[1] D. Fernandez-Baca, “Allocating modules to processors in a distributed system,” IEEE Transactions on Software Engineering, 15: pp. 427-1436, 1989.
[2] S. Kardani-Moghadam, F. Khodadadi, and R. Entezari-Maleki, A. Movaghar, “A hybrid genetic algorithm and variable neighborhood search for task scheduling problem in grid environment,” Procedia Engineering, 29: pp. 3808-3814, 2012.
[3] R. Entezari-Maleki, and A. Movaghar, “A genetic-based scheduling algorithm to minimize the makespan of the grid applications,” In: Grid and DistributedComputing Conference, Communications in Computer and Information Science (CCIS), pp. 22-31, 2010.
[4] Z. Mousavinasa, R. Entezari-Maleki, and A. Movaghar, “A bee colony task scheduling algorithm in computational grids,” In: Iternational Conference on Digital Information Processing and Communications (ICDIPC), pp. 200-211, 2011.
[5] B. Radha, and V. Sumathy, “Enhancement of grid scheduling using dynamic error detection and fault tolerance,” International Journal of Computer Applications, 31(7), 2011.
[6] R. Shakerian, S.H. Kamali, M. Hedayati, and M. Alipour, “comparative study of ant colony optimization and particle swarm optimization for grid scheduling,” The Journal of Mathematics and Computer Science, 2 (3): pp. 469-474, 2011.
[7] S.H. Kamali, M. Hedayati, R. Shakerian, and S. Ghasempour, “Using identity-based secret public keys cryptography for heuristic security analyses in grid computing,” The Journal of Mathematics and Computer Science, 3 (4): pp. 357-375, 2011.
[8] J. Nabrzyski, J.M. Schopf, and J. Weglarz, Grid Resource Management, Kluwer Publishing, 2003.
[9] L.R Anikode, and B. Tang, “Integrating scheduling and replication in data grids with performance guarantee,” In: Global Telecommunications Conference, pp. 1-6, 2011.
[10] J. Basney, M. Livny, and P. Mazzanti, “Utilizing widely distributed computational resources efficiently with execution domains,” Comput Phys Commun, 140(1): pp. 246-252, 2001.
[11] J. Zhang, B. Lee, X. Tang, and C. Yeo, “Improving job scheduling performance with parall el access to replicas in data grid environment,” J. Supercomput. 56: pp. 245-269, 2011.
[12] G. Falzon, and M. Li, “Enhancing list scheduling heuristics for dependent job scheduling in grid computing environments,” J. Supercomput. 59: pp. 104-130, 2012.
[13] S.Abdi, and S. Mohamadi, “Two level job scheduling and data replication in data grid,” International Journal of Grid Computing & Applications, 1(1), 2010.
[14] K.Yi, F. Ding, and H. Wang, “Integration of task scheduling with replica placement in data grid for limited disk space of resources,” In: Fifth Annual China Grid Conference, pp.37-42, 2010.
[15] A. Jula, N. Khatoon Naseri, and AM. Rahmani, “Gravitational attraction search with virtual mass GASVM to solve static Grid job scheduling problem,” The Journal of Mathematics and Computer Science, 1 (4): pp. 305-312, 2010.
[16] A.S Izadi, A.R. Sahab, and J. Vahidi, “A new mechanism for traffic reduction the service resource discovery protocol in ad-hoc grid network,” The Journal of Mathematics and Computer Science, 6 (2): pp. 129-138, 2013.
[17] H.M. Wong, V. Bharadwaj, Y. Dantong, and T.G. Robertazzi, “Data intensive grid scheduling: multiple sources with capacity constraints,” In: Proceedings of the 15th International Conference on Parallel and Distributed Computing Systems (PDCS), pp. 163-170, 2004.
[18] K. Li, Z. Tong, D. Liu, T. Tesfazghi, and X. Liao, “PTS-PGATS based approach for data-intensive scheduling in data grids” Frontiers of Computer Science, 5(4): pp. 513-525, 2011.
[19] W. Liu, R. Kettimuthu, B. Li, and I. Foster, “An adaptive strategy for scheduling data-intensive applications in grid environments” In: 17th international conference on telecommunication, pp. 642-649, 2010.
[20] F. Xhafa, and A. Abraham, “Computational models and heuristic methods for grid scheduling problems,” Future Gener Comp Sy. 26: pp. 608-621, 2010.
[21] J.M. Schopf, “Ten actions when grid scheduling the user as a grid scheduler,” Chapter 1, 2004.
[22] R.S. Chang, C.Y. Lin, and C.F. Lin, “An adaptive scoring job scheduling algorithm for grid computing” Inform Sciences. 207: pp. 79-89, 2012.
[23] A. Chaudhuri, D. Jana, and B.B. Bhaumik, “Optimal model for scheduling of computational grid entities” In: India Conference (INDICON), pp. 1-6, 2011.
[24] I. Foster, and K. Ranganathan, “Design and evaluation of dynamic replication strategies for high performance data grids,” In: Proceedings of International Conference on Computing in High Energy and Nuclear Physics, 2001.
[25] [25] I. Foster, and k. Ranganathan, “Identifying dynamic replication strategies for high performance data grids,” In: Proceedings of 3rd IEEE/ACM International Workshop on Grid Computing, pp. 75–86, 2002.
[26] R, Chang, J. Chang, and S. Lin, “Job scheduling and data replication on data grids,” Future Gener Comp Sy. 23: pp. 846-860, 2007.
[27] A. Horri, R. Sepahvand, and G.H. Dastghaibyfard, “A hierarchical scheduling and replication strategy,” International Journal of Computer Science and Network Security, 8, 2008.
[28] N. Mansouri, G.H. Dastghaibyfard, and E. Mansouri, “Combination of data replication and scheduling algorithm for improving data availability in data grids” J. Netw. Comput. Appl. 36: pp. 711-722, 2013.
[29] J. Zhang, B. Lee, X. Tang, and C. Yeo, “Impact of parallel download on job scheduling in data grid environment,” In: Seventh International Conference on Grid and Cooperative Computing, pp. 102-109, 2008.
[30] H.H. Mohamed, and D.J. Epema, “An evaluation of the close-to-files processor and data co-allocation policy in multi-clusters,” In: International Conference on Cluster Computing, IEEE Society Press. IEEE Society Press, pp. 287-298, 2004.
[31] M. Tang, B.S. Lee, X. Tang, and C. Yeo, “The impact of data replication on job scheduling performance in the data grid” Future Gener. Comp. Sy. 22: pp. 254-268, 2006.
[32] S. Vazhkudai, “Enabling the co-allocation of grid data transfers,” in: Proceedings of the Fourth International Workshop on Grid Computing, pp. 44-51, 2003.
[33] S. Kumar, and N. Kumar, “Network and data location aware job scheduling in grid: improvement to GridWay Meta scheduler,” International Journal of Grid and Distributed Computing, 5(1), 2012.
[34] C. Wu, and R. Sun, “An integrated security-aware job scheduling strategy for large-scale computational grids,” Future Generation Computer Systems, 26 (2): pp. 198–206, 2010.
[35] M. Hemamalini, and M.V. Srinath, “State of the art: task scheduling algorithms in a heterogeneous grid computing environment,” Engineering research and management journal, 1(1): pp. 15-21, 2014.
[36] D.I. George Amalarethinam, and P. Muthulakshmi, “An overview of the scheduling policies and algorithms in grid computing,” International Journal of Research and Reviews in Computer Science 2 (2): pp. 280-294, 2011.
[37] D.G Cameron, A.P. Millar, C.C Nicholson, R. Carvajal-Schiaffino, F. Zini, and k. Stockinger, “Optorsim: a simulation tool for scheduling and replica optimization in data grids,” In: International conference for computing in high energy and nuclear physics (CHEP’04), 2004.