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Efficient scheduling algorithm for optimizing system load in fog computing 
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ABSTRACT: New technologies have emerged over the last few years, such as IoT and fog computing. 
IoT devices and the enormous amounts of data generated every minute have led to the vast growth of 
the Internet of Things (IoT). In order to meet the term “Data Never Sleeps”, some IoT applications 
require real-time services and low bit latency. To provide quick processing, storage, and services, Cisco 
proposed fog computing as an extension of cloud computing. The traditional methods are not capable of 
addressing the complex scheduling scenarios of fog computing. In this paper, we introduce a novel Fuzzy 
Reinforcement Learning Scheduling algorithm (FRLS) that enhances schedule accuracy in dynamic 
computing environments. To optimize task scheduling, the FRLS algorithm integrates fuzzy logic with 
reinforcement learning. To prioritize critical tasks, fuzzy logic handles uncertainty and prioritizes tasks 
according to deadlines, sizes, and file sizes. Then, reinforcement learning schedules the prioritized 
tasks, continually adjusting to dynamic conditions to ensure the best resource allocation. In addition to 
improving overall system performance, this combination provides a robust framework that can address 
the complexity and variability of fog computing environments. FRLS is designed to minimize response 
time while adhering to resource and deadline constraints in fog-based applications. A comparison of 
FRLS with existing algorithms shows that it significantly improves load balancing, deadline satisfaction, 
response time, and waiting time. Combining reinforcement learning and fuzzy logic leads to an efficient 
scheduling solution. In addition, FRLS outperforms non-prioritized algorithms.
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1- Introduction
The Internet of Things (IoT) has become embedded in our 

society, transforming everyday items into communication 
devices, which offers new challenges and opportunities. 
The current cloud infrastructure cannot support many 
IoT applications for three main reasons. The cost of data 
transmission, bandwidth limitations, and processing overhead 
make it impractical to transfer data from end devices to cloud 
servers. Moreover, real-time analysis applications, like video 
apps, gaming apps, etc., can suffer from significant end-to-
end delays. Privacy and security concerns make it advisable 
or even forbidden for specific data to cross the Internet. There 
is a promising paradigm that can reduce communication 
overhead, reduce data transfer delays, and avoid network 
bottlenecks. It combines cloud computing with edge devices 
for decentralized processing [1, 2]. In 2012, fog computing 
was introduced as a concept [3]. Users can access data 
management, processing, and storage capabilities by bridging 
the gap between the cloud and their computers. It not only 
distributes configuration, control, and data management 
across the network but also the devices, so that the cloud 

handles everything [4]. Figure 1 illustrates the fog computing 
architecture for task scheduling. These devices have storage, 
computation, and networking capabilities, so they can access 
fog/cloud resources. Additionally, static resources can be 
allocated for new requests, or static and dynamic resources 
can be combined.

Fog computing provides cost-effective and high-
performance task scheduling. Fog computing schedules tasks 
by allocating resources. With the proper selection of resources, 
tasks are completed more quickly, quality of service (QoS) is 
improved, and efficiency is improved. The issue of resource 
management is addressed with various techniques. ML-based 
techniques have gained popularity recently [6, 7].

The Reinforcement Learning (RL) mechanism strives 
to optimize rewards by interacting with the environment. 
The agent learns according to the predefined goals using 
the experience gained from the environment. A state s  is 
currently being experienced by the agent. The action a  is 
performed continuously. As a result of the agent’s action, 
the environment enters a new state s and the agent receives 
a reward. To maximize the expected total reward, the agent 
uses RL.  Trial-and-error learning in a dynamic environment 
is the basis of RL. As a result of environmental feedback, the 
agent modifies its adopted strategies to maximize rewards [8, *Corresponding author’s email: najme.mansouri@gmail.com
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9]. Figure 2 shows the interaction between an agent and its 
environment in RL architecture.

Nowadays, decision-making is more critical than ever, 
despite updated technologies. Several technologies fail 
to consider human capacity when making decisions [10]. 
Effective decision-making should enable people with 
valuable insights to reach a very acceptable decision. Making 
decisions using fuzzy logic is promising. Fuzzy information 
extends the classical notion of set in how humans make 
decisions. In order to facilitate reliable decision-making, 
fuzzy theory transforms the data into linguistic language. 
The use of various linguistic languages has been widespread, 
including low, medium, high, small, medium, large, and 
many others. Languages are selected based on the type of 
data and compatibility [11]researchers developed fuzzy-
based scheduling algorithms. Fuzzy logic is ideal for 
decision-making processes since it has a low computational 
complexity and processing power requirement. Motivated by 

the extensive research efforts in the distributed computing 
and fuzzy applications, we present a review of high-quality 
articles related to fuzzy-based scheduling algorithms in 
grid, cloud, and fog published between 2005 and June 2023. 
This paper discusses and compares fuzzy-based scheduling 
schemes based on merits and demerits, evaluation techniques, 
simulation environments, and important parameters. 
We begin by introducing distributed environments, and 
scheduling process followed by their surveys. This study has 
summarized several domains where fuzzy logic is used in 
distributed systems. More specifically, the basic concepts of 
fuzzy inference system and motivations of fuzzy theory in 
scheduler are addressed smoothly. A fuzzy-based scheduling 
algorithm employs fuzzy logic in different ways (e.g., 
calculating fitness functions, assigning tasks to fog/cloud 
nodes, and clustering tasks or resources.

Fuzzy logic constructs different degrees of membership, 
known as membership functions, to aid decision-making. 

 
 

Fig. 1. Task scheduling with fog computing [5]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Task scheduling with fog computing [5].
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This method of computing is also called fuzzy logic since 
it relies on degrees of truth instead of true or false (1 or 
0), as used by computers. Linguistic languages use the 
interval [0,1]. In decision-making research, multi-criteria 
decision-making (MCDM) is a key focus, which examines 
the feasibility of alternative options based on the available 
resources and reflects the subjectivity of the decision-maker 
when choosing, prioritizing, and arranging a variety of 
actions. Since linguistic variables and fuzzy variables could 
be included in the objectives and limitations, fuzzy theory is 
combined with MCDM to investigate subjective ambiguity 
[12].

Few studies examined task prioritization along with task 
scheduling in the fog layer. There is also the issue of limited 
heterogeneous fog resources, impacting the task’s response 
time and the load balancing and waiting time at the fog 
nodes. Therefore, it is vital to schedule tasks for available fog 
resources while considering response time, load, and waiting 
times. Load balancing is a focus for many researchers [13]. 
In fog computing, fuzzy reinforcement learning (FRL) has 
emerged as a powerful approach for making decisions in 
uncertain environments. FRL methods for task scheduling 
often fail to consider priority, load, response time, and waiting 
time simultaneously. In this paper, we introduce a novel 
reinforcement learning framework for task scheduling in 
fog environments that incorporates adaptive fuzzy inference 
mechanisms. It improves scheduling efficiency and robustness 
against the uncertainties inherent in fog computing.

In order to overcome these challenges, we designed a 
task scheduling mechanism that reduces response time and 
waiting time while meeting deadlines for each task. Task 
properties are considered in the model. The different features 
of the tasks, such as deadlines, size, and file size, make it 
difficult to prioritize them. Therefore, we recommend a fuzzy 
logic technique for prioritizing tasks before assigning them 
to fog nodes. As IoT requests rise, conventional optimization 
methods become increasingly unsuitable for allocating tasks 
across the fog of resources. In order to distribute tasks among 
fog nodes in the fog layer, we propose a Reinforcement 
Learning (RL) mechanism. Extensive simulation studies are 
conducted to prove the superiority of the proposed approach.

This paper contributes the following main contributions:
• IoT tasks are scheduled in fog nodes in order to balance 

the load while meeting the task deadlines. Waiting time 
minimization is also part of our model.

• Utilize fuzzy logic to prioritize tasks according to deadline, 
size, and file size.

• Q-Learning model is an integrated machine learning 
technique based on reinforcement learning.

• Extensive experiments are conducted to analyze and 
compare the proposed algorithm with existing algorithms.
Section 2 reviews related work in the remainder of the 

paper. The models of the system are presented in Section 3. 
Section 4 presents the proposed scheduling algorithm. Section 
5 presents and analyzes the simulation results. Section 6 
concludes the paper by discussing future research directions.

 
 

Fig. 2. Agent’s interaction with the environment in RL [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Agent’s interaction with the environment in RL [8].
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2- Related Work
Fog computing is a relatively new research area. Despite 

a few proposals, task scheduling in fog networks is gaining 
momentum. We have described some task scheduling and 
resource management works in this section.

Ghanavati et al. [14] developed a task-scheduling algorithm 
for fog computing platforms. The proposed approach 
includes two parts: 1) A bio-inspired optimization approach, 
Ant Mating Optimization (AMO), and 2) a distributed 
optimization method that optimizes task distribution. The 
goal is to find a compromise between system lifetime and 
end-user energy consumption. The proposed approach is 
more energy efficient and faster.

According to Assamarai et al. [15], a new task-scheduling 
algorithm focuses on deadline satisfaction and makespan. It 
aims to balance job completion deadlines with the overall 
efficiency of the system. Whenever there is a high or medium 
bandwidth to the cloud, Ant Colony Optimization (ACO) 
is used. These goals can be achieved through bandwidth-
deadline. In terms of both makespan and deadline satisfaction, 
the proposed algorithm outperformed existing algorithms.

Ahmed et al. [16]in which tasks are going to be mapped 
on the best possible resources regarding some conflicting 
objectives. To deal with these issues, we introduce an 
opposition-based hybrid discrete optimization algorithm, 
called DMFO-DE. For this purpose, first, a discrete and 
Opposition-Based Learning (OBL proposed an opposition-
based hybrid discrete optimization algorithm. In the MFO 
algorithm, discrete and Opposition-Based Learning (OBL) 
versions are first implemented, and then they are coupled 
with the Differential Evolution (DE) algorithm to enhance 
convergence speed. Fog computing schedules scientific 
workflows using Dynamic Voltage and Frequency Scaling 
(DVFS). HEFT determines the order of tasks in a scientific 
workflow. The scheduling process minimized the number of 
virtual machines (VMs), the makespan, and communication 
between tasks to reduce energy consumption.

Ghafari and Mansouri [17] proposed an enhanced 
African vulture optimization algorithm for cloud-based fog 
computing. As a result, villages can learn from each other 
rather than from all their members. It minimizes makespan, 
cost, and energy consumption. The Best Worst Method (BWM) 
handles task delays. Fog is used for tasks that require less 
latency, and cloud is used for tasks that require more latency. 
The proposed algorithm outperformed other competitors in 
terms of makespan, cost, and energy consumption.

Guevara et al. [18] proposed three multi-objective 
task scheduling algorithms for the cloud-fog continuum: 
FLAMSKE-INT, FLAMSKE-RR, and FLAMSKE-RL. 
These algorithms aim to minimize both the makespan and 
processing costs of workflows while maintaining QoS. 
The FLAMSKE-INT algorithm employs integer linear 
programming, while FLAMSKE-RR offers an approximate 
solution. It demonstrates the novelty of multi-objective 
scheduling for addressing diverse QoS requirements. The 
FLAMSKE-RL algorithm is more efficient than other 

algorithms when dealing with moderate to high network 
loads while maintaining short execution times.

Saif et al. [19] introduced Multi-Objectives Grey Wolf 
Optimizer (MGWO) to reduce QoS objectives delay and 
energy consumption, which is held in the fog broker. MGWO 
is used for task scheduling by the fog broker to analyze, 
estimate, and schedule sending requests from terminal 
devices. It saves energy and delays. Simulated results are 
compared with state-of-the-art algorithms. Compared with 
comparison algorithms, the proposed algorithm reduced 
energy consumption and delay. The increasing workload does 
not affect algorithms linearly. IoT devices generate many 
requests.

Yadav et al. [20] presented an opposition-based chemical 
reaction method for scheduling fog network tasks. They 
combined heuristic upward ranking and chemical reaction 
optimization techniques with opposition-based learning 
techniques. OBCR with OBL produces a more diverse 
population and helps escape local optima. In order to better 
explore and exploit the solution space, this algorithm utilizes 
four operators. Fog computing devices are more stable and 
have shorter service-time latency thanks to this technique. 
The proposed technique is more stable and has a shorter 
service-time latency than other approaches.

Mousavi et al. [21] proposed a constraint bi-objective 
optimization problem to minimize both energy consumption 
and response time for servers. D-NSGA-II is a non-dominated 
sorting genetic algorithm formed by adding a recombination 
operator to NSGA-II. In this algorithm, the exploration and 
exploitation abilities of the algorithm are balanced while the 
selection pressure of agents is controlled. The D-NSGA-
II performed better than other algorithms in experiments. 
Additionally, it can respond to requests before their deadlines.

Table 1 compares related works in terms of the year, 
parameter considered, technique utilized, evaluation tool, 
and limitation. Although there are studies on minimizing 
cost and energy, response time must be reduced and load-
balanced under deadline constraints. As part of our task 
scheduling algorithm with limited resource availability, we 
minimize response time, waiting time, and load balancing 
while considering deadline constraint tasks. Some papers fail 
to take into account the importance of meeting the deadline 
for each task in the fog computing network. Thus, we propose 
a task scheduling algorithm that reduces response times as 
well as waiting times and balances load across fog nodes. A 
fuzzy reinforcement learning task scheduling algorithm is 
proposed in which fuzzy logic is used to prioritize the tasks, 
while reinforcement learning is used to distribute the tasks to 
fog resources in the fog layer.

3- System model
This section provides the system model for the proposed 

system. In a fog computing environment, fuzzy reinforcement 
learning (FRL) is used to solve the task scheduling problem. 
As part of the innovation, FRL is used to schedule tasks while 
taking into account critical factors like deadline constraints, 
simultaneously minimizing response time and waiting 
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Table 1. Comparison of related works.Table 1. Comparison of related works. 
 

References Year Considered 

Parameter 

Utilized technique Simulator Limitations 

Ghanavati et al. [14] 2020 - Makespan 
- Energy 

AMO Matlab 

- Network bandwidth effects 
are not considered, 
- Does not support dynamic, 
real-time task offloading for 
mobile users and varying 
network conditions. 

Assamarai et al. [15] 2023 
- Makespan 
- Task completion 
deadline 

ACO Java 

- Energy consumption and 
system temperature are not 
addressed,  
- Evaluation focuses only on 
makespan and deadline 
satisfaction, ignoring other 
important metrics. 

Ahmed et al. [16] 2021 - Makespan 
- Energy consumption 

MFO, DE and 

OBL 
iFogSim 

- Assumes reliable virtual 
resources, overlooking the 
variability in real fog 
environment, 
- Computational complexity 
and scalability need more 
thorough analysis. 

Ghafari and 
Mansouri [17] 2023 

- Makespan 
- Energy consumption 
- Cost 

EAVOA Matlab 
- The BWM for task 
prioritization is slow for large 
tasks, 
- Data privacy isn't addressed. 

Guevara et al. [18] 2022 - Makespan 
- Processing cost 

RL Python 

- The paper does not discuss 
the algorithm's scalability or 
the computational resources 
required, 
- Lacks comparison with state-
of-the-art algorithms outside 
their framework. 

Saif et al. [19] 2023 - Delay 
- Energy consumption 

MGWO Matlab 

- It focuses narrowly on 
reducing delay and energy 
consumption, overlooking 
other critical objectives like 
cost and load balancing, 
- Does not consider the 
heterogeneity of resource. 

Yadav et al. [20] 2022 - Latency 
- Stability 

CRO and OBL iFogSim 

The impact of variable 
bandwidths between nodes is 
not considered, 
- Does not address privacy and 
security issues. 

Mousavi et al. [21] 2022 - Energy consumption 
- Response time 

D-NSGA-II Matlab 

- Dependencies between tasks 
are not considered, 
- Only energy consumption and 
latency are considered, 
excluding communication and 
computing costs. 
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time, and balancing loads within the constraints of limited 
resources.

Using fuzzy logic and reinforcement learning, fuzzy 
reinforcement learning (FRL) addresses complex decision-
making problems, such as those involving uncertainty and 
ambiguity. FRL can be highly effective in fog computing 
scenarios because it is capable of handling imprecise 
information and learning optimal scheduling policies over 
time. In order to optimize resource allocation and ensure 
timely processing, it is necessary to schedule tasks generated 
by various IoT devices efficiently to available fog nodes. Task 
scheduling is a complex problem as a result of the dynamic 
nature of the environment, the heterogeneity of tasks, and the 
varying capabilities of fog nodes.

The proposed FRL task scheduling algorithm is based on 
fuzzy logic for task prioritization and reinforcement learning 
for task distribution. Fuzzy logic is used to prioritize tasks 
based on deadline urgency, resource requirements, and task 
size. With fuzzy rules, tasks are categorized into different 
priority levels, which allows the system to handle inherent 
uncertainty. Prioritizing tasks is followed by reinforcement 
learning to determine the optimal distribution strategy. In 

order to minimize cumulative rewards, such as minimizing 
latency and balancing load, the RL agent interacts with the fog 
environment to determine which actions (task assignments) 
are optimal. In this way, ambiguity in task requirements and 
system states is effectively managed, and continually adapted 
to weather conditions, and scheduling efficiency is improved 
over time, resulting in better utilization of fog resources and 
enhanced system performance.

To solve the problem of task scheduling in fog 
environments, this approach seamlessly integrates fuzzy logic 
and reinforcement learning. Fuzzy logic is used to prioritize 
tasks, and RL is used to learn the optimal distribution of tasks 
so that tasks are scheduled effectively and in a manner that 
aligns with urgency and resource requirements. Due to the 
limited availability of resources, it ensures load balancing 
while considering deadline constraints. This approach is 
robust and highly effective for managing complex and 
dynamic scheduling tasks in fog computing environments 
due to its dynamic adaptation, facilitated by RL.

Figure 3 shows the proposed architecture for fuzzy 
reinforcement learning. This module shows how an effective 
RL-based algorithm called FRLS is used to handle response 

 
 

Fig. 3. The system model of the proposed task scheduling approach. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The system model of the proposed task scheduling approach.
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time, waiting time, and load balance. Initially, the task manager 
receives a list of tasks from the user. Task managers accept 
tasks, and prioritize them. In the proposed algorithm, the 
priority is calculated and tasks are arranged according to the 
priority value. Resources and task information are then sent 
to the resource manager and scheduler. Priority information is 
received by the resource manager and scheduler. As a result, 
it allocates resources based on RL.

IoT devices produce a high volume of real-time delays-
sensitive requests. The memory, processing power, and storage 
capacities of most IoT devices are limited. The proposed 
model considers tasks independent, non-preemptive, and not 
subdivided.  T  denotes a set of tasks i.e., { }1 2, ,..., nT T T T=
. A task i  is defined as ( ), , ,s d in out

i i i i iT T T T T= . Let F  be 
the set of heterogeneous fog nodes i.e., { }1 2, ,..., mF F F F= . 
Each fog node is represented as { },PR Del

j j jF F F= . We define 
binary decision variables. { }0,1ija ∈ , for all i T∈ , for all 
j F∈  stands for the allocation of the task iT  to the fog node 

jF . 1ija =  if the task iT  is assigned to the fog node jF , 0 
otherwise. Table A.1 in the Appendix provides a summary of 
symbols. 

3- 1- Response time model
In the task scheduler, a response time is defined for the 

task iT . The interval represents the time between gathering 
the input file and promoting the output file. jF is the delay 
between the task scheduler module and node Del

jF . Using 
Equation (2), the execution time of the task iT on node jF
can be described as ijET  and the time spent waiting over iT  
in the queue as ijWT . Based on these parameters, the time of 
response over the task iT  is estimated as follows [22]:
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Where execution time is calculated as follows [22]:
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Where s
iT  represents the i-th task’s size and PR

jF  is the 
processing rate of CPU on jF .

3- 2- Load model
In order to maximize resource utilization, avoid 

bottlenecks, prevent overload and low load, as well as to 
reduce response times, load balancing is an important issue. 
The load on each node is calculated during this phase. The 
load of a node is the total length of all tasks assigned to it 
[23]:
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Therefore, the load can be calculated by dividing the 
number of tasks in a node’s service queue by its service rate 
at time t, using Eq. (3).

4- Proposed Fuzzy Reinforcement Learning Approach
Fuzzy logic-based scheduling algorithms are presented 

in this section. Task attributes are difficult to prioritize in a 
dynamic environment. Section 4.1 calculates task weights 
based on factors such as deadline, size, and file size. Section 
4.2 presents a reinforcement learning task scheduling method 
for scheduling tasks between fog nodes.

4- 1- Calculation of task weights using fuzzy logic system
Fuzzy inference systems (FIS) use fuzzy logic to map 

input values to output values. As a result of its ability to adapt, 
interpret rules, and study a variety of inputs, fuzzy logic was 
the best solution for our problem. An efficient way to deal 
with uncertainties in a system is through fuzzy logic [24].

The task manager receives requests for task execution 
from end users. Next, the task priority value is calculated 
based on the task deadline, the task size, and the task file size. 
In this way, the task will be completed at the top of the priority 
list and with a shorter deadline. The proposed system uses 
fuzzy logic control to take into account three factors, namely 
the task deadline, the task size, and the file size. The input 
values are normalized in the interval (0,1). The normalization 
method is Min-Max. There are four steps involved in fuzzy 
inference, namely (1) Fuzzification (2) Predefined rule base 
(3) Fuzzy inference system and (4) Defuzzification. Figure 4 
shows the architecture of a fuzzy model [25].

Fuzzy logic controllers take three input parameters: 
deadline, size, and weight of the task.  Table 2 summarizes 
fuzzy inputs and outputs with linguistic value sets. The 
membership functions for inputs and outputs are shown in 
Fig. 5.

IF-THEN rules are fuzzy rules that are used to make 
decisions. It specifies control objectives and domain policies 
using linguistic rules. The FIS comprises rules that follow IF 
(conditions are met) THEN (set of results can be performed). 
Table 3 shows 27 fuzzy if-then mapping rules generated from 
input data. The Mamdani fuzzy inference system maps an 
input space to an output space based on predefined rules.

After that, the defuzzification process is completed. 
Defuzzification converts fuzzy values into crisp values by 
reversing fuzzification. The Center of Gravity (COG) method 
is used to defuzzify a document. Prioritize tasks based on 
their newly calculated priority. Tasks will determine resource 
manager and scheduler priorities. The priority of a task is 
determined by its size, deadline, and file size. Fog resources are 
used for high-priority tasks. In algorithm 1, tasks are scheduled 
using fuzzy logic. Algorithm 1 uses fuzzy logic to make 
scheduling decisions, followed by reinforcement learning.
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4- 2- Reinforcement learning-based task scheduling 
algorithm

RL is vital to creating an accurate scheduling strategy 
in today’s dynamic computing environment. One of the 
significant characteristics of RL is its ability to make decisions 
independently. RL involves learning a policy that achieves 
the best reward from interactions with an environment. To 
determine the optimal location for processing application 
tasks based on QoS requirements, the RL agent employs the 
Q-learning technique. The Q-learning method uses model-
free reinforcement learning to update the Q-value function 
without estimating a model after each iteration with the 
environment [26]. 

The fog computing was modelled using a Markov Decision 
Process (MDP), consisting of the following elements:

• State Space (S): Each fog node includes its status, the 
status of every IoT device generating tasks, and its current 
load.

• Action space (A): The learning agents perform different 

actions on the environment based on a defined action selection 
policy in each learning episode. This algorithm uses all fog 
node resources to meet request requirements according to the 
environment state. Selection is based on load balancing and 
waiting time. Fog nodes are assigned to tasks through action 
sets.

• Reward (R): For every action taken, the environment 
rewards the agent immediately. This problem rewards based 
on response time. Agents receive a 1 reward if they respond 
before the deadline. When response time and deadline are 
equal, the agent receives a reward of 2. It receives reward 3 if 
it selects a node that cannot meet the deadline.  

The reward function is designed to guide agents toward 
optimal performance within a fog computing environment by 
rewarding timely responses and penalizing missed deadlines. 
The reward structure encourages prompt task completion 
and efficient resource utilization by rewarding agents if 
they respond before the deadline. Optimal scheduling and 
optimal use of available time are rewarded if the response 

 
 

Fig. 4. Fuzzy model architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Fuzzy model architecture.

Table 2. Input/output variables with linguistic values.Table 2. Input/output variables with linguistic values. 
 

I/O variables Linguistic variables 

Task deadline {Short, Medium, Long} 

Task size {Less, Medium, More} 

Task file size {Small, Medium, Huge} 

Task weight {Very Low, Low, Low Medium, High Medium, High, Very High} 
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time matches the deadline. The agent will receive a reward of 
3 if the selected node cannot meet the deadline. Even though 
this reward structure seems counterintuitive, it is intended to 
emphasize the importance of meeting deadlines within fog 
computing. It ensures that agents are motivated to act rapidly 
and precisely, balancing immediate response with optimal 
resource utilization. It emphasizes the importance of precise 
scheduling by providing higher rewards for timely responses 
and lower rewards for early completion. Missing deadlines 
carries the highest penalty (3), emphasizing the importance 
of timely task completion in fog computing. As a result, this 
method aligns agent behaviour with the system’s performance 

goals, promoting efficient and reliable task scheduling. It can 
be expressed as follows [27]:
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Using a fog computing environment, the reward function 
is designed to encourage agents to respond quickly. The 
rewards are outlined below: The agent receives a reward of 1 
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Fig. 5. Membership function for task deadline, task size, file size, and task weight. 
 

 

 

 

 

 

 

 

Fig. 5. Membership function for task deadline, task size, file size, and task weight.
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for responding before the deadline. Agents are encouraged to 
complete tasks quickly and efficiently as a result.

On-time Response (when response time equals the 
deadline): It receives a higher reward of 2 if it responds 
precisely by the deadline. A higher reward is given when 
tasks are managed within the expected time frame.

Inability to Meet the Deadline: In such a case, the agent 
receives the highest reward of 3. Despite its counterintuitive 
nature, this could be designed to penalize the agent more 
severely. A higher reward may indicate a more significant 
penalty or cost if you miss the deadline, depending on our 

system’s design.
• Action Selection Policy: The ε -greedy policy is used 

here to select an action for each environment state. The policy 
of ε -greedy is described in Algorithm 2 [25].

• Discount Factor ( γ ): If the discount factor γ is 0, the 
agent learns the action by learning the immediate reward, and 
if it is 1, it learns the action by learning the cumulative sum 
of future rewards.

• Update the value table of actions (Q-Table): Q-table 
value is updated when reward signals are received from the 
environment. The action selected in the state determines the 

Table 3. Fuzzy rule-base [25].
Table 3. Fuzzy rule-base [25]. 

 
R. No. Input variable Output variable 
 Deadline Task size File size Task weight 
1 Short Less Small Very High 
2 Short Less Medium Low 
3 Short Less Huge Low 
4 Short Medium Small Low 
5 Short Medium Medium Low Medium 
6 Short Medium Huge Low Medium 
7 Short More Small Low Medium 
8 Short More Medium High Medium 
9 Short More Huge High Medium 
10 Medium Less Small Low 
11 Medium Less Medium Low Medium 
12 Medium Less Huge Low Medium 
13 Medium Medium Small High Medium 
14 Medium Medium Medium High Medium 
15 Medium Medium Huge High Medium 
16 Medium More Small High 
17 Medium More Medium High 
18 Medium More Huge High 
19 Long Less Small Low 
20 Long Less Medium Low Medium 
21 Long Less Huge Low Medium 
22 Long Medium Small Low Medium 
23 Long Medium Medium High Medium 
24 Long Medium Huge High 
25 Long More Small High 
26 Long More Medium Very High 
27 Long More Huge Very High 
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Q-value function. In the environment, the Q-value function 
should move to the best state when the agent selects an action. 
The Q-table is updated using Eq. (5):
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Where s , a , α , and 's  represent the current state, 
action taken in the current state, learning rate, and next state, 
respectively. The immediate reward achieved by executing 
action a  in state s  is symbolized by R , while 'a denotes 
the action that minimizes the Q-value in state 's .

Figure 6 shows the flowchart of the proposed algorithm. 
Furthermore, Algorithm 1 provides a detailed representation 
of the proposed algorithm.

5- Experimental result
The purpose of this section is to conduct a comprehensive, 

scientific, and rigorous simulation experiment to evaluate the 
effectiveness of the proposed fuzzy reinforcement learning 
task scheduling algorithm in a variety of scenarios.

5- 1- Simulation environment configuration
A comparison of FRLS with First Come First Serve 

(FCFS) [28], Max-Min [29], Earliest Deadline First (EDF) 
[30], MGGS [31], CODA [32], IWC [33], and FUGE [34]
particularly cloud environments/computing. The dynamic 
and heterogeneous nature of resources in such distributed 
systems makes optimum job scheduling a non-trivial task. 
Maximal resource utilization in cloud computing demands/
necessitates an algorithm that allocates resources to jobs with 
optimal execution time and cost. The critical issue for job 
scheduling is assigning jobs to the most suitable resources, 
considering user preferences and requirements. In this paper, 
we present a hybrid approach called FUGE that is based on 
fuzzy theory and a genetic algorithm (GA algorithms was 
performed regarding the load of objectives, response time, 
deadline satisfaction percentage (DST%), and waiting time. 
During the simulation, three algorithms were compared at 
the same time. Initially, there are 60 fog nodes, and there are 
100 to 500 incoming tasks. Second, the number of fog nodes 
ranges from 30 to 90, with 300 fixed IoT tasks. As a third 
case, the proposed algorithm (FRLS) compares to situations 
where the tasks are not prioritized, the number of nodes is 50, 
and the number of tasks is 100 to 500. The key parameters of 
our simulations are presented in Table 4. We used MATLAB 
on a computer with a core i5 running Windows to verify that 
our proposed algorithm is effective.

 
 

Fig. 6. Flowchart of proposed FRLS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Flowchart of proposed FRLS algorithm.
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Algorithm 1 FRLS: Fuzzy Reinforcement Learning Scheduling Algorithm 
Input: Task set, Fog node set 
Output: Assigning incoming task to the most appropriate node 
1. Initialize , ,    
2. Calculate the tasks’ weight based on the fuzzy logic 
3. For each task do           
4.  For   , ,s d FS

i i ix T T T  do 
5.   Calculate ( )x  using triangular member function 
6.  End  
7.  For each rule do 
8.   if      , ,d s FS

i i iT T T    then 
9.    Fit the membership levels 
10.    Find the Output linguistic level based on the fuuzy rule-base 
11.   End 
12.  End 
13.  Aggregate output set using Max Aggregation technique 
14.  Determine the crisp value from the defuzzification process for Task weights value 
15. End 
16. Prioritize task based on their weights 
17. Initialize values of Q-table to zero 
18. For each task do           
19.      The agent engages with its environment, interacting with nodes, and examines all            

potential nodes utilizing the Q-table.     
20.      It chooses the optimal node according to the Algorithm 2 
21.      Determine the task's response time 
22.      Update waiting time of node 
23.      Compute the reward using Eq. (4) 
24.      Update the load of nodes 
25.      Update the Q-table value 
26. End 
27. return scheduled tasks 

 

Algorithm 2:  -greedy policy  
Input:   
Output: Action 
1. Choose random number  0,1rd   
2. if rd   then 
3.  Select a random action     //Exploration 
4. else 
5.  Select the action with minimum Q-value              //Exploitation 
6. end if 
7. return action 
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5- 2- The impact of task numbers
As the number of tasks and fog nodes increases from 60 to 

120, the performance of the proposed algorithm is evaluated. 
Figure 7 illustrates how increasing the number of tasks can 
affect the system’s performance because it increases the load. 
With more tasks, response time increases. The fog nodes will 
have a longer wait time.

Figure 7(a) compares the load of the proposed FRLS 
algorithm with FCFS, Max-Min, EDF, CODA, MGGS, 
IWC, and FUGE algorithms. As shown in the chart, although 
algorithms that emphasize load balancing, such as the 
proposed FRLS algorithm FUGE, and MGGS, have higher 
load balance in all scenarios, our proposed algorithm performs 
better in most scenarios. FRLS increases the load balancing 
by 18%, 14%, 18%, 3%, 6%, 3%, and 6% compared to FCFS, 
Max-Min, EDF, CODA, MGGS, IWC and FUGE algorithms, 
respectively. In the proposed method, the Q-table values are 
used to determine a device for task scheduling using a greedy 
action selection policy. A reward is received based on the load 
and waiting time. Fog resources outperform other algorithms 
in calculating load parameters.

Figure 7(b) illustrates that the FRLS algorithm’s response 
time is shorter than other algorithms since it considers the 
load on the selected fog node before performing the operation.

Figure 7(c) shows that tasks prioritized by fuzzy logic 
before scheduling are more likely to be on time with the 
proposed FRLS algorithm. CODA improves DST% by 26% 
compared to FRLS.

In Fig. 7(d), the proposed approach has a better waiting 
time than the other approaches. In the above experiment, the 
proposed strategy reduced waiting time by 28%, 21%, 26%, 
6%, 11%, 12%, and 11% when compared with FCFS, Max-
Min, EDF, CODA, MGGS, IWC and FUGE, respectively.

In fog computing task scheduling, the proposed algorithm 
uses reinforcement learning and fuzzy logic to achieve 

superior results. It continuously optimizes scheduling policies 
in response to changing environments using reinforcement 
learning to adapt dynamically to changing environments. Due 
to this adaptive learning capability, our algorithm remains 
robust and efficient even in dynamic and unpredictable fog 
computing scenarios. Moreover, fuzzy logic can be used to 
prioritize tasks intelligently and nuancedly based on multiple 
criteria, such as task size, file size, and deadline. Scheduling 
decisions are thus made more effectively and fairly than with 
traditional heuristics or meta-heuristics. The combination of 
these two powerful approaches improves response time and 
waiting time, resulting in more efficient resource utilization 
and dynamic load balancing.

5- 3- The impact of fog nodes
During this experiment, we increase the number of fog 

nodes from the set of [30, 50, 70, 90] in order to identify 
the effect on system performance. The number of tasks is 
limited to 300. Figures 8(a) to 8(d) show the results of this 
experiment.

According to Fig. 8(a), the proposed scheduling algorithm 
has obvious advantages in achieving load over the other 
algorithms. FRLS strategy has a superior load to FCFS, Max-
Min, EDF, CODA, MGGS, IWC, and FUGE algorithms 
by 17%, 15%, 17%, 3%, 6%, 1%, and 7%, respectively, 
according to a contrast analysis of the experimental results 
EDF always has the highest load values.

As shown in Fig. 8(b), the proposed algorithm and other 
algorithms have different response times. We aimed to 
reduce IoT application response times in these experiments. 
Response time is reduced more by the proposed algorithm 
than by the related approaches. Due to the consideration of 
deadlines when assigning tasks, EDF and CODA significantly 
reduce response time compared to FCFS and Max-Min. The 
proposed FRLS algorithm offers a 24% improvement over 

Table 4. Parameter setting.Table 4. Parameter setting. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value 

IoT task size (type 1) [100–372] MI 

IoT task deadline (type 1) [100-500] ms 
IoT task size (type 1) [1028–4280] MI 

IoT task deadline (type 1) [500-2500] ms 

Input file size [0.3,1.5] MB 
Output file size [0.1,1] MB 

Processing rate of CPU [500–2000] MIPS 

Delay [1, 5] ms 
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(a) 

 
(b) 

 
(c) 

Fig. 7. Effects of increasing task numbers.(Continued)
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(d) 

Fig. 7. Effects of increasing task numbers. 
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(b) 

Fig. 7. Effects of increasing task numbers.
 

(d) 
Fig. 7. Effects of increasing task numbers. 

 
(a) 

 
(b) 

Fig. 8. Effects of increasing fog nodes. (Continued)
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the second-best algorithm for 30 instance numbers of fog 
nodes, compared to the second-best algorithm.

In general, the DST% of all algorithms increases as 
the number of fog nodes increases. Compared to the other 
algorithms, the proposed algorithm performs the best since it 
prioritizes tasks based on deadline requirements and considers 
task size and file size. As the number of fog nodes increases 
from 30 to 90, FRLS achieves 33% to 89% of the DST%. 
As a result, FRLS can provide great QoS for IoT requests. 
CODA provides the second-best results in these respects. 
Figure 8(d) shows that our proposed algorithms outperform 
other algorithms in terms of waiting time. In 30 through 90 
instances of nodes, FRLS minimized waiting times by 17%–
19% less than EDF. For 30 through 90 instances of nodes, 
FRLS minimized waiting time by 3%–14% less than CODA.

This algorithm excels in scalability and flexibility, making 
it well-suited to handle the increasing number of tasks and 

fog nodes found in modern fog computing environments. 
Moreover, fuzzy logic effectively deals with imprecise 
information and uncertainty, resulting in more reliable 
scheduling decisions in uncertain environments. Continuous 
improvement is made possible by reinforcement learning, 
resulting in sustained superior performance. Further, the 
approach enhances system stability and reliability by evenly 
distributing workload among fog nodes. In fog computing 
task scheduling, our algorithm reduces computation overhead 
by making efficient decisions, which makes it superior to 
more complex optimization techniques.

5- 4- The impact of incorporating fuzzy logic 
We tested the proposed algorithm’s performance on an 

increased number of tasks from 100 to 500 and a reduced 
number of fog nodes of 50 in this final experiment. A 
comprehensive evaluation of the algorithm assessed how 
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Fig. 8. Effects of increasing fog nodes. 

 

 

 

 

Fig. 8. Effects of increasing fog nodes. 
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well it scales and adapts when computational demands and 
resources vary. Our primary focus was on comparing the 
Fuzzy Reinforcement Learning Scheduling (FRLS) algorithm 
(with the fuzzy logic step and task prioritization), with the 
Reinforcement Learning (RL) algorithm, which lacks these 
components. The evaluation criteria included several critical 
performance metrics: load balancing, response time, Deadline 
Satisfaction Task percentage (DST%), and waiting time.

This experiment revealed several important findings. 
Figures 9(a) and 9(b) illustrate that the proposed algorithm 
performs significantly better with an increasing number of 
tasks. With this performance improvement, the algorithm 
indicates that it is highly scalable and can handle large volumes 
of tasks efficiently without degrading its performance. 
Scalability is essential for real-world applications where 
tasks and fog nodes can vary dynamically and unpredictably. 
Furthermore, Figure 9(c) shows that the DST% (Percentage 

of Deadline Satisfaction Task) decreases with increasing task 
complexity. As a result of this trend, the complexity of tasks 
tends to require more time and computational resources. 
Despite this, we achieve higher deadline satisfaction rates 
using our FRLS algorithm. A key reason for this algorithm’s 
success is that it meets deadlines, which is a crucial 
requirement for many applications, such as real-time data 
processing.

In this study, fuzzy logic is used to prioritize tasks. 
In dynamic and complex environments, fuzzy logic 
provides a robust framework for coping with uncertainty 
and imprecision. Fuzzy logic can be incorporated into the 
FRLS algorithm to prioritize tasks based on various factors, 
including task urgency, resource availability, and system 
load. By prioritizing tasks, the algorithm manages tasks 
more efficiently and meets deadlines more consistently. 
Further evidence of the benefits of fuzzy logic is provided 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Comparison of FRLS with and without fuzzy logic. (Continued) 
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by a comparison between the FRLS algorithm and the RL 
algorithm. FRLS improves DST% by up to 31% compared 
to RL. A significant improvement in task scheduling and 
resource allocation can be achieved by using fuzzy-based 
prioritization. As shown in Figure 9(d), the proposed 
algorithm reduces waiting time significantly compared to RL. 
In order to improve overall system responsiveness and user 
satisfaction, waiting time must be reduced.

As a result of this experiment, fuzzy logic has important 
advantages for task prioritization in the FRLS algorithm. 
Fuzzy logic plays a critical role in enhancing reinforcement 
learning-based scheduling algorithms’ performance in terms 
of load management, response time, deadline satisfaction, 
and waiting time. Fog computing applications require 
sophisticated and adaptive scheduling solutions because 
of dynamic task loads and resource constraints. This study 
shows that the FRLS algorithm, with its fuzzy logic-based 
prioritization, delivers high levels of efficiency and reliability 
when managing complex and dynamic tasks.

6- Conclusion
Fog systems face challenges in task scheduling due to the 

variability and dynamicity of the resources, as well as the 
increased volatility of customer service requests. The purpose 
of this paper is to propose a fuzzy reinforcement learning task 
scheduling method for improving load, response time, and 
waiting time. Fuzzy inference is used to prioritize tasks. The 
reinforcement learning algorithm is also used to schedule the 
tasks to the fog nodes, which improves load balancing and 
response time.

In this study, we compared FRLS with existing scheduling 
algorithms. Regarding load, response time, waiting time, and 
percentage of deadlines met, the proposed task scheduling 
mechanism outperformed the existing algorithms. It is 
possible to extend the scheduling criteria by adding some 
additional parameters such as costs, energy consumption, 
budget, and resource elasticity. Data privacy and security can 
also be addressed in the future, as well as scheduling.
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Fig. 9. Comparison of FRLS with and without fuzzy logic. 

 

 

 

 

Fig. 9. Comparison of FRLS with and without fuzzy logic.  
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Table A. 1. Summary of symbols.Table A. 1. Summary of symbols. 
 

Symbols Description 

T List of tasks 
F List of fog nodes 
n Number of tasks 
m Number of fog nodes 

s
iT  i-th task’s size 
d

iT  i-th task’s deadline 
in

iT  i-th task’s input file size  
out

iT  i-th task’s output file size  
FS

iT  i-th task’s file size  
PR
jF  j-th fog node’s CPU processing rate 
Del
jF  the j-th fog node’s delay  

ija  Binary decision variables 
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