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ABSTRACT 

Despite providing robustness, high-gain observers impose a peaking phenomenon, which may cause 

instability, on the system states. In this paper, an adaptive saturation is proposed to attenuate the undesirable 

mentioned phenomenon in high-gain observers. A real-valued and differentiable sigmoid function is 

considered as the saturating element whose parameters (height and slope) are adaptively tuned. The 

corresponding feedback and adaptation laws are derived based on the Lyapunov and LaSalle theorems to 

guarantee the asymptotic stability property for the closed-loop system’s equilibrium point. Compared to the 

conventional high-gain observers which suffer from states’ peaking, it is possible to increase the observer’s 

gain, up to a higher level, under which not only all system states and the adaptive saturation elements remain 

stable, but also robustness is reinforced in the presence of uncertainties and/or non-similarities in the system 

and observer’s dynamics, respectively. Both theoretical analysis and simulation results confirm the efficiency 

of the proposed scheme. 
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1.  INTRODUCTION  

Over the last decades, a variety of laboratory 

experimental setup such as ball and beam and inverted 

pendulum, have been built for some researches in 

nonlinear systems. These systems have attracted 

researchers’ attention because of their inherent 

nonlinearity, open loop instability, under-actuation, etc. 

Therefore, many works have been done on such systems. 

In this article, a ball and wheel system is considered, 

whose schematic overview is depicted in Figure 1. For the 

purpose of controlling the mentioned system, authors of 

[1] measured angular positions by designing sensors. But, 

the angular velocities were measured from the angular 

displacement traveled per unit time. In this article, an 

output feedback is used to prevent such measurements.  

In the ground of some control systems, measuring all 

state variables are neither affordable nor possible. In this 

article, output feedback is applied to estimate state 

variables using a high-gain observer. There are two 

advantages in this regard. First, there is no need to 

measure all state variables. Second, a high-gain observer 

makes it possible to consider unmodeled dynamics 

because of its robustness. The theory of high-gain 

observers has been developed over two last decades. It 

was used for designing robust observers in linear systems 

[2]. Earlier works in high-gain observer design for 

nonlinear systems started in the late 1980s [3]. High-gain 

observers are also developed to estimate system states 

containing time delay [4]. The authors of [5] developed a 

high-gain observer structure in the presence of sampled 

output measurement. Finite time observation method is 

proposed in [6]. 

Khalil et al. have considered a situation where due to 

absence of Lipchitz condition, the observer gain may 

become too large resulting in the instability of closed-loop 

system. This instability is explained by peaking 

phenomenon which means that a sufficiently large gain 

causes impulsive behavior in the response. The effect of 

peaking phenomenon on instability is also considered by 

Sussmann and Kokotovic [7] in high-gain state feedback. 

In the meantime, this phenomenon had been considered in 

the linear systems in [8]; however, the effect of peaking 

on  

nonlinear systems was studied in [9] for the first time, 

where it was suggested that the designed controller should 

be a globally bounded function of the estimated variables 

to be saturated during the peaking period. The work by 

Esfandiari and Khalil [9] brought attention to the peaking 

phenomenon as an important feature of high-gain 

observers. It showed that the interaction of peaking with 

nonlinearities could induce finite scape time. In particular, 

in the lack of global Lipschitz conditions, high-gain 

observers could destabilize the closed-loop system as the 

observer gain is driven sufficiently high. Since, the 

dynamics of high-gain observer are much faster than those 

of the closed loop dynamics; the peaking period is very 

short compared with the simulation period. This 

separation of time scales is used in [9] to prove stability of 

the closed-loop system with output feedback controller. 

Shortly after publishing [9], Teer et al. used its ideas to 

prove the first nonlinear separation principle and develop 

a set of tools for semiglobal stabilization of nonlinear 

systems [14]. In [10], a nonlinear gain is used for having a 

suitable trade-off between higher observer gain in 

transient period to increase convergence rate and decrease 

the effects of uncertainties and/or non-similarities on 

error.  

In this article, an adaptive structure is proposed for 

saturating the control signal, which not only attenuates 

peaking phenomenon to make the closed-loop system 

unstable but also results in a better performance in the 

sense of energy of the error between the actual states and 

their estimations. Moreover, since the system’s dynamical 

model is adopted from [1] in which no disturbance is 

assumed, to examine the proposed method in the presence 

of uncertainties, the observer’s dynamics are simplified, as 

further elaborated, to show robustness feature of the 

proposed high-gain observer. In fact, some parts of 

dynamics are overlooked in the observer’s structure 

though they should contribute in the response. Despite 

simplifying dynamics, deliberate elimination of some 

parts of observer’s dynamics is successfully compensated 

due to robustness provided by high-gain property. 

The rest of this paper is organized as follows. In 

Section 2, the model of the system and its parameters are 

presented. In the first part of Section 3, a control law is 

given using the feedback linearization technique. The 

structure of the high-gain observer is presented in the 

second part of Section 3. The last part of Section 3 is 

dedicated to designing an adaptive saturation structure for 

controlling signal restriction in order to prevent peaking 

phenomenon. Then, it is shown that the proposed method 

results in an asymptotically stable closed-loop system. In 

Section 4, the simulation results concerning cases with 

adaptive and non-adaptive saturation elements are 

presented. Finally the conclusion is made in Section 5. 

2. MODEL DESCRIPTION 

In [1], the dynamical model of the Ball and Wheel 

system is derived using Euler-Lagrange method. Figure 1 
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illustrates the basic features of the system. There are some 

assumptions for this model. First, the coefficient friction is 

large enough for the ball to just roll on the wheel with no 

slip. Second, the ball is always in contact with the wheel. 

The mentioned model reads   below: 

(x) g(x)ux f        (1) 

where 

2

4 1

4

4 1

0

sin
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And the parameters a, b, c, p, q and r are defined   

below: 
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where the state vector reads 
1 1 2 2(t)

T

x       
 and Table I 

shows nominal values of the corresponding parameters. 

3. OBSERVER DESIGN 

In this section, a high-gain observer is proposed with 

an adaptive saturating element in order to attenuate the 

peaking phenomenon. 

A. An Ideal Defferential System 

As considered in [1], the suitable output to make the 

system (1) input-to-state linearizable is as follows: 

1 3y rx cx                       (4) 

It is worth noting that the output (4) is completely 

measurable. The diffeomorphism transformation which 

linearizes the system is 

1 3

2 4

2

1

3

2 1

(x)
(br cq)sinx

(br cq) x cos

f

f

f
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Z T
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(5) 

 

 

where 
fL h  is the Lie derivative of h  with respect to f  

[11]. Calculating det
T

x

 
 
 

determines ( )T x is a 

diffeomorphic transformation in the ranges of 

1 ,
2 2

x
  

  
 

 or  3 ( ),( )z br cq br cq    . The system 

under such transformation is represented through 

following equations: 

1 2

2 3

3 4

4 3

4 (x) (x) u (x,u)f g f

z z

z z

z z

z L h L L h







   

   (6) 

where 4 ( )fL h x  and 
3

g fL L h  are given below: 

 

Fig. 1.  The schematic overview of the ball and wheel 

system, adopted from [1] 

 

TABLE 1. THE PHYSICAL PARAMETERS OF SYSTEM, 

TAKEN FROM [1] 

Parameters Nominal Value 

Moment of Inertia of the Wheel 
wI 3 21.71 10 kg m  

Radius of the Wheel 
wr 0.075m 

Mass of the Ball 
bm 0.042kg 

Radius of the Ball 
br 0.011m 

Motor armature resistance 
aR 0.6558 

Motor Constant 
mK 0.0662N-m/A 
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The system can be linearized as ( ) ( )Z t AZ t and 

may be stabilized by the state feedback in the form of: 

4
4

3
1

1
u(t) (z)

(z)
i i f

ig f

K z L h
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where 
iK are chosen such that all eigenvalues of the 

resulting linear system have negative real parts. The 

closed loop system under (8) is called the ideal 

differentiation system [12]. It determines the limiting 

behavior of the closed loop system under high-gain 

observer whose gain is chosen sufficiently large. 

High-gain Observer 

The normal form (6) is used to design the high-gain 

observer. The observer structure is considered in the 

following form: 

 
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Where the observer gain is selected as  
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And  is a small positive parameter [11]. As high-gain 

observers can tolerate uncertainties, it may allow us to 

wisely simplify the observer dynamics and 

define  0
ˆ ˆ,z u  below: 
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where û is the control signal in the observer dynamics 

i.e.  ˆ ˆ (t)iu z  drives dynamics (9) to the state variables (6). 

Although, some parts of state dynamics, specifically 
4 (z)fL h  are neglected in  0

ˆ ˆ,uz , destructive impacts of 

this discrepancy can be attenuated as further analyzed. If 

error is defined as ˆ ; 1: 4i i iz z z i   and the control 

signals u and û are substituted in the ideal differentiation 

system and the estimation dynamics respectively, then the 

error dynamics can be read in the following form: 
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where
0

ˆ ˆ(z,z) (z) (z)   . Considering the structure of 

(10), one may come up with the following transfer 

function from  to z   
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which tends to zero as 0  , and therefore the error 

dynamics (12) may converge to zero by choosing 

;1 1: 4ih  in such a way that the resulting linear 

dynamics become stable. 

 

Also, as shown in [11], reducing  increases the 

convergence rate of the error dynamics to the order of 

O( ) after its transient period, where O(.) shows the order 

of magnitude defined in [11]; however, during this period, 

due to possible large value of control signal, the 

estimation process may experience a peaking phenomenon 

as described in [9]. To overcome the undesirable effect of 

the mentioned phenomenon, saturation of the control 

signal is suggested in [13]. In the next subsection, a 

method is proposed to construct the saturation element by 

appropriate adaptive laws. It is then shown that the 

 

Fig. 2.  The block diagram of overall system with adaptive 

saturation element. 
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equilibrium of the closed-loop system is asymptotically 

stable. To study the performance of high-gain observer, a 

reference system based on the ideal differentiation system 

(6) is considered.  

Saturation with Adaptive Structure 

 As explained earlier, saturating the control signal (8) 

is needed to prevent peaking phenomenon. Since the 

saturation function has a hard nonlinearity nature, one has 

to analyze the system stability through circle criteria or 

absolute stability theorem. In the meantime, in order to 

derive the corresponding adaptive laws, the 

differentiability of all elements is needed. As a result, to 

alleviate the mentioned difficulties, a sigmoid function is 

used instead as follows: 

1 1
ˆ

21 u
u

e 




 
  

 
               (14) 

As illustrated in Figure 2, the high-gain observer 

estimates the state variables of the system, then u is 

computed based on (8) in which the states’ estimations (9) 

are substituted instead of the state variables below: 

4
4
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Hence, u is saturated by the adaptive saturation 

element and û (its saturated version) is applied to the 

system. To abbreviate notations 4 (x)fL h and 

3 (x)g fL L h are defined and the parameters   and 

 read the height and slope of the saturation element, 

respectively. As,  chosen small to suppress malicious 

effects of ˆ(z,z) , the observer’s gain (10) is large enough 

for the error dynamics to quickly converge to zero and 

therefore fast convergence of the estimation dynamics (9) 

to the system’s state variables (6) is assumed. So, we can 

indeed consider stability properties of the state variables in 

presence of the adaptive saturation element by the 

following Lyapunov candidate: 

2
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where 1 0  , :V D R with 4D R , Z is state vector 

of the transformed system (6), and TP P is the solution 

of the following Lyapunov equation:  
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where TQ Q  may be set to the identity matrix   
4 4I 
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Time derivative of the Lyapunov function is computed as 

follows:  
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If the term 
2
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where
2 0  . An adaptation law for  and a feedback law 

for  may be considered as follows: 
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with the mentioned selections, the time derivative of the 

Lyapunov function gets the following negative semi-

definite form: 

2 4
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(21) 

The dynamical model of the ball and wheel system (1) 

with the specified output in (4) asymptotically converges 

to the ideal differentiation system (6) and (8) using the 
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output feedback structure (9) and the control signal (14) 

saturated by the Sigmoid function whose structure is 

adaptively tuned by (19) in which the estimated states 

ˆ
iz
are substituted instead of the real states iz

. The reason 

maybe stated as follows: 

Proof: Referring to LaSalle’s invariance theorem [11], 

let E be the set of all points in  (a compact positively 

invariant subset of D  where
(x) 0V 

. Let M be the 

largest invariant set in E . Then, every solution starting 

  approaches M as t  . It is easy to show that the 

largest invariant set in this problem is the point 

 ;0;0;0C
 where C  is a bounded value. 

4. RESULTS 

The values of 
1 2 3 4, , ,    are set to 

4; 13.83; 19.66; 20.48 4, respectively. Consequently, 

eigenvalues of error dynamics are placed 

on -1 j0.4151;-1 j0:4133  . The parameters 

1 2 3 4, , ,K K K K  (coefficients of linear parts of u ) are set 

to -4, -13.83,-19.66 and -20.48 respectively. In the 

reminder of this section, we show the better performance 

of the proposed technique compared with fixed (non-

adaptive) saturation. Then, the parameter  is decreased 

until the high-gain observer with fixed saturation element 

tends unstable. All simulations are run with the step size 

of 
410
and initial condition  ˆ 0.01 0 0 0

T
x  .  

A. Performance Results 

In this section, all simulations are performed 

with 0.1   Figure 3 shows
1 1

ˆ,  with unsaturated control 

signal and
1̂ with the adaptive and non-adaptive 

saturation element. Figure 4 compares the energy of the 

error  
2

1 1
0

ˆ
t

dt 



 using the mentioned method 

showing that the proposed technique has a better 

performance in the sense of the mentioned index. In order 

to indicate the superiority of using the adaptive saturation 

element for all three methods and positive effect of using 

adaptive saturation on reducing the peaking phenomenon, 

Figure 5 shows 2

1
0

ˆ
t

J dt



  for each three methods. As 

can be observed, the proposed method has the minimum 

peak among them. 

 

B. Stability Results 

It was found that below of the critical value of 

the 0.065  , the high-gain observer with the non-

adaptive saturation element becomes unstable. It is worth 

noting that through the unstable regime, ball drops from 

the wheel at 0.012t s Figure 6 shows
1 and 

1̂ when the 

adaptive structure for saturating control signal is used at 

the critical value of  . As can be seen, 
1̂ tracks 

1 perfectly and the performance is maintained while other 

methods fail. Control signal is depicted in Figures 7 and 

the variation of the parameters of the adaptive saturation 

element, i.e.  and  are illustrated in Figure 8. 

 

 

Fig. 4. Comparison of the energy of the error among 

three methods. 

 

 

Fig. 3. The red dashed line is 1 , the blue rigid line is 1̂  

when control signal is not restricted, the green and 

black rigid lines are 1̂ when the adaptive and fixed 

(non-adaptive) saturation elements are used, 

respectively. The slope and the height of the fixed 

saturation element are 
1 

and
1 

, respectively.  

The initial value for the adaptive saturation height 

is set to
(0) 100 

. 
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5. CONCLUSION 

The design process of adaptive saturation structure for 

attenuating peaking phenomenon in high-gain observers 

was addressed. The idea was successfully applied to 

controlling a Ball and Wheel system. By utilizing the 

Lyapunov stability theorem, the adaptation laws for tuning 

a smooth function as the saturation element were derived 

in a manner to make the time-derivative of the Lyapunov 

function negative semi-definite, where the asymptotic 

stability could be inferred through the LaSalle’s 

invariance theorem. In high-gain observers, the small 

positive parameter  , whose reduction increases the 

convergence rate of the estimation error dynamics, may be 

viewed as a robustness tuning measure. It is worth noting, 

however, that choosing smaller   may throw the system 

states outside the domain of attraction leading to system 

instability. It was shown that in comparison with the 

conventional scheme of the high-gain observer, i.e., with a 

fixed (non-adaptive) saturation element, the proposed 

scheme may tolerate a smaller  . This means that the 

proposed approach may provide a higher robustness for 

high-gain observers.  

 

 

REFERENCE 

[1] M. Farza, A. Sboui, E. Cherrier, and M. M’Saad, 

“High-gain observer for a class of time-delay 

nonlinear systems,” International Journal of 

Control, vol. 83, no. 2, pp. 273–280, February 

2010. 

[2] M.-T. Ho, Y.-W. Tu, and H.-S. Lin, “Controlling 

of ball and wheel system using full-state feedback 

linearization,” IEEE Control System Magazine, 

October 2009. 

[3]  J. C. Doyle and G. Stein, “Robustness with 

observers,” IEEE Transactions on Automatic 

Control, vol. 24, pp. 607 – 611, August 1979. 

[4] A. Saberi and P. Sannuti, “Observer design for 

loop transfer recovery for uncertain dynamical 

systems,” IEEE Transactions on Automatic 

Control, vol. 35, no. 8, pp. 878–897, August 1990. 

[5] P. Dorl´eans, j. F. Massieu, and T. Ahmed-Ali, 

“High-gain observer design with sampled 

measurements: application to inverted pendulum,” 

 

Fig. 8. Parameters of the adaptive saturation element 

at critical value 

 

 

Fig. 7. The control signal of the system with adaptive 

saturation element. 

 

 

Fig. 6. The red dashed line is
1 , the blue continuous 

line is –when adaptive saturation element is used 

at
1̂ . The initial condition for proposed adaptive 

law is set to (0) 100  . 

 

 

Fig. 5. Comparison of peaking index (J) among three 

methods. 

 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/


Amirkabir International  Journal of Science & Research 

(Modeling, Identification, Simulation & Control)  

(AIJ-MISC)  

S. D. Yazdi Mirmokhalesouni  and M. J. Yazdanpanah 

 

40           Vol. 47 - No. 1 - Spring 2015 

International Journal of Control, vol. 84, no. 4, pp. 

801–807, April 2011. 

[6] Y. Li, X. Xia, and Y. Shen, “A high-gain-based 

global finite-time nonlinear observer,” 

International Journal of Control, vol. 86, no. 5, pp. 

759–767, 2013. 

[7] H. J. Sussmann and P. V. Kokotovic, “Peaking and 

stabilization,” IEEE Conference on Decision and 

Control, vol. 2, pp. 1379 – 1384, December 1989. 

[8] T. Mita, “On zeros and responses of linear 

regulators and linear observers,” IEEE 

Transactions on Automatic Control, vol. 22, no. 3, 

pp. 423–428, June 1977. 

[9] F. Esfandiari and H. K. Khalil, “Output feedback 

stabilization of fully linearized systems,” 

International Journal of Control, vol. 56, no. 3, pp. 

1007–1037, December 1992. 

[10] A. A. Ball and H. K. Khalil, “Analysis of a 

nonlinear high-gain observer in the presence of 

measurement noise,” American Control 

Conference, pp. 2584 – 2589, July 2011. 

[11] H. K. Khalil, Nonlinear Systems. Upper Saddle 

River, New Jersey: Prentice Hall, 2002. 

[12] J. H. Ahrens and H. K. Khalil, “Output feedback 

control using high-gain observers in the presence 

of measurement noise,” American Control 

Conference, vol. 5, pp. 4114 – 4119, July 2004.. 

[13] H. K. Khalil, “High-gain observer in nonlinear 

feedback control,” International Conference on 

Control, Automation and Systems, pp. xlvii – lvii, 

October 2008. 

[14] A. Teel and L. Praly. Global stabilizability and 

observability imply semi-global stabilizability by 

output feedback. Syst. Contr. Lett., 22:313–325, 

1994. 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/

