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ABSTRACT: In this paper, a synchronization controller for chaotic master-slave systems is presented
based on the g-analogue of the Bernstein-Schurer-Stancu operators. q-analogue of the Bernstein-
Schurer-Stancu operators is employed to approximate uncertainties due to their universal approximation
property. The coefficients of polynomials are considered free parameters and will be adjusted by the
adaptive rules extracted from the stability analysis. Additionally, the controller is designed based on the
presumption that the synchronization error rate is unavailable. The controller is applied on a master-
slave system using Duffing-Holmes oscillators. The results are compared with the Radial Basis Function
Neural Networks (RBFNN). Simulation results and comparisons show that the Bernstein-Schurer-
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1- Introduction

Chaos is an interesting phenomenon in many real-
world systems, from engineering sciences to medical fields.
Cryptography and communication systems have witnessed
frequent chaos applications (Aliabadi et al., 2022; Razmara
& Yahyazadeh, 2022). In power systems, (Abdelmalak et al.,
2020; Pinzon & Colomé, 2018; Xu et al., 2018), chaos control
is needed, and chaotic signals’ prediction is essential. Also, in
chemical reactions, chaos occurs (Kol’tsov & Fedotov V K,
2018; Schenkendorf et al., 2019). Various chaotic oscillators
are built using nonlinear electrical circuits (Munmuangsaen
& Srisuchinwong, 2018; Tian et al., 2019; Zhou et al., 2018).
To treat heart issues, cancers, and other diseases, chaos has
also been applied (Borah et al., 2021; Gupta et al., 2021;
Priyanga et al., 2021).

Since  finding two equal  oscillators in practice  is
challenging or impossible, chaos synchronization needs a
controller to overcome uncertainties and chaotic dynamics.
Besides, the property of totally distinctive responses in the
presence of a tiny difference in initial conditions should
be emphasized. Therefore, influential adaptive or robust
controllers are needed for chaos synchronization, and much
research has been reported in this field (Han et al., 2020;
Karami et al., 2021; Li et al., 2001; Mobayen & Ma, 2018;
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Modiri & Mobayen, 2020; Mohammadzadeh et al., 2021; Pal
et al., 2021; Wang et al., 2020; Tai et al., 2019; Zhu et al.,
2020). Neural networks (Han et al., 2020; Tai et al., 2019)
and fuzzy systems (Mohammadzadeh et al., 2021; Zhu et
al., 2020) are playing essential roles in many researches as
universal approximators. However, as discussed (Izadbakhsh,
2017), many tuning parameters exist in fuzzy or neural
controllers.

To solve the issues of neuro-fuzzy systems, less
complicated uncertainty approximators using function
approximation techniques have been presented (Izadbakhsh,
2018; Izadbakhsh, 2021; Izadbakhsh et al., 2011; Izadbakhsh
et al., 2019; Izadbakhsh et al.,, 2021; Izadbakhsh &
Kheirkhahan, 2019; Izadbakhsh & Nikdel, 2021; Izadbakhsh
& Rafiei, 2009). Compared to the neuro-fuzzy systems,
these approximators (Fourier series expansion, Bernstein
polynomials, and differential equations) have less complexity
and accompany fewer adjustable parameters. So, tuning the
uncertainty approximator is more convenient. It should be
noted that the adaptive rules are required for the polynomial
coefficients estimation, which is the main difference between
this paper in comparison with previous related works on
the Bernstein-Schurer-Stancu operators in g-analogue
(Bliyiikyazic1 & Atakut, 2010; Finta & Gupta, 2010).
The proposed approximator can approximate the lumped
uncertainties, ending good disturbance rejection.
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The advantage of the Bernstein-Schurer-Stancu operators
in g-analogue compared to other universal approximators,
such as fuzzy systems and neural networks, are somehow
significant. The first subject is that the regressor vector in
neural networks and fuzzy systems depends on the system
state variables. Thus, the regressor vector’s dimension is
considerably large for systems of higher order containing a
vast amount of state variables. Accordingly, memory usage
is greater in the practical implementation of neuro-fuzzy-
based controllers. Furthermore, the sample time required to
scan the program inside the microcontroller will be more than
usual, causing a delay in the applied control signal and thus
losing the state of being stable. However, the performance
of the g-analogue Bernstein-Schurer-Stancu operators-based
controller is clear of the problem mentioned above since the
structure of the regressor vector is state-free. The 2™ one is
the number of adjustable parameters in the regressor vectors.
In the g-analogue of the Bernstein-Schurer-Stancu operators,
the designer faces fewer adjustable parameters compared to
neuro-fuzzy systems. For instance, (Sheikhan et al., 2013)
proposed an optimization algorithm to gain the RBFNN
optimal parameters to synchronize chaos. (Wang et al., 2020)
investigated a neuro-fuzzy system for chaos synchronization
that suffers from a heavy computational load. The proposed
strategy includes three adaptation rules with five membership
functions for each state variable. Finally, (Boubellouta et
al., 2019) proposed an adaptive fuzzy controller with 18
parameters tuned by trial and error. Hence, to make the
superiority of the Bernstein-Schurer-Stancu operators in
g-analogue clearer, RBFNN has been chosen for comparison
purposes. Besides, these approaches’ responses were assessed
to eliminate the undesirable effect of significant disturbances.

The motivation for utilizing the function approximation-
based method is the notable benefits of these techniques
compared to model-free neuro-fuzzy and model-based
approaches. These benefits are as follows: (1) Unlike model-
based controllers, the function approximation-based methods
are not affected by parameter changes and un-modelled
dynamics; (2) Unlike fuzzy methods or neural networks, the
use of these methods does not require special expertise; (3)
On the contrary to the neuro-fuzzy strategies, the number of
parameters is limited in function approximation approaches;
(4) there is no need for projection algorithms. As a result,
the computational load of the system is significantly reduced
compared to the neural network and fuzzy methods.”

Therefore, in this paper, function approximation is utilized
to solve the issue of uncertainties and external disturbances.
The different sections of the paper are as follows: Section
2 gives the dynamic equation of the Duffing-Holmes
oscillator. Section 3 explains a few necessary concepts about
the g-analogue of the Bernstein-Schurer-Stancu operators.
Section 4 shows the scenario of the controller design
accompanying a stability analysis. The results of numerical
simulations are presented in Section 5. In the end, the most
dominant conclusions are collected in Section 6.
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2- The Duffing-Holmes Dynamic Equation
The master/slave subsystems of the Duffing-Holmes
oscillator are described as follows:

PO =139 0, )= 1,29, )

(1)
_rmlym (t)+rm4 COS(COmt)

y's(t):_%Sys(t)_FSZys(t)_rslys(t)

2
1, cos( ) +u () +d @) @

where y (¢) and y, (¢) show the outputs of the master’s/
slave’s system, respectively. The parameters of the system are
illustrated by 7, . and r,; for i=1,..., 4, which are assumed to
be unknown. The constant parameters @, and @,, , indicate
the frequency parameters. Lastly, () € R and d (t) € ‘R show
the control input and the external disturbances, respectively.
Introduce the error of synchronizationas e(t) =y, (t)—y, ()
. Applying the time derivative for e(¢) and utilizing (1) and
(2), the representation of the master/slave systems can be
illustrated in the error space below.

é(t) = p(1) +u(t) (3)

where

P =1, , O) =1y @) +d ()

_s2.)}s(t)_r;'3y3(t)+rm3yi(t) (4)
+102) () + 14 cos(t ) = 1,4 COS(@),, 1)

shows the nonlinear function of uncertainty. This model
will be utilized for future chaos synchronization controller
design with only the assumption of synchronization error
measurement. In other words, it is presumed that the
synchronization error’s time derivative is inaccessible.

Remark 1: All uncertainties effects have been considered
in equation (4) and are presumed to be unknown, bounded,
and continuous. Hence, the proposed controller is model-free.

3- The Bernstein-Schurer-Stancu Operators in g-analogue
as the function approximator

Let «,f, and p belong to the set of all non-negative
integers N? such that g< ¢ < B then for any f e C[0,p +1]
and g €(0,1), the Bernstein-Schurer-Stancu Operators in
g-analogue is defined by (Agrawal et al., 2013).



A. R. Izadbakhsh, AUT J. Model. Simul., 55(2) (2023) 283-298, DOI: 10.22060/MISCJ.2024.22897.5348

a.p -
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G

Vvt e[0,1]

=

where { } indicates the coefficient of the g-binomial,
being introduced below,

=] [E]!
e —— ©)
k| o[k E-k],!

in which k£ and Z are any integers satisfying 0<k <Z.
The g-factorial is shown by [£ ] ! and is expressed as

' 1 k=0
[],1= (k] [k-1] .1 k=21 ?
in which
(1-¢")
9 ) g #1
[k],=1 (-9 ®)
k qg=1

denotes the g-integer of the number k& € N. Considering
Theorem 1 of (Agrawal et al, 2013), concerning any
function /' eC[0,p +1] and ¢ €(0,1), it has been shown that
S gf(f ,g,1) converges to f () uniformly on the interval
[0,1]. It is not difficult to show that:

SEP(f,q.t)=ALE, ©)

where

= a+1
& V[M ]] i [ma]q]

a+[p+E]q . o
9:{[7+_,+
(-

(10)

is a vector containing adjustable parameters and

gf :|:(1—t)5+5 (l_t)qurE—lt tp+5:|T EERP+E+1 (11)

is the basis functions’ vector. Equation (5) can be
represented as equation (9), a standard format in adaptive
control.

Remark2: The finite term ofthe Bernstein-Schurer-Stancu
operator in g-analogue (5) is utilized for approximations of
functions, and residual terms are assumed as the truncation
error.

4- Proposed approach

Applying the Bernstein-Schurer-Stancu operator in
g-analogue as the uncertainty approximator and using only
synchronization error measurement, an adaptive control
strategy is suggested for chaos synchronization. In other
words, there is no knowledge of €(¢). Toward this aim, we
propose the following control input:

u(t)=—ryp’e(t) — Ky olt) ~ oAt) (12)

where @(t)e R is an auxiliary variable that will be
defined later (in Eq. (26)), k; and K, are positive scalar
constants, ¥ 1is a positive scalar constant chosen large
enough, and ((¢) is an approximation of (¢ ). Substituting
(12) into (3), we have

E@t)=p(t)—pt) -y’ ot)-ret) 13

If some suitable adaption rule can be found in such a
way that ()= ¢(t)+¢,, the uniform boundedness of
e(t) and e(t) is then guaranteed from equation (13). To
this mean, it is assumed that there exists a Bernstein-Schurer-
Stancu operator in g-analogue that approximates g2(¢) as

P =A"g+¢, (14)

where E e RY* is the actual system parameters’
constant vector, N is the number of basis functions, and
g, € R explains the bounded approximation error. Making
use of a similar number of basis functions, we have also:

P =AT¢g (15)

where E € R *" is an estimate of E . Now, substituting
(14) and (15) into (13) obtains
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ét)=AN'G+e,— Ky o)~ K,y e(t) (16)

where E=E-E eRY*" describe the coefficients’
error vector related to the Bernstein-Schurer-Stancu operator
in g-analogue.

4- 1- Analysis of the stability

Before starting the analysis of the stability, we present the
following lemma.

Lemmal: Consider the coupled dynamical system
z,=f(z,,z,,t) and z,=1f,(z,,2,,t). Let the positive
definite function V' (z,,z,,¢) has the following features:

o ||le|2 T ”12”2 <V <a ||z1||2 Ty ”12”2 (17)

V< —Qs ||z1 ||2 — 0 ||z2||2 +¢ (18)

where @ and ¢; are positive scalar constants. Determine
o =max(a;/as,a,/ay) and J, =/8p/a, for i=12.
As aresult, z,(t) and z,(t) will be uniformly bounded for
any initial system states’ z,(0) and z,(0) ; and will converge
exponentially to the closed balls B 50 B 3, respectively,
where B 5, =%tz | < 3, | - Further details can be found
in (Colbaugh et al., 1995). Proof: The direct application
of Corless’s Theorem on global exponential convergence
(Corless, 1990) yields the result.

The main results of the proposed scheme are summarized
in the following Theorem.

Theorem 1: Consider the dynamic equation (3) along with
the control law (12) and the adaptation law (27). By selecting
an appropriate number of g-analogue Bernstein-Schurer-
Stancu operators and applying Lemma 1, it is established that
both ||Z|Fand E|| remain uniformly bounded and converge
exponentially to a closed ball.

Proof: Consider the following positive-definite function.

. ~ 1 22 1 ) 1 2
Vi, ao,A)=—kK,ye"+—€¢"+—K 0
( ) 5 2V > KM o)
+&ee’—la)e'+l[\TQfx
Ky V 2

where Qe RW W *is a4 positive diagonal gain
matrix. Note that V' (e,e,w, E) is radially unbounded and
the positive-definite of the closed-loop system state if ¥ 1is

286

chosen large enough.
The time derivative of (19) is obtained as

V(e,é,m,A) = p(t)é + x,00

oK oo 1L A (20
+r,y%ee +—267 ——aé — AT QA
Ky v
where
K, 1 ,
plt)=—=e@)——a()+e{) Q1)
1 v
Substituting (16) into (20) results in:
Vieé,o,A)=pl)-x7y'o-xy'e + A E+e,)
i,y %6 + K+ 2262
27 1 K_17/ (22)
L AQA
Y

That can be simplified as:

V (eaéawaA) = —p(t)(Kl]/26()+ KZ)/ze)

2 . . Ky, .o
+p(t)e, + i,y eé +K1a>a)+?j/e 23)

_%a-,e- ~AT(QA-E()p(1)

Substituting (21) into (23) gives:

2
L= . K
V(e.é,m,A)=—Kkyén——2ye
K
K Y0 )+ 2262 (24
Ky +pgp+1c1a)a)+’(—}/e (24)
1

—% % — AT (QA—E(1)p(1))

Adding and subtracting K17w2 to the right-hand side of
(24), and some simplification, yields:
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14 (e,é,m, 1~\) = (—Klj/zé + K0+ 2K, y0)0
2
—K,y@’ USRS +pé,, Lo
K v

+ 52 52 AT (QA—0)p(0)

K

By setting

W =-2yw+y%

and

A=Q'E&0)p(t)-cA)

One can write Eq. (25) as follows:

2
. . ~ K
Ve ,oA)=—"2ye’—Kkyw’
K
1

+,0¢950+ﬁé2 L soATA
Ky v

Now, substituting (26) into (28) results in the following

inequality:

. ~ Kz
Vieé o) =—=2ye’ Ky
K

+pe,, —(;/—’f—z)e'2 +2w6 +oAT A
1

2
<227k = =2
K Ky

2
&7 |e| +|pl|e,

2aflé[+o (A A-|A)

Now, introducing

z=[le| || |of]

Equation (29) can be rewritten as follows:

(25)

(26)

27

(28)

29)

(30)

V (@A) <|pley]|~An @2 + A" A-A]) (1)

where
-, .

By o 0

K
' K, 3x3

Q= 0 (-——>) 1 |eR (32)
Ky
0 1 Ky

is positive definite for any large enough chosen y .

Result 1: Assume that a suitable value is selected for N
so that the resulting approximation error is negligible. Hence,
(31) is rewritten as

V(2,A) <2 Q)2 (33)

Consequently, it is confirmed that Z asymptotically
converges to zero, using Barbalat’s Lemma.

Result 2: With the existence of the approximation error
and the o -modification terms, equation (31) may not
conclude its definiteness as the one we have in (33). It is not
hard to show that

|p”ggo‘ _ﬂ’min(Q*) |Z||2 <
2
9 e 1 . (34)
2 @) 2@
ATA-JAL <08 A 09

where we utilized the fact that | p| < 3||z|| , which
indicates the Euclidian norm. Therefore (31) becomes

7|
o |uf o

2 j“min (Q*)

V@ A<= 2] -2 4 (@)

+ZAL' s

Consider the upper/lower bound of (19) as follows:

287



A. R. Izadbakhsh, AUT J. Model. Simul., 55(2) (2023) 283-298, DOI: 10.22060/MISCJ.2024.22897.5348

L @A 42

o i, (37)
14 (Z’A) < Eﬂ’max (Q)"A" +4 max
where
Ky 2
Ky
« 1| K -1
Q== 1 — 38
2| xyy Y (8)
0 - K,
L v J

will be positive definite choosing » large enough.
Lemma 1 now is utilized for (36) and (37). It allows that | z]|
and ||| be uniformly bounded, which also implies uniform
boundedness of € , € , @ and k. Furthermore, exponential
convergence of ||z| and ||E|| to the closed balls le» BSZ ,
respectively, 1s guaranteed where
g ]

m(Q)ﬂmaxQ)J . J s [9

d = max
Amin (Q) o 2o @) 2 70 (@)

and3, =

I 25 |9
\jimm«)) Mmm(Q) 2" I

5- Simulation

The numerical simulations for chaos synchronization
problems of two Duffing-Holmes oscillators mentioned
in equations (1) and (2) with mismatched parameters are
presented in this section. The parameters of the actual values
for simulation are (7,,,,7,,5,%,3, 4, ®,, ) =(=3,0.4,1,2,2)
and (7,75, 7,3,7,4,@0,) =(—1.2,0.3,1.4,3.9,0.5). It
is presumed that there exists a 10% parametric variation
in the system parameters. The master/slave systems’
initial conditions are set to [y, (0) ¥,(0)]=[1 0] and
[v,(0) y,(0)]=[0 0], respectively.

Test 1:

To assess the efficiency of the suggested strategy, this
controller is used for the master/slave system, and the
outcomes are shown. Suppose that k; =k, =1, and y =5
. The first six terms of the Bernstein-Schurer-Stancu operator
in g-analogue are utilized as the regressor vector’s basis
functions for uncertainty compensation. Thus E belongs to
R® . Random values have been set as initial amounts for the
estimated parameters and Q =2x10~°I, which I, denotes a
6%6 identity matrix.

The performance of the suggested g-analogue of the
Bernstein-Schurer-Stancu  operator-based  controller in
comparison with another existing approximator (Izadbakhsh
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et al., 2021) is also presented. According to (Izadbakhsh et
al., 2021), we obtain

ét)=L'c ¢l &)+ () +Fe@t)+Gu(t) (39)
u(t)=—pt)-Ke) (40)
where
:|:y.s(t)_y.m(t):|em2, F=|:g (1)i|ein2><2’
Vi (@)=y, @) @

c=|"|ew, ¢ =[1 0] e®?
1

in which L' =/, IZ]T and K are the gain matrices

used in the observer and controller, respectively. The term
() is an estimation of o(¢) in (4), calculated by RBFNN
in the form of:

(42)

o) =AlE,

where » € RV s the weight vector of RBENN
updated by the adaptive law:

=T,'¢,c[&n)-0,A,) (43)

where 0, is a positive constant, A e RWorD o) i

the matrix of convergence rate, and NV indicates the number
of the basis functions. The term 1 , 1s the activation function
vector used in RBFNN. It should be mentioned that Gaussian
functions are used in the RBFNN in this simulation. Suppose
that the elements of the vector €(¢) are applied at the inputs
of RBFNN. As a result,

,

g, =& & . &y el (44)
t

& =exp(— ”e()5c|| =L2,.,N,+1  (45)

Consider K=[2 3],A =2x10"I,and L'=[2 10°] x10°

. The values of ¢, and 5 are set to
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Table 1. The essential feedback and learning parameters for all approaches

Learning rate matrix

The required states
for function
approximation

The proposed approach

RBFNN

Q=2x10"I, and q

Regressor free

e and ¢ or their

Q=2x10"°I,, ¢,,and &, fori=1,2,...,6

estimation

-2x1072 -1.6x107°
Cl = ) c2 = [}
-45 -3.6

-12x107 -8x107°
c — , c = 46
3{ 2.7 } 4{—1.8} (46)
S ) (U R
109 P o
51:4952:3953:2754:2’55:1’56:0'5 (47)

These values have been obtained by trial and error and not
optimally. Yet, a satisfactory response is achieved using these
values. Also, we suppose that d (¢)=0.2sin(10t). Table 1
outlines the essential feedback and learning parameters for
executing two methods.

Based on the above-mentioned parameter settings, the
responses are shown in Figs. 1 to 6. Fig. 1 presents the
profiles of state variables and influences of both approaches
in chaos synchronization. The responses for the case in which
no control input is applied are also presented in this Figure.
According to this Figure, both approaches perform similarly
in the steady state. The significant issue is that the designer is
involved in more tuning coefficients in RBFNN (such as ¢,
and 5, ) to construct the regressor vector, and finding the best

values for them is difficult. Furthermore, RBFNN needs all
the arguments of the estimated function, while the Bernstein-
Schurer-Stancu operator in g-analogue is free from these
arguments. Therefore, in control of systems with large amounts
of state variables as the arguments of the lumped uncertainty,
the regressor vector in RBFNN is a high-dimension vector.
Therefore, from the viewpoint of computational load and
memory usage, the Bernstein-Schurer-Stancu operator-
based controller in g-analogue is superior to RBFNN. Fig. 2
presents the related synchronization errors. Fig. 3 shows the
state error trajectory. The controller output is shown in Fig.
4. As seen in this Figure, this signal is bounded and smooth.
The performances of the RBFNN and the proposed method in
approximating ¢2(¢ ) are shown in Fig. 5. Finally, the related
approximation errors are presented in Fig. 6.

To compare the results numerically, consider the following
criterion:

1 p40

J =—
4070

y,()=y, @)dt (48)

For the Bernstein-Schurer-Stancu operator in g-analogue,
we will have J, =0.06331, and for the controller based
on uncertainty approximation using RBFNN, we have
J, =0.04684 .
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Fig. 7. The synchronization assessment facing external disturbance in (49)

Test 2:
The following external disturbance is applied to the
system.

d(t)=12sin(5 +5.43) +12sin(3.5 —1.57) (49)

To assess the synchronization performance of the RBFNN
and g-analogue of the Bernstein-Schurer-Stancu operator,
consider Fig. 7 under the same control setting as before. As
can be seen, RBFNN has not received a good response. Fig. 8
presents the related synchronization errors. Fig. 9 shows the
error trajectory in the state space. The output of the controllers
is plotted in Fig. 10. As shown in Fig. 10, these signals are
bounded and smooth, lacking the chattering problem. In the
end, the uncertainty approximation’s performance is shown
in Fig. 11.

To compare the results numerically, consider the
criterion (48). For the Bernstein-Schurer-Stancu operator
in g-analogue, we will have J, =0.06613, and for the
controller based on uncertainty approximation using RBFNN,
we have J, =0.2623 that implies 75% improvement.
Optimization algorithms such as particle swarm optimization
or genetic algorithm can enhance the controller’s accuracy
based on RBFNN. However, this task is time-consuming
and cannot be performed when the system is affected by
external disturbance. This comparison showed that the

proposed Bernstein-Schurer-Stancu operator-based approach
in g-analogue is more user-friendly and can result in more
accurate responses with fewer tuning parameters and less
computational burden.

6- Conclusion

A chaos synchronization controller has been proposed by
applying the Bernstein-Schurer-Stancu operator in g-analogue.
Considering the presumption that the synchronization error
is the only measurable state, the proposed control scheme
has been introduced. Also, it has been assumed that the
chaotic systems’ mathematical models are unknown. Many
former research studies have used the Bernstein-Schurer-
Stancu operators in g-analogue for function approximation.
However, this paper has thoroughly developed a different
application for these operators. The initiation of this main
difference derives from the fact that the function that should
be approximated is considered wholly known in the usual
function approximation problem. In contrast, this function
is uncertain in control systems engineering. The stability
analysis used the Lyapunov theorem to extract the adaption
law and guarantee a satisfactory controller response. The
outcomes are also compared to some different approximators.
In future works, the g-analogue of the Bernstein-Schurer-
Stancu operators can be developed for communication
systems in which chaotic signals are required. Besides, the
suggested controller can be appropriate for cooperative or
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distributed systems control.

Data Availability Statements
The data supporting this study’s findings are available
from the corresponding author upon reasonable request.
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Appendix A
Take a quick look; one may suppose that €(¢) is utilized in (27). Here, it will be demonstrated that

(27) lacks é(¢). Utilizing Eq. (21), it is easy to show that:
A _ 1 K . “1a
A=QE() (=) +—2e(t) +é(t)—0Q A (A1)
v Ky
Integration of (A1) gives

A0 =Q'[eme@di+Q™ | &(z)(%e(z) —%w(z))dz —oQ ' [AWd: (A2

u dv

Hence, W€ Can say:

A@W)=-Q[Ewe(d1+Q e)e)+Q" | am(—%w(z) +K%e(z))dz
} ’ | (A3)
—cQ™" j AQ)d1

Now, consider the below definition:
71t A 71t : 71[ K 1
At)=-0Q " [AWd1-Q " [Ewe(di+ Q™ [EDN(=Ze() -~ w)dr (A4
0 0 0 Kly 4

Consequently, we have

A@)=A@)+Q &1 )e(t)
A@)=Q ' >(—% ot )+ K’f—;ea ) -oQ'AC)-Q 't )e(t)

1

(A5)
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