
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 56(1) (2024) 33-54
DOI: 10.22060/miscj.2024.23205.5360

Efficient scheduling algorithm for optimizing system load in fog computing
environment: A fuzzy reinforcement learning mechanism
Reyhane Ghafari, Najme Mansouri*

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran

ABSTRACT: New technologies have emerged over the last few years, such as IoT and fog computing.
IoT devices and the enormous amounts of data generated every minute have led to the vast growth of
the Internet of Things (IoT). In order to meet the term “Data Never Sleeps”, some IoT applications
require real-time services and low bit latency. To provide quick processing, storage, and services, Cisco
proposed fog computing as an extension of cloud computing. The traditional methods are not capable of
addressing the complex scheduling scenarios of fog computing. In this paper, we introduce a novel Fuzzy
Reinforcement Learning Scheduling algorithm (FRLS) that enhances schedule accuracy in dynamic
computing environments. To optimize task scheduling, the FRLS algorithm integrates fuzzy logic with
reinforcement learning. To prioritize critical tasks, fuzzy logic handles uncertainty and prioritizes tasks
according to deadlines, sizes, and file sizes. Then, reinforcement learning schedules the prioritized
tasks, continually adjusting to dynamic conditions to ensure the best resource allocation. In addition to
improving overall system performance, this combination provides a robust framework that can address
the complexity and variability of fog computing environments. FRLS is designed to minimize response
time while adhering to resource and deadline constraints in fog-based applications. A comparison of
FRLS with existing algorithms shows that it significantly improves load balancing, deadline satisfaction,
response time, and waiting time. Combining reinforcement learning and fuzzy logic leads to an efficient
scheduling solution. In addition, FRLS outperforms non-prioritized algorithms.

Review History:

Received: May, 20, 2024
Revised: Aug. 12, 2024
Accepted: Jul. 23, 2024
Available Online: Sep. 05, 2024

Keywords:

Fog Computing

Reinforcement Learning (RL)

Fuzzy Logic

Scheduling

Internet of Things (IoT).

33

1- Introduction
The Internet of Things (IoT) has become embedded in our

society, transforming everyday items into communication
devices, which offers new challenges and opportunities.
The current cloud infrastructure cannot support many
IoT applications for three main reasons. The cost of data
transmission, bandwidth limitations, and processing overhead
make it impractical to transfer data from end devices to cloud
servers. Moreover, real-time analysis applications, like video
apps, gaming apps, etc., can suffer from significant end-to-
end delays. Privacy and security concerns make it advisable
or even forbidden for specific data to cross the Internet. There
is a promising paradigm that can reduce communication
overhead, reduce data transfer delays, and avoid network
bottlenecks. It combines cloud computing with edge devices
for decentralized processing [1, 2]. In 2012, fog computing
was introduced as a concept [3]. Users can access data
management, processing, and storage capabilities by bridging
the gap between the cloud and their computers. It not only
distributes configuration, control, and data management
across the network but also the devices, so that the cloud

handles everything [4]. Figure 1 illustrates the fog computing
architecture for task scheduling. These devices have storage,
computation, and networking capabilities, so they can access
fog/cloud resources. Additionally, static resources can be
allocated for new requests, or static and dynamic resources
can be combined.

Fog computing provides cost-effective and high-
performance task scheduling. Fog computing schedules tasks
by allocating resources. With the proper selection of resources,
tasks are completed more quickly, quality of service (QoS) is
improved, and efficiency is improved. The issue of resource
management is addressed with various techniques. ML-based
techniques have gained popularity recently [6, 7].

The Reinforcement Learning (RL) mechanism strives
to optimize rewards by interacting with the environment.
The agent learns according to the predefined goals using
the experience gained from the environment. A state s is
currently being experienced by the agent. The action a is
performed continuously. As a result of the agent’s action,
the environment enters a new state s and the agent receives
a reward. To maximize the expected total reward, the agent
uses RL. Trial-and-error learning in a dynamic environment
is the basis of RL. As a result of environmental feedback, the
agent modifies its adopted strategies to maximize rewards [8, *Corresponding author’s email: najme.mansouri@gmail.com

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article

 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/miscj.2024.23205.5360

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

34

9]. Figure 2 shows the interaction between an agent and its
environment in RL architecture.

Nowadays, decision-making is more critical than ever,
despite updated technologies. Several technologies fail
to consider human capacity when making decisions [10].
Effective decision-making should enable people with
valuable insights to reach a very acceptable decision. Making
decisions using fuzzy logic is promising. Fuzzy information
extends the classical notion of set in how humans make
decisions. In order to facilitate reliable decision-making,
fuzzy theory transforms the data into linguistic language.
The use of various linguistic languages has been widespread,
including low, medium, high, small, medium, large, and
many others. Languages are selected based on the type of
data and compatibility [11]researchers developed fuzzy-
based scheduling algorithms. Fuzzy logic is ideal for
decision-making processes since it has a low computational
complexity and processing power requirement. Motivated by

the extensive research efforts in the distributed computing
and fuzzy applications, we present a review of high-quality
articles related to fuzzy-based scheduling algorithms in
grid, cloud, and fog published between 2005 and June 2023.
This paper discusses and compares fuzzy-based scheduling
schemes based on merits and demerits, evaluation techniques,
simulation environments, and important parameters.
We begin by introducing distributed environments, and
scheduling process followed by their surveys. This study has
summarized several domains where fuzzy logic is used in
distributed systems. More specifically, the basic concepts of
fuzzy inference system and motivations of fuzzy theory in
scheduler are addressed smoothly. A fuzzy-based scheduling
algorithm employs fuzzy logic in different ways (e.g.,
calculating fitness functions, assigning tasks to fog/cloud
nodes, and clustering tasks or resources.

Fuzzy logic constructs different degrees of membership,
known as membership functions, to aid decision-making.

Fig. 1. Task scheduling with fog computing [5].

Fig. 1. Task scheduling with fog computing [5].

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

35

This method of computing is also called fuzzy logic since
it relies on degrees of truth instead of true or false (1 or
0), as used by computers. Linguistic languages use the
interval [0,1]. In decision-making research, multi-criteria
decision-making (MCDM) is a key focus, which examines
the feasibility of alternative options based on the available
resources and reflects the subjectivity of the decision-maker
when choosing, prioritizing, and arranging a variety of
actions. Since linguistic variables and fuzzy variables could
be included in the objectives and limitations, fuzzy theory is
combined with MCDM to investigate subjective ambiguity
[12].

Few studies examined task prioritization along with task
scheduling in the fog layer. There is also the issue of limited
heterogeneous fog resources, impacting the task’s response
time and the load balancing and waiting time at the fog
nodes. Therefore, it is vital to schedule tasks for available fog
resources while considering response time, load, and waiting
times. Load balancing is a focus for many researchers [13].
In fog computing, fuzzy reinforcement learning (FRL) has
emerged as a powerful approach for making decisions in
uncertain environments. FRL methods for task scheduling
often fail to consider priority, load, response time, and waiting
time simultaneously. In this paper, we introduce a novel
reinforcement learning framework for task scheduling in
fog environments that incorporates adaptive fuzzy inference
mechanisms. It improves scheduling efficiency and robustness
against the uncertainties inherent in fog computing.

In order to overcome these challenges, we designed a
task scheduling mechanism that reduces response time and
waiting time while meeting deadlines for each task. Task
properties are considered in the model. The different features
of the tasks, such as deadlines, size, and file size, make it
difficult to prioritize them. Therefore, we recommend a fuzzy
logic technique for prioritizing tasks before assigning them
to fog nodes. As IoT requests rise, conventional optimization
methods become increasingly unsuitable for allocating tasks
across the fog of resources. In order to distribute tasks among
fog nodes in the fog layer, we propose a Reinforcement
Learning (RL) mechanism. Extensive simulation studies are
conducted to prove the superiority of the proposed approach.

This paper contributes the following main contributions:
• IoT tasks are scheduled in fog nodes in order to balance

the load while meeting the task deadlines. Waiting time
minimization is also part of our model.

• Utilize fuzzy logic to prioritize tasks according to deadline,
size, and file size.

• Q-Learning model is an integrated machine learning
technique based on reinforcement learning.

• Extensive experiments are conducted to analyze and
compare the proposed algorithm with existing algorithms.
Section 2 reviews related work in the remainder of the

paper. The models of the system are presented in Section 3.
Section 4 presents the proposed scheduling algorithm. Section
5 presents and analyzes the simulation results. Section 6
concludes the paper by discussing future research directions.

Fig. 2. Agent’s interaction with the environment in RL [8].

Fig. 2. Agent’s interaction with the environment in RL [8].

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

36

2- Related Work
Fog computing is a relatively new research area. Despite

a few proposals, task scheduling in fog networks is gaining
momentum. We have described some task scheduling and
resource management works in this section.

Ghanavati et al. [14] developed a task-scheduling algorithm
for fog computing platforms. The proposed approach
includes two parts: 1) A bio-inspired optimization approach,
Ant Mating Optimization (AMO), and 2) a distributed
optimization method that optimizes task distribution. The
goal is to find a compromise between system lifetime and
end-user energy consumption. The proposed approach is
more energy efficient and faster.

According to Assamarai et al. [15], a new task-scheduling
algorithm focuses on deadline satisfaction and makespan. It
aims to balance job completion deadlines with the overall
efficiency of the system. Whenever there is a high or medium
bandwidth to the cloud, Ant Colony Optimization (ACO)
is used. These goals can be achieved through bandwidth-
deadline. In terms of both makespan and deadline satisfaction,
the proposed algorithm outperformed existing algorithms.

Ahmed et al. [16]in which tasks are going to be mapped
on the best possible resources regarding some conflicting
objectives. To deal with these issues, we introduce an
opposition-based hybrid discrete optimization algorithm,
called DMFO-DE. For this purpose, first, a discrete and
Opposition-Based Learning (OBL proposed an opposition-
based hybrid discrete optimization algorithm. In the MFO
algorithm, discrete and Opposition-Based Learning (OBL)
versions are first implemented, and then they are coupled
with the Differential Evolution (DE) algorithm to enhance
convergence speed. Fog computing schedules scientific
workflows using Dynamic Voltage and Frequency Scaling
(DVFS). HEFT determines the order of tasks in a scientific
workflow. The scheduling process minimized the number of
virtual machines (VMs), the makespan, and communication
between tasks to reduce energy consumption.

Ghafari and Mansouri [17] proposed an enhanced
African vulture optimization algorithm for cloud-based fog
computing. As a result, villages can learn from each other
rather than from all their members. It minimizes makespan,
cost, and energy consumption. The Best Worst Method (BWM)
handles task delays. Fog is used for tasks that require less
latency, and cloud is used for tasks that require more latency.
The proposed algorithm outperformed other competitors in
terms of makespan, cost, and energy consumption.

Guevara et al. [18] proposed three multi-objective
task scheduling algorithms for the cloud-fog continuum:
FLAMSKE-INT, FLAMSKE-RR, and FLAMSKE-RL.
These algorithms aim to minimize both the makespan and
processing costs of workflows while maintaining QoS.
The FLAMSKE-INT algorithm employs integer linear
programming, while FLAMSKE-RR offers an approximate
solution. It demonstrates the novelty of multi-objective
scheduling for addressing diverse QoS requirements. The
FLAMSKE-RL algorithm is more efficient than other

algorithms when dealing with moderate to high network
loads while maintaining short execution times.

Saif et al. [19] introduced Multi-Objectives Grey Wolf
Optimizer (MGWO) to reduce QoS objectives delay and
energy consumption, which is held in the fog broker. MGWO
is used for task scheduling by the fog broker to analyze,
estimate, and schedule sending requests from terminal
devices. It saves energy and delays. Simulated results are
compared with state-of-the-art algorithms. Compared with
comparison algorithms, the proposed algorithm reduced
energy consumption and delay. The increasing workload does
not affect algorithms linearly. IoT devices generate many
requests.

Yadav et al. [20] presented an opposition-based chemical
reaction method for scheduling fog network tasks. They
combined heuristic upward ranking and chemical reaction
optimization techniques with opposition-based learning
techniques. OBCR with OBL produces a more diverse
population and helps escape local optima. In order to better
explore and exploit the solution space, this algorithm utilizes
four operators. Fog computing devices are more stable and
have shorter service-time latency thanks to this technique.
The proposed technique is more stable and has a shorter
service-time latency than other approaches.

Mousavi et al. [21] proposed a constraint bi-objective
optimization problem to minimize both energy consumption
and response time for servers. D-NSGA-II is a non-dominated
sorting genetic algorithm formed by adding a recombination
operator to NSGA-II. In this algorithm, the exploration and
exploitation abilities of the algorithm are balanced while the
selection pressure of agents is controlled. The D-NSGA-
II performed better than other algorithms in experiments.
Additionally, it can respond to requests before their deadlines.

Table 1 compares related works in terms of the year,
parameter considered, technique utilized, evaluation tool,
and limitation. Although there are studies on minimizing
cost and energy, response time must be reduced and load-
balanced under deadline constraints. As part of our task
scheduling algorithm with limited resource availability, we
minimize response time, waiting time, and load balancing
while considering deadline constraint tasks. Some papers fail
to take into account the importance of meeting the deadline
for each task in the fog computing network. Thus, we propose
a task scheduling algorithm that reduces response times as
well as waiting times and balances load across fog nodes. A
fuzzy reinforcement learning task scheduling algorithm is
proposed in which fuzzy logic is used to prioritize the tasks,
while reinforcement learning is used to distribute the tasks to
fog resources in the fog layer.

3- System model
This section provides the system model for the proposed

system. In a fog computing environment, fuzzy reinforcement
learning (FRL) is used to solve the task scheduling problem.
As part of the innovation, FRL is used to schedule tasks while
taking into account critical factors like deadline constraints,
simultaneously minimizing response time and waiting

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

37

Table 1. Comparison of related works.Table 1. Comparison of related works.

References Year Considered

Parameter

Utilized technique Simulator Limitations

Ghanavati et al. [14] 2020 - Makespan
- Energy

AMO Matlab

- Network bandwidth effects
are not considered,
- Does not support dynamic,
real-time task offloading for
mobile users and varying
network conditions.

Assamarai et al. [15] 2023
- Makespan
- Task completion
deadline

ACO Java

- Energy consumption and
system temperature are not
addressed,
- Evaluation focuses only on
makespan and deadline
satisfaction, ignoring other
important metrics.

Ahmed et al. [16] 2021 - Makespan
- Energy consumption

MFO, DE and

OBL
iFogSim

- Assumes reliable virtual
resources, overlooking the
variability in real fog
environment,
- Computational complexity
and scalability need more
thorough analysis.

Ghafari and
Mansouri [17] 2023

- Makespan
- Energy consumption
- Cost

EAVOA Matlab
- The BWM for task
prioritization is slow for large
tasks,
- Data privacy isn't addressed.

Guevara et al. [18] 2022 - Makespan
- Processing cost

RL Python

- The paper does not discuss
the algorithm's scalability or
the computational resources
required,
- Lacks comparison with state-
of-the-art algorithms outside
their framework.

Saif et al. [19] 2023 - Delay
- Energy consumption

MGWO Matlab

- It focuses narrowly on
reducing delay and energy
consumption, overlooking
other critical objectives like
cost and load balancing,
- Does not consider the
heterogeneity of resource.

Yadav et al. [20] 2022 - Latency
- Stability

CRO and OBL iFogSim

The impact of variable
bandwidths between nodes is
not considered,
- Does not address privacy and
security issues.

Mousavi et al. [21] 2022 - Energy consumption
- Response time

D-NSGA-II Matlab

- Dependencies between tasks
are not considered,
- Only energy consumption and
latency are considered,
excluding communication and
computing costs.

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

38

time, and balancing loads within the constraints of limited
resources.

Using fuzzy logic and reinforcement learning, fuzzy
reinforcement learning (FRL) addresses complex decision-
making problems, such as those involving uncertainty and
ambiguity. FRL can be highly effective in fog computing
scenarios because it is capable of handling imprecise
information and learning optimal scheduling policies over
time. In order to optimize resource allocation and ensure
timely processing, it is necessary to schedule tasks generated
by various IoT devices efficiently to available fog nodes. Task
scheduling is a complex problem as a result of the dynamic
nature of the environment, the heterogeneity of tasks, and the
varying capabilities of fog nodes.

The proposed FRL task scheduling algorithm is based on
fuzzy logic for task prioritization and reinforcement learning
for task distribution. Fuzzy logic is used to prioritize tasks
based on deadline urgency, resource requirements, and task
size. With fuzzy rules, tasks are categorized into different
priority levels, which allows the system to handle inherent
uncertainty. Prioritizing tasks is followed by reinforcement
learning to determine the optimal distribution strategy. In

order to minimize cumulative rewards, such as minimizing
latency and balancing load, the RL agent interacts with the fog
environment to determine which actions (task assignments)
are optimal. In this way, ambiguity in task requirements and
system states is effectively managed, and continually adapted
to weather conditions, and scheduling efficiency is improved
over time, resulting in better utilization of fog resources and
enhanced system performance.

To solve the problem of task scheduling in fog
environments, this approach seamlessly integrates fuzzy logic
and reinforcement learning. Fuzzy logic is used to prioritize
tasks, and RL is used to learn the optimal distribution of tasks
so that tasks are scheduled effectively and in a manner that
aligns with urgency and resource requirements. Due to the
limited availability of resources, it ensures load balancing
while considering deadline constraints. This approach is
robust and highly effective for managing complex and
dynamic scheduling tasks in fog computing environments
due to its dynamic adaptation, facilitated by RL.

Figure 3 shows the proposed architecture for fuzzy
reinforcement learning. This module shows how an effective
RL-based algorithm called FRLS is used to handle response

Fig. 3. The system model of the proposed task scheduling approach.

Fig. 3. The system model of the proposed task scheduling approach.

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

39

time, waiting time, and load balance. Initially, the task manager
receives a list of tasks from the user. Task managers accept
tasks, and prioritize them. In the proposed algorithm, the
priority is calculated and tasks are arranged according to the
priority value. Resources and task information are then sent
to the resource manager and scheduler. Priority information is
received by the resource manager and scheduler. As a result,
it allocates resources based on RL.

IoT devices produce a high volume of real-time delays-
sensitive requests. The memory, processing power, and storage
capacities of most IoT devices are limited. The proposed
model considers tasks independent, non-preemptive, and not
subdivided. T denotes a set of tasks i.e., { }1 2, ,..., nT T T T=
. A task i is defined as (), , ,s d in out

i i i i iT T T T T= . Let F be
the set of heterogeneous fog nodes i.e., { }1 2, ,..., mF F F F= .
Each fog node is represented as { },PR Del

j j jF F F= . We define
binary decision variables. { }0,1ija ∈ , for all i T∈ , for all
j F∈ stands for the allocation of the task iT to the fog node

jF . 1ija = if the task iT is assigned to the fog node jF , 0
otherwise. Table A.1 in the Appendix provides a summary of
symbols.

3- 1- Response time model
In the task scheduler, a response time is defined for the

task iT . The interval represents the time between gathering
the input file and promoting the output file. jF is the delay
between the task scheduler module and node Del

jF . Using
Equation (2), the execution time of the task iT on node jF
can be described as ijET and the time spent waiting over iT
in the queue as ijWT . Based on these parameters, the time of
response over the task iT is estimated as follows [22]:

 

 

1
2 ,

1,2,...,

m
Del

i j ij ij ij
j

RT F ET WT a

i n



    

 


 (1)

, ,
s

i
ij i jPR

j

TET T T F F
F

     (2)

 

,
Pr)

,

si , (
()

n

L

t
C

t

PU oces gRateofNode time t

oad node time

TotalLengthofTask ime t

  
 (3)

1 (-) 0
2 (-) 0
3 (-) 0

d
i i

d
i i

d
i i

if RT T
R if RT T

if RT T

 


 
 

 (4)

' '(,) (1) (,) min (,)Q s a Q s a R Q s a           (5)

 (1)

Where execution time is calculated as follows [22]:

 

 

1
2 ,

1,2,...,

m
Del

i j ij ij ij
j

RT F ET WT a

i n



    

 


 (1)

, ,
s

i
ij i jPR

j

TET T T F F
F

     (2)

 

,
Pr)

,

si , (
()

n

L

t
C

t

PU oces gRateofNode time t

oad node time

TotalLengthofTask ime t

  
 (3)

1 (-) 0
2 (-) 0
3 (-) 0

d
i i

d
i i

d
i i

if RT T
R if RT T

if RT T

 


 
 

 (4)

' '(,) (1) (,) min (,)Q s a Q s a R Q s a           (5)

 (2)

Where s
iT represents the i-th task’s size and PR

jF is the
processing rate of CPU on jF .

3- 2- Load model
In order to maximize resource utilization, avoid

bottlenecks, prevent overload and low load, as well as to
reduce response times, load balancing is an important issue.
The load on each node is calculated during this phase. The
load of a node is the total length of all tasks assigned to it
[23]:

 

 

1
2 ,

1,2,...,

m
Del

i j ij ij ij
j

RT F ET WT a

i n



    

 


 (1)

, ,
s

i
ij i jPR

j

TET T T F F
F

     (2)

 

,
Pr)

,

si , (
()

n

L

t
C

t

PU oces gRateofNode time t

oad node time

TotalLengthofTask ime t

  
 (3)

1 (-) 0
2 (-) 0
3 (-) 0

d
i i

d
i i

d
i i

if RT T
R if RT T

if RT T

 


 
 

 (4)

' '(,) (1) (,) min (,)Q s a Q s a R Q s a           (5)

 (3)

Therefore, the load can be calculated by dividing the
number of tasks in a node’s service queue by its service rate
at time t, using Eq. (3).

4- Proposed Fuzzy Reinforcement Learning Approach
Fuzzy logic-based scheduling algorithms are presented

in this section. Task attributes are difficult to prioritize in a
dynamic environment. Section 4.1 calculates task weights
based on factors such as deadline, size, and file size. Section
4.2 presents a reinforcement learning task scheduling method
for scheduling tasks between fog nodes.

4- 1- Calculation of task weights using fuzzy logic system
Fuzzy inference systems (FIS) use fuzzy logic to map

input values to output values. As a result of its ability to adapt,
interpret rules, and study a variety of inputs, fuzzy logic was
the best solution for our problem. An efficient way to deal
with uncertainties in a system is through fuzzy logic [24].

The task manager receives requests for task execution
from end users. Next, the task priority value is calculated
based on the task deadline, the task size, and the task file size.
In this way, the task will be completed at the top of the priority
list and with a shorter deadline. The proposed system uses
fuzzy logic control to take into account three factors, namely
the task deadline, the task size, and the file size. The input
values are normalized in the interval (0,1). The normalization
method is Min-Max. There are four steps involved in fuzzy
inference, namely (1) Fuzzification (2) Predefined rule base
(3) Fuzzy inference system and (4) Defuzzification. Figure 4
shows the architecture of a fuzzy model [25].

Fuzzy logic controllers take three input parameters:
deadline, size, and weight of the task. Table 2 summarizes
fuzzy inputs and outputs with linguistic value sets. The
membership functions for inputs and outputs are shown in
Fig. 5.

IF-THEN rules are fuzzy rules that are used to make
decisions. It specifies control objectives and domain policies
using linguistic rules. The FIS comprises rules that follow IF
(conditions are met) THEN (set of results can be performed).
Table 3 shows 27 fuzzy if-then mapping rules generated from
input data. The Mamdani fuzzy inference system maps an
input space to an output space based on predefined rules.

After that, the defuzzification process is completed.
Defuzzification converts fuzzy values into crisp values by
reversing fuzzification. The Center of Gravity (COG) method
is used to defuzzify a document. Prioritize tasks based on
their newly calculated priority. Tasks will determine resource
manager and scheduler priorities. The priority of a task is
determined by its size, deadline, and file size. Fog resources are
used for high-priority tasks. In algorithm 1, tasks are scheduled
using fuzzy logic. Algorithm 1 uses fuzzy logic to make
scheduling decisions, followed by reinforcement learning.

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

40

4- 2- Reinforcement learning-based task scheduling
algorithm

RL is vital to creating an accurate scheduling strategy
in today’s dynamic computing environment. One of the
significant characteristics of RL is its ability to make decisions
independently. RL involves learning a policy that achieves
the best reward from interactions with an environment. To
determine the optimal location for processing application
tasks based on QoS requirements, the RL agent employs the
Q-learning technique. The Q-learning method uses model-
free reinforcement learning to update the Q-value function
without estimating a model after each iteration with the
environment [26].

The fog computing was modelled using a Markov Decision
Process (MDP), consisting of the following elements:

• State Space (S): Each fog node includes its status, the
status of every IoT device generating tasks, and its current
load.

• Action space (A): The learning agents perform different

actions on the environment based on a defined action selection
policy in each learning episode. This algorithm uses all fog
node resources to meet request requirements according to the
environment state. Selection is based on load balancing and
waiting time. Fog nodes are assigned to tasks through action
sets.

• Reward (R): For every action taken, the environment
rewards the agent immediately. This problem rewards based
on response time. Agents receive a 1 reward if they respond
before the deadline. When response time and deadline are
equal, the agent receives a reward of 2. It receives reward 3 if
it selects a node that cannot meet the deadline.

The reward function is designed to guide agents toward
optimal performance within a fog computing environment by
rewarding timely responses and penalizing missed deadlines.
The reward structure encourages prompt task completion
and efficient resource utilization by rewarding agents if
they respond before the deadline. Optimal scheduling and
optimal use of available time are rewarded if the response

Fig. 4. Fuzzy model architecture.

Fig. 4. Fuzzy model architecture.

Table 2. Input/output variables with linguistic values.Table 2. Input/output variables with linguistic values.

I/O variables Linguistic variables

Task deadline {Short, Medium, Long}

Task size {Less, Medium, More}

Task file size {Small, Medium, Huge}

Task weight {Very Low, Low, Low Medium, High Medium, High, Very High}

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

41

time matches the deadline. The agent will receive a reward of
3 if the selected node cannot meet the deadline. Even though
this reward structure seems counterintuitive, it is intended to
emphasize the importance of meeting deadlines within fog
computing. It ensures that agents are motivated to act rapidly
and precisely, balancing immediate response with optimal
resource utilization. It emphasizes the importance of precise
scheduling by providing higher rewards for timely responses
and lower rewards for early completion. Missing deadlines
carries the highest penalty (3), emphasizing the importance
of timely task completion in fog computing. As a result, this
method aligns agent behaviour with the system’s performance

goals, promoting efficient and reliable task scheduling. It can
be expressed as follows [27]:

 

 

1
2 ,

1,2,...,

m
Del

i j ij ij ij
j

RT F ET WT a

i n



    

 


 (1)

, ,
s

i
ij i jPR

j

TET T T F F
F

     (2)

 

,
Pr)

,

si , (
()

n

L

t
C

t

PU oces gRateofNode time t

oad node time

TotalLengthofTask ime t

  
 (3)

1 (-) 0
2 (-) 0
3 (-) 0

d
i i

d
i i

d
i i

if RT T
R if RT T

if RT T

 


 
 

 (4)

' '(,) (1) (,) min (,)Q s a Q s a R Q s a           (5)

 (4)

Using a fog computing environment, the reward function
is designed to encourage agents to respond quickly. The
rewards are outlined below: The agent receives a reward of 1

(a)

(b)

Fig. 5. Membership function for task deadline, task size, file size, and task weight.

Fig. 5. Membership function for task deadline, task size, file size, and task weight.

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

42

for responding before the deadline. Agents are encouraged to
complete tasks quickly and efficiently as a result.

On-time Response (when response time equals the
deadline): It receives a higher reward of 2 if it responds
precisely by the deadline. A higher reward is given when
tasks are managed within the expected time frame.

Inability to Meet the Deadline: In such a case, the agent
receives the highest reward of 3. Despite its counterintuitive
nature, this could be designed to penalize the agent more
severely. A higher reward may indicate a more significant
penalty or cost if you miss the deadline, depending on our

system’s design.
• Action Selection Policy: The ε -greedy policy is used

here to select an action for each environment state. The policy
of ε -greedy is described in Algorithm 2 [25].

• Discount Factor (γ): If the discount factor γ is 0, the
agent learns the action by learning the immediate reward, and
if it is 1, it learns the action by learning the cumulative sum
of future rewards.

• Update the value table of actions (Q-Table): Q-table
value is updated when reward signals are received from the
environment. The action selected in the state determines the

Table 3. Fuzzy rule-base [25].
Table 3. Fuzzy rule-base [25].

R. No. Input variable Output variable
 Deadline Task size File size Task weight
1 Short Less Small Very High
2 Short Less Medium Low
3 Short Less Huge Low
4 Short Medium Small Low
5 Short Medium Medium Low Medium
6 Short Medium Huge Low Medium
7 Short More Small Low Medium
8 Short More Medium High Medium
9 Short More Huge High Medium
10 Medium Less Small Low
11 Medium Less Medium Low Medium
12 Medium Less Huge Low Medium
13 Medium Medium Small High Medium
14 Medium Medium Medium High Medium
15 Medium Medium Huge High Medium
16 Medium More Small High
17 Medium More Medium High
18 Medium More Huge High
19 Long Less Small Low
20 Long Less Medium Low Medium
21 Long Less Huge Low Medium
22 Long Medium Small Low Medium
23 Long Medium Medium High Medium
24 Long Medium Huge High
25 Long More Small High
26 Long More Medium Very High
27 Long More Huge Very High

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

43

Q-value function. In the environment, the Q-value function
should move to the best state when the agent selects an action.
The Q-table is updated using Eq. (5):

 

 

1
2 ,

1,2,...,

m
Del

i j ij ij ij
j

RT F ET WT a

i n



    

 


 (1)

, ,
s

i
ij i jPR

j

TET T T F F
F

     (2)

 

,
Pr)

,

si , (
()

n

L

t
C

t

PU oces gRateofNode time t

oad node time

TotalLengthofTask ime t

  
 (3)

1 (-) 0
2 (-) 0
3 (-) 0

d
i i

d
i i

d
i i

if RT T
R if RT T

if RT T

 


 
 

 (4)

' '(,) (1) (,) min (,)Q s a Q s a R Q s a           (5)

 (5)

Where s , a , α , and 's represent the current state,
action taken in the current state, learning rate, and next state,
respectively. The immediate reward achieved by executing
action a in state s is symbolized by R , while 'a denotes
the action that minimizes the Q-value in state 's .

Figure 6 shows the flowchart of the proposed algorithm.
Furthermore, Algorithm 1 provides a detailed representation
of the proposed algorithm.

5- Experimental result
The purpose of this section is to conduct a comprehensive,

scientific, and rigorous simulation experiment to evaluate the
effectiveness of the proposed fuzzy reinforcement learning
task scheduling algorithm in a variety of scenarios.

5- 1- Simulation environment configuration
A comparison of FRLS with First Come First Serve

(FCFS) [28], Max-Min [29], Earliest Deadline First (EDF)
[30], MGGS [31], CODA [32], IWC [33], and FUGE [34]
particularly cloud environments/computing. The dynamic
and heterogeneous nature of resources in such distributed
systems makes optimum job scheduling a non-trivial task.
Maximal resource utilization in cloud computing demands/
necessitates an algorithm that allocates resources to jobs with
optimal execution time and cost. The critical issue for job
scheduling is assigning jobs to the most suitable resources,
considering user preferences and requirements. In this paper,
we present a hybrid approach called FUGE that is based on
fuzzy theory and a genetic algorithm (GA algorithms was
performed regarding the load of objectives, response time,
deadline satisfaction percentage (DST%), and waiting time.
During the simulation, three algorithms were compared at
the same time. Initially, there are 60 fog nodes, and there are
100 to 500 incoming tasks. Second, the number of fog nodes
ranges from 30 to 90, with 300 fixed IoT tasks. As a third
case, the proposed algorithm (FRLS) compares to situations
where the tasks are not prioritized, the number of nodes is 50,
and the number of tasks is 100 to 500. The key parameters of
our simulations are presented in Table 4. We used MATLAB
on a computer with a core i5 running Windows to verify that
our proposed algorithm is effective.

Fig. 6. Flowchart of proposed FRLS algorithm.

Fig. 6. Flowchart of proposed FRLS algorithm.

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

44

Algorithm 1 FRLS: Fuzzy Reinforcement Learning Scheduling Algorithm
Input: Task set, Fog node set
Output: Assigning incoming task to the most appropriate node
1. Initialize , ,  
2. Calculate the tasks’ weight based on the fuzzy logic
3. For each task do
4. For   , ,s d FS

i i ix T T T do
5. Calculate ()x using triangular member function
6. End
7. For each rule do
8. if      , ,d s FS

i i iT T T   then
9. Fit the membership levels
10. Find the Output linguistic level based on the fuuzy rule-base
11. End
12. End
13. Aggregate output set using Max Aggregation technique
14. Determine the crisp value from the defuzzification process for Task weights value
15. End
16. Prioritize task based on their weights
17. Initialize values of Q-table to zero
18. For each task do
19. The agent engages with its environment, interacting with nodes, and examines all

potential nodes utilizing the Q-table.
20. It chooses the optimal node according to the Algorithm 2
21. Determine the task's response time
22. Update waiting time of node
23. Compute the reward using Eq. (4)
24. Update the load of nodes
25. Update the Q-table value
26. End
27. return scheduled tasks

Algorithm 2:  -greedy policy
Input: 
Output: Action
1. Choose random number  0,1rd 
2. if rd  then
3. Select a random action //Exploration
4. else
5. Select the action with minimum Q-value //Exploitation
6. end if
7. return action

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

45

5- 2- The impact of task numbers
As the number of tasks and fog nodes increases from 60 to

120, the performance of the proposed algorithm is evaluated.
Figure 7 illustrates how increasing the number of tasks can
affect the system’s performance because it increases the load.
With more tasks, response time increases. The fog nodes will
have a longer wait time.

Figure 7(a) compares the load of the proposed FRLS
algorithm with FCFS, Max-Min, EDF, CODA, MGGS,
IWC, and FUGE algorithms. As shown in the chart, although
algorithms that emphasize load balancing, such as the
proposed FRLS algorithm FUGE, and MGGS, have higher
load balance in all scenarios, our proposed algorithm performs
better in most scenarios. FRLS increases the load balancing
by 18%, 14%, 18%, 3%, 6%, 3%, and 6% compared to FCFS,
Max-Min, EDF, CODA, MGGS, IWC and FUGE algorithms,
respectively. In the proposed method, the Q-table values are
used to determine a device for task scheduling using a greedy
action selection policy. A reward is received based on the load
and waiting time. Fog resources outperform other algorithms
in calculating load parameters.

Figure 7(b) illustrates that the FRLS algorithm’s response
time is shorter than other algorithms since it considers the
load on the selected fog node before performing the operation.

Figure 7(c) shows that tasks prioritized by fuzzy logic
before scheduling are more likely to be on time with the
proposed FRLS algorithm. CODA improves DST% by 26%
compared to FRLS.

In Fig. 7(d), the proposed approach has a better waiting
time than the other approaches. In the above experiment, the
proposed strategy reduced waiting time by 28%, 21%, 26%,
6%, 11%, 12%, and 11% when compared with FCFS, Max-
Min, EDF, CODA, MGGS, IWC and FUGE, respectively.

In fog computing task scheduling, the proposed algorithm
uses reinforcement learning and fuzzy logic to achieve

superior results. It continuously optimizes scheduling policies
in response to changing environments using reinforcement
learning to adapt dynamically to changing environments. Due
to this adaptive learning capability, our algorithm remains
robust and efficient even in dynamic and unpredictable fog
computing scenarios. Moreover, fuzzy logic can be used to
prioritize tasks intelligently and nuancedly based on multiple
criteria, such as task size, file size, and deadline. Scheduling
decisions are thus made more effectively and fairly than with
traditional heuristics or meta-heuristics. The combination of
these two powerful approaches improves response time and
waiting time, resulting in more efficient resource utilization
and dynamic load balancing.

5- 3- The impact of fog nodes
During this experiment, we increase the number of fog

nodes from the set of [30, 50, 70, 90] in order to identify
the effect on system performance. The number of tasks is
limited to 300. Figures 8(a) to 8(d) show the results of this
experiment.

According to Fig. 8(a), the proposed scheduling algorithm
has obvious advantages in achieving load over the other
algorithms. FRLS strategy has a superior load to FCFS, Max-
Min, EDF, CODA, MGGS, IWC, and FUGE algorithms
by 17%, 15%, 17%, 3%, 6%, 1%, and 7%, respectively,
according to a contrast analysis of the experimental results
EDF always has the highest load values.

As shown in Fig. 8(b), the proposed algorithm and other
algorithms have different response times. We aimed to
reduce IoT application response times in these experiments.
Response time is reduced more by the proposed algorithm
than by the related approaches. Due to the consideration of
deadlines when assigning tasks, EDF and CODA significantly
reduce response time compared to FCFS and Max-Min. The
proposed FRLS algorithm offers a 24% improvement over

Table 4. Parameter setting.Table 4. Parameter setting.

Parameter Value

IoT task size (type 1) [100–372] MI

IoT task deadline (type 1) [100-500] ms
IoT task size (type 1) [1028–4280] MI

IoT task deadline (type 1) [500-2500] ms

Input file size [0.3,1.5] MB
Output file size [0.1,1] MB

Processing rate of CPU [500–2000] MIPS

Delay [1, 5] ms

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

46

(a)

(b)

(c)

Fig. 7. Effects of increasing task numbers.(Continued)

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

47

(d)

Fig. 7. Effects of increasing task numbers.

(a)

(b)

Fig. 7. Effects of increasing task numbers.

(d)
Fig. 7. Effects of increasing task numbers.

(a)

(b)

Fig. 8. Effects of increasing fog nodes. (Continued)

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

48

the second-best algorithm for 30 instance numbers of fog
nodes, compared to the second-best algorithm.

In general, the DST% of all algorithms increases as
the number of fog nodes increases. Compared to the other
algorithms, the proposed algorithm performs the best since it
prioritizes tasks based on deadline requirements and considers
task size and file size. As the number of fog nodes increases
from 30 to 90, FRLS achieves 33% to 89% of the DST%.
As a result, FRLS can provide great QoS for IoT requests.
CODA provides the second-best results in these respects.
Figure 8(d) shows that our proposed algorithms outperform
other algorithms in terms of waiting time. In 30 through 90
instances of nodes, FRLS minimized waiting times by 17%–
19% less than EDF. For 30 through 90 instances of nodes,
FRLS minimized waiting time by 3%–14% less than CODA.

This algorithm excels in scalability and flexibility, making
it well-suited to handle the increasing number of tasks and

fog nodes found in modern fog computing environments.
Moreover, fuzzy logic effectively deals with imprecise
information and uncertainty, resulting in more reliable
scheduling decisions in uncertain environments. Continuous
improvement is made possible by reinforcement learning,
resulting in sustained superior performance. Further, the
approach enhances system stability and reliability by evenly
distributing workload among fog nodes. In fog computing
task scheduling, our algorithm reduces computation overhead
by making efficient decisions, which makes it superior to
more complex optimization techniques.

5- 4- The impact of incorporating fuzzy logic
We tested the proposed algorithm’s performance on an

increased number of tasks from 100 to 500 and a reduced
number of fog nodes of 50 in this final experiment. A
comprehensive evaluation of the algorithm assessed how

(c)

(d)

Fig. 8. Effects of increasing fog nodes.

Fig. 8. Effects of increasing fog nodes.

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

49

well it scales and adapts when computational demands and
resources vary. Our primary focus was on comparing the
Fuzzy Reinforcement Learning Scheduling (FRLS) algorithm
(with the fuzzy logic step and task prioritization), with the
Reinforcement Learning (RL) algorithm, which lacks these
components. The evaluation criteria included several critical
performance metrics: load balancing, response time, Deadline
Satisfaction Task percentage (DST%), and waiting time.

This experiment revealed several important findings.
Figures 9(a) and 9(b) illustrate that the proposed algorithm
performs significantly better with an increasing number of
tasks. With this performance improvement, the algorithm
indicates that it is highly scalable and can handle large volumes
of tasks efficiently without degrading its performance.
Scalability is essential for real-world applications where
tasks and fog nodes can vary dynamically and unpredictably.
Furthermore, Figure 9(c) shows that the DST% (Percentage

of Deadline Satisfaction Task) decreases with increasing task
complexity. As a result of this trend, the complexity of tasks
tends to require more time and computational resources.
Despite this, we achieve higher deadline satisfaction rates
using our FRLS algorithm. A key reason for this algorithm’s
success is that it meets deadlines, which is a crucial
requirement for many applications, such as real-time data
processing.

In this study, fuzzy logic is used to prioritize tasks.
In dynamic and complex environments, fuzzy logic
provides a robust framework for coping with uncertainty
and imprecision. Fuzzy logic can be incorporated into the
FRLS algorithm to prioritize tasks based on various factors,
including task urgency, resource availability, and system
load. By prioritizing tasks, the algorithm manages tasks
more efficiently and meets deadlines more consistently.
Further evidence of the benefits of fuzzy logic is provided

(a)

(b)

(c)

Fig. 9. Comparison of FRLS with and without fuzzy logic. (Continued)

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

50

by a comparison between the FRLS algorithm and the RL
algorithm. FRLS improves DST% by up to 31% compared
to RL. A significant improvement in task scheduling and
resource allocation can be achieved by using fuzzy-based
prioritization. As shown in Figure 9(d), the proposed
algorithm reduces waiting time significantly compared to RL.
In order to improve overall system responsiveness and user
satisfaction, waiting time must be reduced.

As a result of this experiment, fuzzy logic has important
advantages for task prioritization in the FRLS algorithm.
Fuzzy logic plays a critical role in enhancing reinforcement
learning-based scheduling algorithms’ performance in terms
of load management, response time, deadline satisfaction,
and waiting time. Fog computing applications require
sophisticated and adaptive scheduling solutions because
of dynamic task loads and resource constraints. This study
shows that the FRLS algorithm, with its fuzzy logic-based
prioritization, delivers high levels of efficiency and reliability
when managing complex and dynamic tasks.

6- Conclusion
Fog systems face challenges in task scheduling due to the

variability and dynamicity of the resources, as well as the
increased volatility of customer service requests. The purpose
of this paper is to propose a fuzzy reinforcement learning task
scheduling method for improving load, response time, and
waiting time. Fuzzy inference is used to prioritize tasks. The
reinforcement learning algorithm is also used to schedule the
tasks to the fog nodes, which improves load balancing and
response time.

In this study, we compared FRLS with existing scheduling
algorithms. Regarding load, response time, waiting time, and
percentage of deadlines met, the proposed task scheduling
mechanism outperformed the existing algorithms. It is
possible to extend the scheduling criteria by adding some
additional parameters such as costs, energy consumption,
budget, and resource elasticity. Data privacy and security can
also be addressed in the future, as well as scheduling.

(a)

(b)

(c)

(d)

Fig. 9. Comparison of FRLS with and without fuzzy logic.

Fig. 9. Comparison of FRLS with and without fuzzy logic.

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

51

References
[1] 	Salaht, F. A., Desprez, F., and Lebre, A. “An overview of

service placement problem in fog and edge computing.”
ACM Computing Surveys (CSUR), Vol. 53, No. 3,
(2020), 1–35.

[2] Archana, R. “Multilevel scheduling mechanism for a
stochastic fog computing environment using the HIRO
model and RNN.” Sustainable Computing: Informatics
and Systems, Vol. 39, , (2023), 100887.

[3] 	Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. “Fog
computing and its role in the internet of things.” In
Proceedings of the first edition of the MCC workshop on
Mobile cloud computing (pp. 13–16).

[4] 	Fahimullah, M., Ahvar, S., Agarwal, M., and Trocan,
M. “Machine learning-based solutions for resource
management in fog computing.” Multimedia Tools and
Applications, Vol. 83, No. 8, (2024), 23019–23045.

[5] 	Rahimikhanghah, A., Tajkey, M., Rezazadeh, B., and
Rahmani, A. M. “Resource scheduling methods in cloud
and fog computing environments: a systematic literature
review.” Cluster Computing, (2022), 1–35.

[6] 	Ghafari, R., and Mansouri, N. “A novel energy-based
task scheduling in fog computing environment: an
improved artificial rabbits optimization approach.”
Cluster Computing, (2024), 1–46.

[7] 	Iftikhar, S., Gill, S. S., Song, C., Xu, M., Aslanpour,

M. S., Toosi, A. N., Du, J., Wu, H., Ghosh, S., and
Chowdhury, D. “AI-based fog and edge computing: A
systematic review, taxonomy and future directions.”
Internet of Things, Vol. 21, , (2023), 100674.

[8] 	Zabihi, Z., Eftekhari Moghadam, A. M., and Rezvani, M.
H. “Reinforcement Learning Methods for Computation
Offloading: A Systematic Review.” ACM Computing
Surveys, Vol. 56, No. 1, (2023), 1–41.

[9] 	Gasmi, R., Hammoudi, S., Lamri, M., and Harous, S.
“Recent Reinforcement Learning and Blockchain Based
Security Solutions for Internet of Things: Survey.”
Wireless Personal Communications, Vol. 132, No. 2,
(2023), 1307–1345.

[10] Abdullah, L. “Fuzzy multi criteria decision making and
its applications: a brief review of category.” Procedia-
Social and Behavioral Sciences, Vol. 97, , (2013), 131–
136.

[11] Jalali Khalil Abadi, Z., and Mansouri, N. “A
comprehensive survey on scheduling algorithms using
fuzzy systems in distributed environments.” Artificial
Intelligence Review, Vol. 57, No. 1, (2024), 4. https://doi.
org/10.1007/s10462-023-10632-y

[12] Al-Araji, Z. J., Ahmad, S. S. S., Kausar, N., Anis, F.
G., Ozbilge, E., and Cagin, T. “Fuzzy Theory in Fog
Computing: Review, Taxonomy, and Open Issues.” IEEE
Access, (2022).

[13] Ebneyousef, S., and Shirmarz, A. “A taxonomy of load

Appendix

Table A. 1. Summary of symbols.Table A. 1. Summary of symbols.

Symbols Description

T List of tasks
F List of fog nodes
n Number of tasks
m Number of fog nodes

s
iT i-th task’s size
d

iT i-th task’s deadline
in

iT i-th task’s input file size
out

iT i-th task’s output file size
FS

iT i-th task’s file size
PR
jF j-th fog node’s CPU processing rate
Del
jF the j-th fog node’s delay

ija Binary decision variables

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

52

balancing algorithms and approaches in fog computing:
a survey.” Cluster Computing, (2023), 1–22.

[14] Ghanavati, S., Abawajy, J. H., and Izadi, D. “An
energy aware task scheduling model using ant-mating
optimization in fog computing environment.” IEEE
Transactions on Services Computing, (2020).

[15] Alsamarai, N. A., Uçan, O. N., and Khalaf, O. F.
“Bandwidth-Deadline IoT Task Scheduling in Fog–Cloud
Computing Environment Based on the Task Bandwidth.”
Wireless Personal Communications, (2023). https://doi.
org/10.1007/s11277-023-10567-1

[16] Ahmed, O. H., Lu, J., Xu, Q., Ahmed, A. M., Rahmani,
A. M., and Hosseinzadeh, M. “Using differential
evolution and Moth–Flame optimization for scientific
workflow scheduling in fog computing.” Applied Soft
Computing, Vol. 112, , (2021), 107744. https://doi.
org/10.1016/j.asoc.2021.107744

[17] Ghafari, R., and Mansouri, N. “E-AVOA-TS: Enhanced
African vultures optimization algorithm-based task
scheduling strategy for fog–cloud computing.”
Sustainable Computing: Informatics and Systems, Vol.
40, , (2023), 100918.

[18] Guevara, J. C., Torres, R. D. S., Bittencourt, L. F.,
and Da Fonseca, N. L. S. “QoS-aware Task Scheduling
based on Reinforcement Learning for the Cloud-Fog
Continuum.” 2022 IEEE Global Communications
Conference, GLOBECOM 2022 - Proceedings,
(2022), 2328–2333. https://doi.org/10.1109/
GLOBECOM48099.2022.10001644

[19] Saif, F. A., Latip, R., Hanapi, Z. M., and Shafinah, K.
“Multi-objective grey wolf optimizer algorithm for task
scheduling in cloud-fog computing.” IEEE Access, Vol.
11, , (2023), 20635–20646.

[20] Yadav, A. M., Tripathi, K. N., and Sharma, S. C. “An
opposition-based hybrid evolutionary approach for task
scheduling in fog computing network.” Arabian Journal
for Science and Engineering, Vol. 48, No. 2, (2023),
1547–1562.

[21] Mousavi, S., Mood, S. E., Souri, A., and Javidi, M. M.
“Directed search: a new operator in NSGA-II for task
scheduling in IoT based on cloud-fog computing.” IEEE
Transactions on Cloud Computing, (2022).

[22] Mujtiba, H. S., and Rasool, B. G. “Hybrid heuristic
algorithm for cost-efficient QoS aware task scheduling
in fog-cloud environment [J].” Journal of Computational
Science, Vol. 64, , (2022), 101828.

[23] Bhardwaj, T., and Sharma, S. C. “Fuzzy logic-based
elasticity controller for autonomic resource provisioning
in parallel scientific applications: a cloud computing
perspective.” Computers & Electrical Engineering, Vol.
70, , (2018), 1049–1073.

[24] Mothku, S. K., and Rout, R. R. “Fuzzy logic based

adaptive duty cycling for sustainability in energy
harvesting sensor actor networks.” Journal of King Saud
University-Computer and Information Sciences, Vol. 34,
No. 1, (2022), 1489–1497.

[25] Raju, M. R., and Mothku, S. K. “Delay and energy
aware task scheduling mechanism for fog-enabled
IoT applications: A reinforcement learning approach.”
Computer Networks, Vol. 224, , (2023), 109603.

[26] Hortelano, D., de Miguel, I., Barroso, R. J. D., Aguado,
J. C., Merayo, N., Ruiz, L., Asensio, A., Masip-Bruin,
X., Fernández, P., and Lorenzo, R. M. “A comprehensive
survey on reinforcement-learning-based computation
offloading techniques in Edge Computing Systems.”
Journal of Network and Computer Applications, Vol.
216, , (2023), 103669.

[27] Talaat, F. M., Saraya, M. S., Saleh, A. I., Ali, H. A., and
Ali, S. H. “A load balancing and optimization strategy
(LBOS) using reinforcement learning in fog computing
environment.” Journal of Ambient Intelligence and
Humanized Computing, Vol. 11, No. 11, (2020), 4951–
4966.

[28] Zhao, W., and Stankovic, J. A. “Performance analysis
of FCFS and improved FCFS scheduling algorithms
for dynamic real-time computer systems.” In 1989
Real-Time Systems Symposium (pp. 156–157). IEEE
Computer Society.

[29] Aladwani, T. “Types of task scheduling algorithms in
cloud computing environment.” Scheduling Problems-
New Applications and Trends, (2020).

[30] Stankovic, J. A., Spuri, M., Ramamritham, K., and
Buttazzo, G. Deadline scheduling for real-time systems:
EDF and related algorithms (Vol. 460). Springer Science
& Business Media.

[31] Zhou, Z., Li, F., Zhu, H., Xie, H., Abawajy, J.
H., and Chowdhury, M. U. “An improved genetic
algorithm using greedy strategy toward task scheduling
optimization in cloud environments.” Neural Computing
and Applications, Vol. 32, , (2020), 1531–1541.

[32] Ghafari, R., and Mansouri, N. “An efficient task
scheduling in fog computing using improved artificial
hummingbird algorithm.” Journal of Computational
Science, Vol. 74, , (2023), 102152.

[33] Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y.,
and Murphy, J. “A woa-based optimization approach
for task scheduling in cloud computing systems.” IEEE
Systems journal, Vol. 14, No. 3, (2020), 3117–3128.

[34] Shojafar, M., Javanmardi, S., Abolfazli, S., and
Cordeschi, N. “FUGE: A joint meta-heuristic approach
to cloud job scheduling algorithm using fuzzy theory and
a genetic method.” Cluster Computing, Vol. 18, No. 2,
(2015), 829–844. https://doi.org/10.1007/s10586-014-
0420-x

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

53

HOW TO CITE THIS ARTICLE
R. Ghafari, N. Mansouri, Efficient scheduling algorithm for optimizing system load in fog
computing environment: A fuzzy reinforcement learning mechanism, AUT J. Model. Simul.,
56(1) (2024) 33-54.

DOI: 10.22060/miscj.2024.23205.5360

https://dx.doi.org/10.22060/miscj.2024.23205.5360

R. Ghafari and N. Mansouri, AUT J. Model. Simul., 56(1) (2024) 33-54, DOI: 10.22060/miscj.2024.23205.5360

54

