitive to motion speed, scale, and background 
variations. However, they do not provide information 
about objects in the scene for human-object interactions. 
The IR modality is suitable for dark environments. Due to 
the different characteristics of these modalities, different 
categories of methods are adopted in the literature. Among all 
these categories, skeletal joint-based techniques try to capture 
the spatio-temporal evolution of joints over time.

2- 1- Skeleton-based action recognition
The robustness of skeletal joint features to variations 

in camera location and subject appearance makes them 
an attractive choice for activity recognition algorithms. 
This invariance allows for the design of algorithms that 
can effectively handle different views and body sizes. As a 
result, there has been a significant research focus on utilizing 
skeletal joint information for activity recognition. While a 
comprehensive review of all existing methods is beyond the 

scope of this discussion, we will highlight some promising 
approaches. In a recent study [12], motion recognition 
techniques based on deep learning have been classified into 
two main categories: CNN-based methods and RNN/LSTM-
based methods.

In CNN-based methods often a sequence of skeletons 
is first visualized as images. Li et al. [5] introduced Joint 
Distance Maps (JDM), a method that encodes the distances 
between skeleton joints for single or multiple subjects 
into images. These distance maps are relatively invariant 
to view variations. Liu et al. [4] proposed an improved 
skeleton visualization method for view-invariant human 
action recognition. This method utilizes a sequence-based 
view-invariant transform to normalize the spatial-temporal 
locations of skeleton joints, which are then visualized as 
a series of colour images. Subsequently, a multi-stream 
CNN fusion approach is employed for recognition. In [13], 
invariant features of translation, scale, and rotation are 
extracted for each body part of human skeleton sequences. 
Then these features are transformed into images to be fed to a 
CNN-based network. A skeleton image representation named 
SkeleMotion is introduced in [14], for input into CNNs. 
The suggested method captures the temporal dynamics by 
directly calculating the magnitude and orientation values 
of the skeletal joints. Skepxels (skeleton picture elements 
or skeleton pixels) are introduced in [15] as visual units to 
construct skeletal images directly processable by CNNs. This 
method organizes skeleton joints of a frame in a 2D grid to 
leverage 2D kernels in CNNs, while also capturing temporal 
evolution by combining Skepxels from multiple frames into 
a single image.

Graph-based approaches have gained considerable 
attention in recent years, complementing the conventional 
CNN methods [16, 17]. These approaches leverage the power 
of graph convolutional networks (GCN), which extend the 
concept of convolution from grid-based data to graph-based 
data. With GCNs, the iterative processing of graphs becomes 
possible, enabling the transformation of node features and 
their neighbouring nodes. Yan et al. [18] introduced spatial-
temporal graph convolutional networks (ST-GCN) for the 
purpose of skeleton-based action recognition. The proposed 
method applies a series of spatial temporal graph convolutions 
to the skeleton sequences. By leveraging this technique, the 
authors effectively capture the spatiotemporal relationships 
present in the skeletal data. In [18], spatial temporal graph 
convolutional networks (ST-GCN) are proposed for skeleton-
based action recognition, that perform a set of spatial temporal 
graph convolutions on the skeleton sequences. 

In the second class of approaches, the sequential 
information of skeletal features across consecutive frames 
is utilized by employing RNNs or LSTMs as the time 
series to exploit the temporal evolution. Shahroudy et al. 
[19] introduced an architecture known as P-LSTM, which 
focuses on recognizing human actions while considering 
the distinct context of individual body parts. The P-LSTM 
model is designed to represent the output of its LSTM units 
as a combination of separate body parts, allowing for a more 
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comprehensive understanding of the overall action being 
performed. This approach aims to leverage the temporal 
dynamics present in the data. Liu et al. [20] presented the 
Global Context-Aware Attention LSTM, which aims to 
enhance the attention mechanism within an action sequence 
by leveraging global context information. The proposed 
model effectively directs its focus towards the most 
informative joints during the sequence. Lee et al. [21] put 
forth a method for skeleton-based action recognition utilizing 
multiple Temporal Sliding LSTM (TS-LSTM) networks. The 
proposed model incorporates multiple TS-LSTM networks 
to capture temporal dependencies and enable accurate 
recognition of actions based on skeletal data. Zhang et al. 
[22] introduced two view adaptive neural networks, namely 
VA-RNN and VA-CNN, which offer an end-to-end solution 
for human action recognition. These networks are designed 
to dynamically adjust the observation viewpoints to the 
most suitable ones for action recognition. Zhang et al. [23] 
presented the Element-wise-Attention Gate (EleAttG) as a 
method to enhance the attentiveness capability of neurons 
within RNNs. This approach introduces an EleAttG module 
that can be seamlessly incorporated into an RNN block. 
Unlike traditional methods that modulate the input as a whole, 
EleAttG operates elementwise, allowing for content-adaptive 
modulation of the input. 

2- 2- Transformers for action recognition
Vaswani et al. [7] introduced the transformer as a viable 

alternative to recurrent networks for sequence modelling. This 
model has emerged as the leading approach in natural language 
processing (NLP) due to its exceptional ability to capture 
long-range dependencies using the self-attention mechanism 
and its capacity to parallelize input processing. While 
initially developed for NLP, the transformer’s self-attention 
mechanism has found widespread utility in various computer 
vision tasks, including image classification (in studies like 
ViT and DeiT [8, 24]), object detection [25], video instance 
segmentation [26], action recognition [27], thus showcasing 
its versatility beyond its original domain. However, there are 
still limited works for skeleton-based action recognition using 
transformers [28]. To address this gap, Plizzari et al. [29] 
introduced a Spatial-Temporal Transformer network (ST-TR) 
specifically designed to capture dependencies between joints 
by leveraging the transformer’s self-attention operator. The 
ST-TR model incorporates a Spatial Self-Attention module 
(SSA) that focuses on understanding intra-frame interactions 
among various body parts. Additionally, a Temporal Self-
Attention module (TSA) is employed to model inter-frame 
correlations, enabling the network to analyze the temporal 
dynamics of the action sequence. A transformer architecture 
called the relative transformer was introduced in [30]. This 
lightweight transformer is designed to establish connections 
between distant joints within a spatial framework, enabling 
efficient signal propagation. Additionally, it is utilized in the 
temporal dimension to effectively capture and model long-
range interactions between distant frames. In [31], a novel 
unsupervised learning framework called the hierarchical 

transformer was presented which aimed to enhance skeleton-
based human action recognition. This framework incorporates 
self-attention modules in a hierarchical manner to effectively 
capture the spatial and temporal structure within the skeleton 
sequences. Cheng et al. [32] introduced a transformer-based 
model known as the motion transformer, which aimed to 
effectively capture temporal dependencies through self-
supervised pre-training on human action sequences. The 
proposed framework combines a transformer-based approach 
with a 2D convolutional network to learn spatial feature 
representations from joint distance images. The model then 
incorporates attention mechanisms to incorporate temporal 
information into the feature flow.

3- Material and method
In this section, a novel method is introduced for 

recognizing different human actions using skeletal data. 
This approach involves extracting spatial and temporal 
information from linear projections of flattened JDIs via a 
vision transformer. Additionally, similar to the approach 
described in [11], visual features can be extracted from JDIs 
for each frame using CNNs. The temporal information is then 
encoded using a transformer encoder (see Fig. 1).

3- 1- Joint distance image (JDI)
The input of the algorithm is a sequence of skeletons 

containing the 3D position of joints in successive frames. 
In each frame, the distances of skeleton joints related to 
single or multiple subjects are arranged into an image, called 
JDI. These distance images are relatively invariant to view 
variations. For a frame, containing one skeleton of  joints, the 
JDI is an  colour image where pixel (i, j) is the difference of 
the ith joint and the jth joint. i.e.

 𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥(𝑖𝑖, 𝑗𝑗)  =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗                                                   (1) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦(𝑖𝑖, 𝑗𝑗)  =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗                                                    (2) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑧𝑧(𝑖𝑖, 𝑗𝑗)  =  𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗                                                    (3) 

   𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑇𝑇 = −𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧                                                  (4) 

   𝑧𝑧0 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  𝑥𝑥𝑝𝑝
1; 𝑥𝑥𝑝𝑝

2; … ; 𝑥𝑥𝑝𝑝
𝑁𝑁 ] + 𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐    𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐 ∈ ℝ(𝑁𝑁+1)×𝐷𝐷                              (5) 

    𝑧𝑧𝑐𝑐
′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐−1)) + 𝑧𝑧𝑐𝑐−1,     𝑙𝑙 = 1 … 𝐿𝐿                                       (6) 

    𝑧𝑧𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐
′)) + 𝑧𝑧𝑐𝑐

′,     𝑙𝑙 = 1 … 𝐿𝐿                                           (7) 

 

 (1)
 𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥(𝑖𝑖, 𝑗𝑗)  =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗                                                   (1) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦(𝑖𝑖, 𝑗𝑗)  =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗                                                    (2) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑧𝑧(𝑖𝑖, 𝑗𝑗)  =  𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗                                                    (3) 

   𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑇𝑇 = −𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧                                                  (4) 

   𝑧𝑧0 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  𝑥𝑥𝑝𝑝
1; 𝑥𝑥𝑝𝑝

2; … ; 𝑥𝑥𝑝𝑝
𝑁𝑁 ] + 𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐    𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐 ∈ ℝ(𝑁𝑁+1)×𝐷𝐷                              (5) 

    𝑧𝑧𝑐𝑐
′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐−1)) + 𝑧𝑧𝑐𝑐−1,     𝑙𝑙 = 1 … 𝐿𝐿                                       (6) 

    𝑧𝑧𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐
′)) + 𝑧𝑧𝑐𝑐

′,     𝑙𝑙 = 1 … 𝐿𝐿                                           (7) 

 

 (2)

 𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥(𝑖𝑖, 𝑗𝑗)  =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗                                                   (1) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦(𝑖𝑖, 𝑗𝑗)  =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗                                                    (2) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑧𝑧(𝑖𝑖, 𝑗𝑗)  =  𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗                                                    (3) 

   𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑇𝑇 = −𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧                                                  (4) 
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′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐−1)) + 𝑧𝑧𝑐𝑐−1,     𝑙𝑙 = 1 … 𝐿𝐿                                       (6) 

    𝑧𝑧𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐
′)) + 𝑧𝑧𝑐𝑐

′,     𝑙𝑙 = 1 … 𝐿𝐿                                           (7) 

 

 (3)

where  is the 3D position of the mth joint. The interesting 
property of these images is that the JDIs are skew-symmetric 
in each channel. i.e.

 𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥(𝑖𝑖, 𝑗𝑗)  =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗                                                   (1) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦(𝑖𝑖, 𝑗𝑗)  =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗                                                    (2) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑧𝑧(𝑖𝑖, 𝑗𝑗)  =  𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗                                                    (3) 

   𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑇𝑇 = −𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧                                                  (4) 

   𝑧𝑧0 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  𝑥𝑥𝑝𝑝
1; 𝑥𝑥𝑝𝑝

2; … ; 𝑥𝑥𝑝𝑝
𝑁𝑁 ] + 𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐    𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐 ∈ ℝ(𝑁𝑁+1)×𝐷𝐷                              (5) 

    𝑧𝑧𝑐𝑐
′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐−1)) + 𝑧𝑧𝑐𝑐−1,     𝑙𝑙 = 1 … 𝐿𝐿                                       (6) 

    𝑧𝑧𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐
′)) + 𝑧𝑧𝑐𝑐

′,     𝑙𝑙 = 1 … 𝐿𝐿                                           (7) 

 

 (4)

When multiple skeletons are present in a scene, the joints 
are arranged for the first skeleton, then for the second one, 
etc. In this case, the JDI represents some clusters, where 
the number of clusters is equal to two times the number of 
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skeletons (see Fig. 2). 
JDMs are made for each frame of the sequence. Fig. 3 

illustrates the average JDMs for two different actions. As 
this figure shows, these images are visually different. On the 
other hand, JDIs are relatively view-invariant. Fig. 4 shows 
an action (‘walk around’) from two different views. As this 

figure shows, although the 3D coordinates of joints are 
different, the average resulting JDIs are very similar.

3- 2- Visual features
The proposed method commences with spatial deep 

convolutional neural networks for extracting convolutional 

  

Fig. 1. The framework of the proposed method in this paper (left) and in [11] (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The framework of the proposed method in this paper (left) and in [11] (right).

 

Fig. 2. (a) Constructing the JDI image when two skeletons are present in a frame. (b) A sample frame of action ‘pushing’ 
from NTU RGB+D dataset [19]. (c) The related JDI of the frame in (b). [11, 33] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Constructing the JDI image when two skeletons are present in a frame. (b) A sample frame of ac-
tion ‘pushing’ from NTU RGB+D dataset [19]. (c) The related JDI of the frame in (b). [11, 33]
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Fig. 3. The average JDIs for four different actions. 

 

 

 

 

 

 

 

 

 

 

 

 

right arm swipe to the right 
a2_s3_t4_skeleton 

right arm swipe to the left 
a1_s1_t1_skeleton 

Pick up and throw 
a21_s1_t1_skeleton 

Squat (two arms stretch out) 
a27_s1_t1_skeleton 

Fig. 3. The average JDIs for four different actions.

 

Fig. 4. The average JDI for action ‘walk around’ for two different views [11, 33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The average JDI for action ‘walk around’ for two different views [11, 33].
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feature maps. Here a pre-trained convolutional autoencoder 
is used for this purpose (see Fig. 5) instead of using existing 
backbones pre-trained on 2D natural images. That is because 
the JDIs are Essentially different from natural images. The 
network is trained on a set of collected JDIs and the encoder 
is frozen to extract an 8192-dimensional representation for 
each video frame. A spatial net (trained on 256×256×3 frame 
images) is designed for capturing appearance information. 
This single-frame architecture is based on 2D CNN model 
and extracts a feature vector for each frame.

3- 3- Sequence modelling
 The transformer receives a 1D sequence of token 

embeddings as input. The spatial features x\in\mat extracted 
from CNN for all frames of a sequence are considered as JDI 
embeddings where N is the number of frames and D is the 
dimension of the flatted output latent vector of CNN. Frame 
number embeddings are added to the JDI embeddings to retain 
positional information. We use standard learnable 1D position 
embeddings for this purpose. A learnable embedding (similar 
to the [class] token of BERT) is added to the beginning of the 
sequence of embedded frames ( 0

0 classz x= ).

 𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥(𝑖𝑖, 𝑗𝑗)  =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗                                                   (1) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦(𝑖𝑖, 𝑗𝑗)  =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗                                                    (2) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑧𝑧(𝑖𝑖, 𝑗𝑗)  =  𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗                                                    (3) 

   𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑇𝑇 = −𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧                                                  (4) 

   𝑧𝑧0 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  𝑥𝑥𝑝𝑝
1; 𝑥𝑥𝑝𝑝

2; … ; 𝑥𝑥𝑝𝑝
𝑁𝑁 ] + 𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐    𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐 ∈ ℝ(𝑁𝑁+1)×𝐷𝐷                              (5) 

    𝑧𝑧𝑐𝑐
′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐−1)) + 𝑧𝑧𝑐𝑐−1,     𝑙𝑙 = 1 … 𝐿𝐿                                       (6) 

    𝑧𝑧𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐
′)) + 𝑧𝑧𝑐𝑐

′,     𝑙𝑙 = 1 … 𝐿𝐿                                           (7) 

 

 𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥(𝑖𝑖, 𝑗𝑗)  =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗                                                   (1) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦(𝑖𝑖, 𝑗𝑗)  =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗                                                    (2) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑧𝑧(𝑖𝑖, 𝑗𝑗)  =  𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗                                                    (3) 

   𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑇𝑇 = −𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧                                                  (4) 

   𝑧𝑧0 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  𝑥𝑥𝑝𝑝
1; 𝑥𝑥𝑝𝑝

2; … ; 𝑥𝑥𝑝𝑝
𝑁𝑁 ] + 𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐    𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐 ∈ ℝ(𝑁𝑁+1)×𝐷𝐷                              (5) 

    𝑧𝑧𝑐𝑐
′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐−1)) + 𝑧𝑧𝑐𝑐−1,     𝑙𝑙 = 1 … 𝐿𝐿                                       (6) 

    𝑧𝑧𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐
′)) + 𝑧𝑧𝑐𝑐

′,     𝑙𝑙 = 1 … 𝐿𝐿                                           (7) 

 

 (5)

After propagating the sequence through the transformer 
layers consisting of alternating layers of multiheaded self-
attention (MSA),

 𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥(𝑖𝑖, 𝑗𝑗)  =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗                                                   (1) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦(𝑖𝑖, 𝑗𝑗)  =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗                                                    (2) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑧𝑧(𝑖𝑖, 𝑗𝑗)  =  𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗                                                    (3) 

   𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑇𝑇 = −𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧                                                  (4) 

   𝑧𝑧0 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  𝑥𝑥𝑝𝑝
1; 𝑥𝑥𝑝𝑝

2; … ; 𝑥𝑥𝑝𝑝
𝑁𝑁 ] + 𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐    𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐 ∈ ℝ(𝑁𝑁+1)×𝐷𝐷                              (5) 

    𝑧𝑧𝑐𝑐
′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐−1)) + 𝑧𝑧𝑐𝑐−1,     𝑙𝑙 = 1 … 𝐿𝐿                                       (6) 

    𝑧𝑧𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐
′)) + 𝑧𝑧𝑐𝑐

′,     𝑙𝑙 = 1 … 𝐿𝐿                                           (7) 

 

 (6)

 𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥(𝑖𝑖, 𝑗𝑗)  =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗                                                   (1) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦(𝑖𝑖, 𝑗𝑗)  =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗                                                    (2) 

  𝐽𝐽𝐽𝐽𝐽𝐽𝑧𝑧(𝑖𝑖, 𝑗𝑗)  =  𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗                                                    (3) 

   𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧
𝑇𝑇 = −𝐽𝐽𝐽𝐽𝐽𝐽𝑥𝑥,𝑦𝑦,𝑧𝑧                                                  (4) 

   𝑧𝑧0 = [𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  𝑥𝑥𝑝𝑝
1; 𝑥𝑥𝑝𝑝

2; … ; 𝑥𝑥𝑝𝑝
𝑁𝑁 ] + 𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐    𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐 ∈ ℝ(𝑁𝑁+1)×𝐷𝐷                              (5) 

    𝑧𝑧𝑐𝑐
′ = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐−1)) + 𝑧𝑧𝑐𝑐−1,     𝑙𝑙 = 1 … 𝐿𝐿                                       (6) 

    𝑧𝑧𝑐𝑐 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝐿𝐿(𝑧𝑧𝑐𝑐
′)) + 𝑧𝑧𝑐𝑐

′,     𝑙𝑙 = 1 … 𝐿𝐿                                           (7) 

 

 (7)

the final state of the features related to this classification 
token ()  is used as the final representation of the video and is 
applied to the given classification task head. The classification 
token is processed with an MLP (Multi-Layer Perceptron) 
head to provide a final predicted category. The MLP head 
contains two linear layers with a GELU non-linearity and 
Dropout between them. The input token representation is first 
processed with a Layer normalization (LN).

4- Experimental results
 In this section, the experiments are performed to validate 

the efficiency of the proposed method on NTU RGB+D [19] 
(NTU60) and NTU RGB+D120 [34] (NTU120) datasets. The 
details are provided in the following.

 NTU60 and NTU120 are large-scale datasets for RGB+D 
human action recognition. An example of NTU60 is shown 
in Fig. 6 with RGB and corresponding skeleton modality 

 

Fig. 5. The convolutional autoencoder trained on JDIs. The encoder part is used later for extracting spatial features [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The convolutional autoencoder trained on JDIs. The encoder part is used later for extracting 
spatial features [11].



E. Shabaninia et al., AUT J. Model. Simul., 56(1) (2024) 69-86, DOI: 10.22060/miscj.2024.23094.5357

75

mapped on the RGB data. These datasets contain respectively 
60 and 120 different action classes including daily, mutual, 
and health-related actions. The 3D data is captured by Kinect 
v2 cameras. They consist of different views (front view, two 
side views, and left/right 45-degree views). Large intra-
class variations and different views make these datasets very 
challenging. 

NTU60 consists of more than 56 thousand video samples 
and 4 million frames collected from 40 distinct subjects (aged 
between 10 and 35). Identical to [19], evaluations on NTU60 
are performed by both cross-subject (CS) and cross-view 
(CV) evaluation protocols. In the cross-subject evaluation, 
samples of subjects 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 
25, 27, 28, 31, 34, 35, and 38 are used as training and samples 
of the residual subjects are kept for testing. In the cross-view 
evaluation, samples taken by cameras 2 and 3 are used as 
training, while samples from camera 1 are preserved for 
testing. Through the experiments, for each action, 9 frames 
are chosen randomly from the entire video. 

Cross-subject (CS) and cross-setup (CSet) evaluation 
protocols are performed on the NTU120 dataset, which 
contains almost 115000 video samples recorded from 106 
subjects performing actions. For the cross-subject evaluation, 
63360 samples of 53 subjects are used in training and 51120 
samples of 53 subjects are used for testing. There are 54720 
samples with 16 different setups used in training and 59760 
samples with 16 other setups in the test [33].

4- 1- Cross-subject results
Cross-subject in the context of action recognition 

experiments typically refers to the performance of a model 
when it is trained on data from one set of subjects (participants) 
and tested on a different set of subjects. This approach is 
essential to assess the generalizability of a model across 
different individuals, ensuring that the model can recognize 
and classify actions accurately for people who were not part 
of the training dataset.

For example, in a scenario where you collect data from 
multiple individuals performing various actions, the cross-
subject evaluation involves training the action recognition 
model on a subset of these individuals and evaluating its 
performance on the actions performed by individuals who 
were not part of the training set. This simulates how well the 
model can generalize to new subjects or users.

The cross-subject experimental setup helps researchers 
understand whether the learned patterns and features are 
specific to the individuals in the training set or if the model 
can effectively generalize its knowledge to new subjects. It 
provides valuable insights into the model’s robustness and 
applicability in real-world scenarios where the users or actors 
might vary. Table 1 shows the cross-subject results of the 
proposed method on NTU60 and NTU120 datasets. As this 
table shows compared with some existing approaches, the 
proposed method demonstrates better performance in cross-
subject evaluation on both datasets. These results highlight 
the robustness and applicability of the proposed method 
in scenarios where users or actors may vary. However, the 
results from two recent approaches [35, 36] show superior 
results for human action recognition. 

The confusion matrix of JDI+ViT method on the NTU60 
and NTU120 using CS evaluation protocol is presented in 
Fig. 7 and Fig. 8, respectively. Table 2 demonstrates examples 
of qualitative results on “drop” action in NTU60 using CS 
evaluation protocol.

4- 2- Cross-view results
Cross-view results in the context of action recognition 

experiments pertain to evaluating the performance of a model 
when it is trained on data from one viewpoint or camera 
angle and tested on a different viewpoint. This is particularly 
relevant in scenarios where actions are captured from multiple 
perspectives, such as different camera placements or angles.

For example, in a surveillance system or a setting with 
multiple cameras, cross-view evaluation involves training the 

     

Fig. 6. Hands shaking from NTU60. (left) RGB modality and (right) skeleton mapped on RGB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Hands shaking from NTU60. (left) RGB modality and (right) skeleton mapped on RGB.
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Table 1. Cross-subject accuracy of methods on NTU60 and NTU120 datasets while top-5 ac-
curacies are shown in parentheses.

Table 1. Cross-subject accuracy of methods on NTU60 and NTU120 datasets while top-5 accuracies are shown in 
parentheses.  

Method modality NTU60 NTU120 
Lie Group [37] Skeleton 50.08 - 
HBRNN [38]  Skeleton  59.07 - 
1 Layer P-LSTM [19] Skeleton 62.05 - 
2 Layer P-LSTM [19] Skeleton 62.93 - 
SkateFormer [35] Skeleton 93.5 89.8 
STEP-CATFormer [36] skeleton 93.2 90.0 
JDI + VIVIT [39] Skeleton 45.94 (79.35) 34.54 (65.54) 
JDI+ CNN+ViT [11] Skeleton   61.80 (89.03) 51.88 (82.01) 
JDI+ViT )ours( Skeleton   67.36 (91.39) 58.07 (85.25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Confusion matrix on NTU60 with CS evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Confusion matrix on NTU60 with CS evaluation.
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Fig. 8. Confusion matrix on NTU120 on CS evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Confusion matrix on NTU120 on CS evaluation.

Table 2. Examples of qualitative results on “drop” action in NTU60 with CS evaluation protocol.Table 2. Examples of qualitative results on “drop” action in NTU60 with CS evaluation protocol. 

Sample RGB frames and corresponding JDIs Predicted label File ID 

 

Drop S004C002P003R001A005 

                               

  

 

Drop S004C002P020R001A005 

                           

  

 

Chest pain S004C002P007R001A005 
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action recognition model on data recorded from one viewpoint 
and then assessing its ability to accurately recognize actions 
when presented with data captured from a different viewpoint. 
This helps researchers and practitioners understand how well 
the model generalizes its learned features and patterns across 
different viewing angles.

Reporting cross-view results is crucial because it 
reflects the model’s capability to recognize actions 
regardless of the specific camera perspective. In real-
world applications, surveillance cameras or sensors may 
be distributed across various locations, each with its own 
viewpoint. Therefore, a robust action recognition model 
should be able to handle diverse viewing conditions and 

still accurately identify actions. Table 3 shows the cross-
view results of the proposed method on NTU60 dataset. 
As this table shows compared with some other existing 
approaches, the proposed method achieves suitable 
results in recognizing actions across different camera 
perspectives. This highlights the model’s capability to 
handle diverse viewing conditions and accurately identify 
actions. Although again, the results from [35, 36] show 
superior results for human action recognition. 

The confusion matrix of JDI+ViT method on the NTU60 
using CV evaluation protocol, is presented in Fig. 9. Table 
4 demonstrates examples of qualitative results on “throw” 
action in NTU60 using CV evaluation protocol.

Table 3. Cross-view accuracy of methods on NTU60 dataset while top-5 accuracies are shown 
in parentheses.Table 3. Cross-view accuracy of methods on NTU60 dataset while top-5 accuracies are shown in parentheses. 

Method Modality Accuracy 
Lie Group [37] Skeleton 52.76 
HBRNN [38]  Skeleton  63.97 
1 Layer P-LSTM [19] Skeleton 69.40 
2 Layer P-LSTM [19] Skeleton 70.27 
SkateFormer [35] Skeleton 97.8 
STEP-CATFormer [36] Skeleton 97.3 
JDI + VIVIT [39] Skeleton 47.71 (81.47) 
JDI+ CNN+ViT [11] Skeleton   62.96 (90.23) 
JDI+ViT )ours( Skeleton   70.81 (93.70) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Confusion matrix on NTU60 with CV evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Confusion matrix on NTU60 with CV evaluation.
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4- 3- Cross setup
Combining these two evaluations, the “cross setup” in the 

NTU120 dataset involves training the model on a specific 
subset of subjects and views and testing it on data recorded 
from subjects and views not encountered during the training 
phase. This comprehensive evaluation helps researchers 
understand how well a model can generalize to new individuals 
and different camera angles, which is crucial for assessing its 
real-world applicability. Table 5 shows the cross-setup results 
of the proposed method on NTU120 dataset. These results 
validate the relative model’s effectiveness in handling unseen 
subjects and camera setups, highlighting its potential for 
practical applications in real-world scenarios.

The confusion matrix of JDI+ViT method on the NTU120 
using CSet evaluation protocol, is presented in Fig. 10. Table 
6 shows examples of qualitative results on “run on the spot” 

action in NTU120 using CSet evaluation protocol. 
In addition, the proposed method could also be employed 

with other transformer networks. To demonstrate its 
capability across different networks, various architectures are 
utilized instead of the Vision Transformer, as shown in Table 
7. The results indicate that the ViT network yields the best 
performance. 

As these tables show, the competitive results are obtained 
by the proposed method compared with other methods using 
transformers. These results show the ability of JDIs to capture 
view-invariant spatial features and the capabilities of vision 
transformers in capturing long-range temporal features of 
skeletal data.

In Table 8, examples of qualitative results of the proposed 
method are presented for different types of daily, medical 
conditions, and mutual actions. These results showcase how 

Table 4. Examples of qualitative results on “throw” action in NTU60 with CV evaluation.Table 4. Examples of qualitative results on “throw” action in NTU60 with CV evaluation. 

Sample RGB frames and corresponding JDIs Predicted label File ID 

 

Throw  S007C001P016R002A007 

                                                 

  

 

Throw  S010C001P016R002A007 

                                                 

  

 

Throw  S015C001P016R001A007 
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Table 5. Cross-setup accuracy of methods on NTU120 dataset.
 

Table 5. Cross-setup accuracy of methods on NTU120 dataset. 

Method modality Accuracy 
Lie Group [37] Skeleton - 
HBRNN [38]  Skeleton  - 
1 Layer P-LSTM [19] Skeleton - 
2 Layer P-LSTM [19] Skeleton - 
SkateFormer [35] Skeleton 91.4 
STEP-CATFormer [36] Skeleton 91.2 
JDI + VIVIT [39] Skeleton 35.58 (66.81) 
JDI+ CNN+ViT )ours( Skeleton   50.12 (80.16) 
JDI+ViT )ours( Skeleton   55.68 (83.06) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Confusion matrix on NTU120 with CSet evaluation protocol. 

 

 

 

 

 

 

 

 

 

Fig. 10. Confusion matrix on NTU120 with CSet evaluation protocol.
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Table 7. Results of using different transformer-based networks on NTU60 with cross-subject proto-
col (top-5 accuracies).Table 7: Results of using different transformer-based networks on NTU60 with cross-subject protocol (top-5 accuracies). 

Method modality NTU60-cs 

JDI + VIVIT [39] Skeleton 79.35 
JDI + VideoMAE [40] Skeleton 80.11 
JDI + Cait [41] Skeleton 57.64 
JDI + Deit [24] Skeleton 21.75 
JDI+ CNN +ViT [11] Skeleton   89.03 
JDI+ViT )ours( Skeleton   91.39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Examples of qualitative results on ‘run on the spot’ action in NTU120 with CSet evaluation protocol.
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Sample RGB frames and corresponding JDIs Predicted label File ID 

 

Run on the spot S032C002P104R002A099 

                                           

  

 

Run on the spot S032C003P104R001A099 
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Table 8. Examples of qualitative results on daily, medical condition, and mutual actions in NTU120.
 

Table 8: Examples of qualitative results on daily, medical condition, and mutual actions in NTU120. 

Sample RGB frames and corresponding JDIs Predicted label Action type 

 

Drink water  

Daily 

    

Eat meal 

 

Chest pain  

Medical 
condition 

 

Falling down 

 

Kicking  

Mutual 

 

Hugging 
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the method performs in recognizing different actions based on 
skeletal data. The qualitative analysis provides insights into 
the robustness and generalizability of the proposed approach 
across a diverse range of scenarios and contexts.

5- Conclusion
This paper proposes a novel approach for skeletal action 

recognition, leveraging a transformer-based model. The 
method extracts features from JDIs at individual frames and 
incorporates temporal information by applying attention 
mechanisms to the resulting features. Experimental results 
demonstrate the effectiveness of the proposed method in 
capturing spatio-temporal features. While transformers have 
become the preferred model for NLP tasks, replacing RNN 
models like LSTM, their application in skeleton-based human 
action recognition is still in its early stages. Transformers 
are typically large and computationally intensive compared 
to CNN models. Therefore, developing high-performance 
transformer models with reduced resource requirements 
remains an ongoing challenge.
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