Modeling Hydrologic Consequences of Land Use and Climate Changes: The Case of Zayanderud Basin

Document Type : Research Article

Authors

Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

The Zayanderud River basin supports vital economic and social functions in Iran, yet faces critical water security challenges. This study employs integrated modeling to investigate how climate and land use changes impact the hydrology of the Zayanderud basin. Using SWAT model, we successfully simulated streamflow, with Nash-Sutcliffe Efficiency values of 0.58-0.71 during calibration and validation periods. Downscaled CMIP5 projections indicate significant 21st-century warming, mainly in winter, and shifting precipitation patterns, influencing water availability. Predicted land use changes show a notable decrease in pasture area by 2060, accompanied by an increase in bare lands, as well as expansion of both rainfed and irrigated agriculture, leading to increased water demand. Through the incorporation of climate and land use projections, the SWAT model forecasts overall long-term increases in streamflow, though with expanding uncertainty reflecting heightened variability. Seasonally, there's an anticipated rise in winter flow and a decrease in summer flow. Detailed analysis of baseflow reveals similar trends, with winter peaks and summer reductions due to altered precipitation. Rising evapotranspiration due to warming and land use changes is also projected. These results underline the elevated risks of both severe low-flow periods and increased flooding. Urgent adaptive strategies are necessary to manage winter flows effectively while conserving water for drier periods to enhance resilience. This study's integration of robust hydrological modeling with climate and land use scenarios provides actionable insights for adapting the Zayanderud basin's water resources to intensifying hydroclimatic extremes under climate change. The methodologies provide transferable frameworks for sustainable water management globally.

Keywords

Main Subjects


  1. Abbaspour, K. C., Vejdani, M., Haghighat, S., & Yang, J. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. MODSIM 2007 international congress on modelling and simulation, modelling and simulation society of Australia and New Zealand,
  2. Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4), 413-430.
  3. Abou Zaki, N., Torabi Haghighi, A., Rossi, P. M., Tourian, M. J., Bakhshaee, A., & Kløve, B. (2020). Evaluating impacts of irrigation and drought on river, groundwater and a terminal wetland in the Zayanderud Basin, Iran. Water, 12(5), 1302.
  4. Aghsaei, H., Dinan, N. M., Moridi, A., Asadolahi, Z., Delavar, M., Fohrer, N., & Wagner, P. D. (2020). Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment, 712, 136449.
  5. Ahmadi, A., Jalali, J., & Mohammadpour, A. (2022). Future runoff assessment under climate change and land-cover alteration scenarios: a case study of the Zayandeh-Roud dam upstream watershed. Hydrology Research, 53(11), 1372-1392.
  6. Amin, M., Shaaban, A., Ercan, A., Ishida, K., Kavvas, M., Chen, Z., & Jang, S. (2017). Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo. Science of the Total Environment, 575, 12-22.
  7. Arnell, N. W. (1999). Climate change and global water resources. Global environmental change, 9, S31-S49.
  8. (2020). Spatial and geographic databases. https://rsgisc.com/
  9. Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., & Riahi, K. (2008). IPCC, 2007: climate change 2007: synthesis report. In: IPCC.
  10. Bohner, M. U., Zeman, J., Smiatek, J., Arnold, A., & Kästner, J. (2014). Nudged-elastic band used to find reaction coordinates based on the free energy. The Journal of Chemical Physics, 140(7), 074109.
  11. Change, I. P. O. C. (2014). Ipcc. Climate change.
  12. de Hipt, F. O., Diekkrueger, B., Steup, G., Yira, Y., Hoffmann, T., & Rode, M. (2018). Modeling the impact of climate change on water resources and soil erosion in a tropical catchment in Burkina Faso, West Africa. Catena, 163, 63-77.
  13. Droogers, P., Bastiaanssen, W. G., Beyazgül, M., Kayam, Y., Kite, G., & Murray-Rust, H. (2000). Distributed agro-hydrological modeling of an irrigation system in western Turkey. Agricultural Water Management, 43(2), 183-202.
  14. (2020). Regional Water Company of Isfahan. Ministry of Power. https://www.esrw.ir/
  15. (2021). Food and agriculture organization of the united nations. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
  16. Faramarzi, M., Abbaspour, K. C., Vaghefi, S. A., Farzaneh, M. R., Zehnder, A. J., Srinivasan, R., & Yang, H. (2013). Modeling impacts of climate change on freshwater availability in Africa. Journal of Hydrology, 480, 85-101.
  17. Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., & Hoell, A. (2008). Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proceedings of the national academy of sciences, 105(32), 11081-11086.
  18. Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A. M., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Science of the Total Environment, 442, 405-419.
  19. Gupta, A. S., Jourdain, N. C., Brown, J. N., & Monselesan, D. (2013). Climate drift in the CMIP5 models. Journal of climate, 26(21), 8597-8615.
  20. (2007). Change, Climate. The physical science basis, 2, 580-595.
  21. Kang, T., Lee, S., Lee, N., & Jin, Y. (2022). Baseflow separation using the digital filter method: Review and sensitivity analysis. Water, 14(3), 485.
  22. Lehner, B., Döll, P., Alcamo, J., Henrichs, T., & Kaspar, F. (2006). Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change, 75, 273-299.
  23. Li, F., Zhang, Y., Xu, Z., Teng, J., Liu, C., Liu, W., & Mpelasoka, F. (2013). The impact of climate change on runoff in the southeastern Tibetan Plateau. Journal of Hydrology, 505, 188-201.
  24. Mahe, G., Paturel, J.-E., Servat, E., Conway, D., & Dezetter, A. (2005). The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. Journal of Hydrology, 300(1-4), 33-43.
  25. Malmir, M., Javadi, S., Moridi, A., Neshat, A., & Razdar, B. (2021). A new combined framework for sustainable development using the DPSIR approach and numerical modeling. Geoscience Frontiers, 12(4), 101169.
  26. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
  27. Narsimlu, B., Gosain, A. K., & Chahar, B. R. (2013). Assessment of future climate change impacts on water resources of Upper Sind River Basin, India using SWAT model. Water resources management, 27, 3647-3662.
  28. Näschen, K., Diekkrüger, B., Evers, M., Höllermann, B., Steinbach, S., & Thonfeld, F. (2019). The impact of land use/land cover change (LULCC) on water resources in a tropical catchment in Tanzania under different climate change scenarios. Sustainability, 11(24), 7083.
  29. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290.
  30. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009.
  31. Nohara, D., Kitoh, A., Hosaka, M., & Oki, T. (2006). Impact of climate change on river discharge projected by multimodel ensemble. Journal of hydrometeorology, 7(5), 1076-1089.
  32. Notter, B., Hurni, H., Wiesmann, U., & Ngana, J. O. (2013). Evaluating watershed service availability under future management and climate change scenarios in the Pangani Basin. Physics and Chemistry of the Earth, Parts A/B/C, 61, 1-11.
  33. (2020). Natural Resources and Watershed management Organization Ministry of Agriculture of Iran. https://frw.ir/
  34. Semenov, M. A., Barrow, E. M., & Lars-Wg, A. (2002). A stochastic weather generator for use in climate impact studies. User Man Herts UK, 1-27.
  35. Shongwe, M. E., Van Oldenborgh, G. J., Van den Hurk, B., & van Aalst, M. (2011). Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. Journal of climate, 24(14), 3718-3733.
  36. Smiatek, G., Kunstmann, H., & Heckl, A. (2014). High-resolution climate change impact analysis on expected future water availability in the Upper Jordan catchment and the Middle East. Journal of hydrometeorology, 15(4), 1517-1531.
  37. Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
  38. Svendsen, M. (2005). Irrigation and river basin management: Options for governance and institutions. CABI.
  39. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., & Lamarque, J.-F. (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31.
  40. Wang, S., Kang, S., Zhang, L., & Li, F. (2008). Modelling hydrological response to different landā€use and climate change scenarios in the Zamu River basin of northwest China. Hydrological Processes: An International Journal, 22(14), 2502-2510.
  41. Williams, A. P., & Funk, C. (2011). A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics, 37, 2417-2435.
  42. Yates, D. N., & Strzepek, K. M. (1998). An assessment of integrated climate change impacts on the agricultural economy of Egypt. Climatic Change, 38(3), 261-287.
  43. Yira, Y., Diekkrüger, B., Steup, G., & Bossa, A. (2016). Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso). Journal of Hydrology, 537, 187-199.
  44. Zareian, M., Eslamian, S., & Safavi, H. (2016). Investigating the effects of sustainability of climate change on the agriculture water consumption in the Zayandeh-Rud River Basin. JWSS-Isfahan University of Technology, 20(75), 113-128.
  45. Zareian, M. J. (2021). Optimal water allocation at different levels of climate change to minimize water shortage in arid regions (Case Study: Zayandeh-Rud River Basin, Iran). Journal of hydro-environment research, 35, 13-30.
  46. Zareian, M. J., Eslamian, S., & Safavi, H. R. (2015). A modified regionalization weighting approach for climate change impact assessment at watershed scale. Theoretical and Applied Climatology, 122, 497-516.