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ABSTRACT: This paper is concerned with state tracking as well as reference tracking of nonlinear 
dynamic systems with process and measurement noise over the Additive White Gaussian Noise (AWGN) 
channel which is subject to transmission noise and transmission power constraints. The AWGN channel 
is a continuous alphabet channel. Therefore, this channel is very suitable for controlling dynamic 
systems over wireless communication links. To address these problems, a novel encoder, decoder, and 
controller are proposed. This method compensates for communication imperfections and maintains real-
time reference tracking at the end of the communication link. For identifying the time of linearization in 
the encoder and decoder, Monte-Carlo approximation is applied. Using the Monte Carlo approximator 
provides a possible approximation of the estimation error in the encoder and decoder at the same time. 
The linearization method is based on the variable (optimal) linearization rate. A proper encoder, decoder, 
and controller for real-time state estimation and reference tracking are proposed. The nonlinear dynamic 
system which was considered in this paper has process and measurement noises. Simulation results 
illustrate the satisfactory state tracking and reference tracking performances of the proposed technique; 
while the variable linearization technique is used.
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1- Introduction
Networked Control Systems (NCS)   have been gaining 

sharp attention from the research community in recent years. 
The elimination of unnecessary wiring, effective reduction 
of system complexity, and wide range of applications are 
some of the advantages of NCSs. Nevertheless, the design 
and development of NCSs are subject to some difficulties, 
such as unavoidable random packet erasure and dropout, 
communication noise, distortion, etc. A simple example of 
NCS is the problem of telepresence and teleoperation of 
Unmanned Aerial Vehicles (UAVs). The wide applications of 
miniature drones, which are in fact a specific form of UAV is 
one of the main research motivations for nonlinear networked 
control systems. The miniature drone is a small unmanned 
aerial vehicle, which is controlled remotely by a distant 
controller/operator. Fig. 1 illustrates a basic block diagram 
for controlling UAVs over communication channels subject 
to imperfections. The imperfect communication channel is 
modeled based on the environment where NCS is deployed. 
Hence, it seems that a proper channel for controlling dynamic 
systems over a communication channel is the AWGN channel; 
this channel is a basic model for satellite communication, 
deep space communication, and particularly when the line of 
sight is strong. 

Reference tracking (teleoperation) and telepresence 

are the two main goals of remotely controlled autonomous 
vehicles. Reference tracking means the tracking of a desired 
trajectory designed by a remote human operator/intelligent 
control unit; telepresence means providing the states of a 
remotely controlled vehicle for a remote human operator/
intelligent control unit in real-time so that remote human 
operator/intelligent control unit can design proper desired 
trajectory for the satisfactory remote reference tracking. In 
the teleoperation of miniature UAVs, remote autonomous 
vehicles should track reference signals generated by a distant 
controller or operator based on the information received 
from remote vehicles via a wireless network. Generated 
control signals should be also communicated to the remote 
vehicle via a wireless communication network. Because the 
generated control signals can be communicated to the remote 
vehicle with high transmission power, effective information 
transmission can be achieved from the distant controller to 
the dynamic system. However, the transmission of sensor 
measurements from the UAV to the distant controller is 
subject to limited transmission power; because miniature 
UAVs are small and equipped with limited-capacity onboard 
batteries. Hence, the communication from a UAV to a distant 
controller is subject to communication imperfection as shown 
in Fig. 1.

The transmission of information via the AWGN channel 
is subject to transmission noise and also the antenna’s power 
constraint. One of the motivations for considering the AWGN 
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channel in this paper is the availability of relatively cheap 
with long communication range FM transceivers [1].

 In the literature, many works addressed the problem of 
controlling linear dynamic systems over communication 
channels [1] - [4]. Most of these papers are concerned with 
the stability and state tracking of linear dynamic systems 
over the AWGN channel. For example, [4] addressed the 
necessary conditions for the stabilization of noiseless 
linear dynamic systems over the AWGN channel. Dynamic 
systems in the real world are nonlinear; hence, in recent 
years many works addressed the problem of controlling 
nonlinear dynamic systems over the AWGN channel [5] - 
[9]. In the aforementioned papers, a number of issues, such 
as estimation, stability, and performance were addressed. 
[5] - [7] studied the problem of stability and state tracking 
of nonlinear systems over the AWGN communication link. 
In [6] a method presented an approximate linear dynamic 
system with the use of a describing function that can replace 
the nonlinear time-invariant system. So, the presented method 
in [6] is applicable only for invariant dynamic systems that 
respond periodically to input signals. What’s more, in this 
paper measurement and process noise are considered.

In [8] the stability condition for the sampled continuous-
time controlled systems is considered. [9] proposes a 
transmission strategy for a communication system where a 
sender sends messages over a memoryless Gaussian point-to-
point channel to a receiver and receives the output feedback 
over another Gaussian channel with known variance and unit 
delay. The sender sequentially transmits the message over 

multiple times till a certain error performance is achieved. 
In this paper, although the linearization technique is used, 
the linearization period is not accurate. In [10] the reference 
tracking of nonlinear dynamic systems over the AWGN 
channel using the fixed rate linearization method is addressed. 

This paper aims to fill the gap in the literature by addressing 
the problems of state tracking as well as reference tracking 
of a quite general form of discrete-time nonlinear dynamic 
systems subject to both process and measurement noises 
over the discrete-time AWGN channel, with application in 
the telepresence and teleoperation of autonomous vehicles. 
This issue has not been studied before. In this paper, we are 
concerned with the block diagram of Fig. 1 described by 
nonlinear dynamic systems and the AWGN channel. Since 
the encoder and decoder are separated, a new technique 
is required to determine the linearization time in both at 
the same time. The innovative method used in this paper 
to address these problems is presenting a proper encoder, 
decoder, and controller for mean square reference tracking at 
the end of the communication link and stability of nonlinear 
dynamic systems when measurements are sent through the 
AWGN channel. The decoder for the case of the linearization 
with the variable rate is the extended Kalman filter with the 
optimal linearization period. To the best of our knowledge, 
the extended Kalman filter with the variable linearization 
period has not been presented in the literature. From a stability 
perspective of switching systems, dwell time is the minimum 
required time, which should be considered before switching 
to the next subsystem. In this paper, the required dwell time 

 

Fig. 1. A nonlinear noisy dynamic system controlled over the AWGN 
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is computed based on sampling time, and the linearization 
time is chosen greater than the dwell time, which is the right 
time for linearization. Therefore, dwell time is the lower limit 
for linearization time. For the upper limit, the mean square 
estimation error in the decoder is used. 

 In this paper, we implement a linearization method, 
which is different from our previously proposed method in 
[12]. The method proposed in [12] and the method proposed 
in this paper are successful provided the encoder and decoder 
linearize the nonlinear dynamic system at the same time. In 
[12] the communication link is the packet erasure channel 
and therefore the encoder after linearizing the nonlinear 
dynamic system sends information bits with a different length 
to inform the decoder of the right time for linearization. 
However, we focus on a different communication link and 
therefore the mechanism proposed in [12] is useless in the 
setup considered in this paper. Also in this paper delay is 
considered less than sampling time and is ignored.

The satisfactory performance of the theoretical 
developments is illustrated via computer simulations by 
applying the proposed encoder, decoder, and controller on 
the unicycle model. 

This paper is organized as follows: Section 1 was the 
introduction. Section 2 presents the system model and 
preliminaries. Section 3 introduces theoretical development. 
Simulation results are given in Section 4 and Section 5 
concludes the paper.

2- System Model and Preliminaries
Throughout certain conventions are used: [ ]E 

 denotes 
the expected value, 


 the absolute value, 


 the Euclidean 

norm and V ′  denotes the transpose of vector/ matrix V . 1A −  
and ( )i Aλ  denote the inverse and eigenvalues of a square 
matrix A , respectively.   and   denote the sets of real 
numbers and natural numbers, respectively. I  is the identity 
matrix and ( )  iX denotes the ith  element of the vector of 
X . 0  denotes the zero vector/matrix. { }0,1,2,3,  N + = 

and +  is the set of non-negative real numbers. State and 
reference tracking of nonlinear dynamic systems over the 
AWGN channel are addressed in this paper for the block 
diagram of Fig. 1. The building blocks of Fig. 1 are described 
below:

2- 1- Communication Channel
The communication channel is a parallel AWGN channel. 

It is described by:

   𝑍̃𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝑊̃𝑊𝑡𝑡                                                    (1) 

 

{𝑋𝑋𝑡𝑡+1 = 𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑊𝑊𝑡𝑡
𝑌𝑌𝑡𝑡 = 𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑉𝑉𝑡𝑡                                     (2) 

 

 {
𝑋̇𝑋(𝑡𝑡) = v(𝑡𝑡) cos(𝜙𝜙(𝑡𝑡))

  𝑌̇𝑌(𝑡𝑡) = v(𝑡𝑡) sin(𝜙𝜙(𝑡𝑡))  
𝜙̇𝜙(𝑡𝑡) = 𝑢𝑢(𝑡𝑡)                    

  (3) 

 

𝑍𝑍𝑡𝑡 = 𝛼𝛼𝑡𝑡𝐾𝐾𝑡𝑡, 𝐾𝐾𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑌̂𝑌𝑡𝑡, 𝑌̂𝑌𝑡𝑡 = 𝐶𝐶𝑋̂𝑋𝑡𝑡                                         (4) 

 

𝐾̃𝐾𝑡𝑡 = 𝛾𝛾𝑡𝑡𝑍𝑍𝑡𝑡                                                                                       (5) 

 

𝛼𝛼𝑡𝑡 = √𝜂𝜂𝑡𝑡𝑊𝑊𝑐𝑐
𝐷𝐷𝑣𝑣

  , 𝜂𝜂𝑡𝑡 = 1 − 𝐷𝐷𝑣𝑣
𝜓𝜓𝑡𝑡

, 𝛾𝛾𝑡𝑡 = √𝐷𝐷𝑣𝑣𝜂𝜂𝑡𝑡
𝑊𝑊𝑐𝑐

                                         (6) 

 

 

𝑋̂𝑋𝑡𝑡+1 = 𝐴𝐴𝑋̂𝑋𝑡𝑡 

+ 1
 𝛼𝛼𝑡𝑡. 𝛾𝛾𝑡𝑡

𝐴𝐴𝜋𝜋𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡 (𝐶𝐶𝜋𝜋𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑐𝑐
𝛼𝛼𝑡𝑡

2)
−1

𝐾̃𝐾𝑡𝑡 

+𝐵𝐵𝑈𝑈𝑡𝑡      𝑋̂𝑋0 = X0 = 𝐸𝐸[𝑋𝑋0]                                                                     (7) 

 

 

 

 (1)

	
where  l

tZ ∈ is the channel input and l
tZ ∈   is the 

channel output. tW  is the channel noise with zero mean 
and diagonal variance cW . In addition to suffering from 
transmission noise, the AWGN channel is subject to limited 
transmission power ( ) ( )i i

t tZ P≤  , where ( )  i
tP is the upper 

limit on the antenna’s power.

2- 2- Encoder
The encoder is a causal function that maps 

( )1 1, ,t t
t tY Z U Z− − → , ( )1

0 1 1, , ,t
tZ Z Z Z−
−= 



 

(available for the encoder via the feedback channel) and 
( )1

0 1 1, , ,t
tU U U U−
−= 

. 

2- 3- Decoder
 The decoder is the extended Kalman filter which will be 

described later.

2- 4- Controller
The controller has the following form with the proper 

gain : t t t tL U L X µ= + . tµ  is chosen so that the tracking 
objective is met. 

2- 5- Plant
The nonlinear noisy dynamic system in this paper is 
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 (2)

	    
where t N +∈  is the time instant, ( ). n

t tF X U ∈  is 
a nonlinear vector function, n

tX ∈  is the system state 
variables vector, l

tY ∈  is the observation signal vector and 
 m

tU ∈ is the control signal.
It is assumed that the initial state 0  X is a Gaussian-

distributed random variable with a mean 0X  and variance 0Q
. tW ∈is the process noise and tV ∈  is the measurement 
noise. Both noises are i.i.d. with normal distribution and zero 
mean with Q and R variances, respectively. 0 , tX W  and tV  
are mutually independent. The nonlinear dynamic model in 
this paper that is used for simulation is the unicycle model, 
which is an abstract model for autonomous vehicles including 
UAVs, described as follows: [11]

   𝑍̃𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝑊̃𝑊𝑡𝑡                                                    (1) 

 

{𝑋𝑋𝑡𝑡+1 = 𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑊𝑊𝑡𝑡
𝑌𝑌𝑡𝑡 = 𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑉𝑉𝑡𝑡                                     (2) 

 

 {
𝑋̇𝑋(𝑡𝑡) = v(𝑡𝑡) cos(𝜙𝜙(𝑡𝑡))

  𝑌̇𝑌(𝑡𝑡) = v(𝑡𝑡) sin(𝜙𝜙(𝑡𝑡))  
𝜙̇𝜙(𝑡𝑡) = 𝑢𝑢(𝑡𝑡)                    

  (3) 

 

𝑍𝑍𝑡𝑡 = 𝛼𝛼𝑡𝑡𝐾𝐾𝑡𝑡, 𝐾𝐾𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑌̂𝑌𝑡𝑡, 𝑌̂𝑌𝑡𝑡 = 𝐶𝐶𝑋̂𝑋𝑡𝑡                                         (4) 

 

𝐾̃𝐾𝑡𝑡 = 𝛾𝛾𝑡𝑡𝑍𝑍𝑡𝑡                                                                                       (5) 

 

𝛼𝛼𝑡𝑡 = √𝜂𝜂𝑡𝑡𝑊𝑊𝑐𝑐
𝐷𝐷𝑣𝑣

  , 𝜂𝜂𝑡𝑡 = 1 − 𝐷𝐷𝑣𝑣
𝜓𝜓𝑡𝑡

, 𝛾𝛾𝑡𝑡 = √𝐷𝐷𝑣𝑣𝜂𝜂𝑡𝑡
𝑊𝑊𝑐𝑐

                                         (6) 

 

 

𝑋̂𝑋𝑡𝑡+1 = 𝐴𝐴𝑋̂𝑋𝑡𝑡 

+ 1
 𝛼𝛼𝑡𝑡. 𝛾𝛾𝑡𝑡

𝐴𝐴𝜋𝜋𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡 (𝐶𝐶𝜋𝜋𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑐𝑐
𝛼𝛼𝑡𝑡

2)
−1

𝐾̃𝐾𝑡𝑡 

+𝐵𝐵𝑈𝑈𝑡𝑡      𝑋̂𝑋0 = X0 = 𝐸𝐸[𝑋𝑋0]                                                                     (7) 

 

 

 

 (3)

	
Here, t  is the continuous time index, ( ) ( ) ( ) tr

x t y t tφ  
denotes the state vector, ( )v t  is the forward velocity and ( )u t  
is the orientation rate. The input is ( ) ( ) ( )v

tr
U t t u t =    and 

the output is ( ) ( ) ( ) ( ) tr
Y t x t y t tφ =   . Throughout, it is 

assumed that the above dynamic is subject to the process 
and measurement noises:  ( )~ 0,tW N Q  and ( )~ 0,tV N R  
respectively.

3- Theoretical Development
In this section, an encoder, decoder, and controller for the 

mean square state tracking as well as the reference tracking 
of noisy nonlinear dynamic systems over the AWGN channel 
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are presented.
The applied methodology is based on the linearization 

of the nonlinear noisy dynamic system at operating points, 
as follows: In the beginning, the nonlinear dynamic is 
linearized at the initial state ( ) ( )0 0 0, , 0X U U = . Then the 
coding scheme presented in [11] is applied to the extracted 
linear model in each sampling time. For each element of the 
measurement vector of the dynamic system (2), we use the 
coding scheme of Section [11]. The linearized model is a good 
approximation of the nonlinear dynamic (2) in the beginning; 
therefore, the mean square estimation error, i.e., 2  ˆ

t tEX X−
decreases as time progresses; because the decoder receives 
more measurements from the dynamic system. But, as time 
progresses, the nonlinear dynamic system should be linearized 
at a new operating point so that the best approximation of 
the nonlinear system is available at all times. In the proposed 
method the largest possible linearization period that results in 
a good approximation of the nonlinear system is chosen by 
the family of the linearized systems. Therefore, the encoder 
and decoder can approximate the mean square estimation 
error using the Monte-Carlo and then the best linearization 
rate is determined. The proposed encoder and decoder rules 
are in fact the extended Kalman filter for state estimation 
over the AWGN channel with the optimal linearization rate.

In [13] the stability is shown by determining the 
linearization period under the dwell time aτ .  tT is shown 
in [14] that the average dwell time aτ , which is a measure 
of the frequency of switches (here the frequency of updating 
linearized system), should be greater than or equal to a critical 

value denoted by *  aτ a defined as follows. *
a aτ τ≥ ; 

1
a

tN
τ =  , *

*
ln

ln lna
hτ

λ λ
=

−
 where  tN is the number of 

switches that occur in the time interval of [ ]0,t  and h , 
 λ and *  λ are defined as follows:
For all linearized models with the system matrix [ ]jA , 

there exist 1 1 λ < and 2 1 λ >  such that the following relations 
hold [14]:

[ ] [ ] 11,  t t
jj jA A h λ< ≤ , where [ ] [ ] 21; t t

jj jA A h λ≥ ≤ . Then, 

[ ] [ ]*
1 1max ,  ,1 ,  ,jh h λ λ λ λ λ= ∈ ∈

is the largest value that satisfies the following inequality 
for some ( )*

00 : 
t

tc X c Xλ> ≤  In order to satisfy the above 
condition, it is sufficient that the linearization period  lT is 
much larger than the system sampling period (e.g., 15  lT T≥ , 
where  T is the sampling period).

3- 1- Encoder, decoder and controller
For the simplicity of the presentation of the encoder, 

decoder, and controller, without loss of generality, suppose 
that the nonlinear dynamic system is controlled over the 
single input - single output discrete time AWGN channel. 
Then: 

3- 1- 1- Encoder Description: 
The innovation generator for each linearized system has 

the following description (  tα is defined shortly):

   𝑍̃𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝑊̃𝑊𝑡𝑡                                                    (1) 

 

{𝑋𝑋𝑡𝑡+1 = 𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑊𝑊𝑡𝑡
𝑌𝑌𝑡𝑡 = 𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑉𝑉𝑡𝑡                                     (2) 

 

 {
𝑋̇𝑋(𝑡𝑡) = v(𝑡𝑡) cos(𝜙𝜙(𝑡𝑡))

  𝑌̇𝑌(𝑡𝑡) = v(𝑡𝑡) sin(𝜙𝜙(𝑡𝑡))  
𝜙̇𝜙(𝑡𝑡) = 𝑢𝑢(𝑡𝑡)                    

  (3) 

 

𝑍𝑍𝑡𝑡 = 𝛼𝛼𝑡𝑡𝐾𝐾𝑡𝑡, 𝐾𝐾𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑌̂𝑌𝑡𝑡, 𝑌̂𝑌𝑡𝑡 = 𝐶𝐶𝑋̂𝑋𝑡𝑡                                         (4) 

 

𝐾̃𝐾𝑡𝑡 = 𝛾𝛾𝑡𝑡𝑍𝑍𝑡𝑡                                                                                       (5) 

 

𝛼𝛼𝑡𝑡 = √𝜂𝜂𝑡𝑡𝑊𝑊𝑐𝑐
𝐷𝐷𝑣𝑣

  , 𝜂𝜂𝑡𝑡 = 1 − 𝐷𝐷𝑣𝑣
𝜓𝜓𝑡𝑡

, 𝛾𝛾𝑡𝑡 = √𝐷𝐷𝑣𝑣𝜂𝜂𝑡𝑡
𝑊𝑊𝑐𝑐

                                         (6) 

 

 

𝑋̂𝑋𝑡𝑡+1 = 𝐴𝐴𝑋̂𝑋𝑡𝑡 

+ 1
 𝛼𝛼𝑡𝑡. 𝛾𝛾𝑡𝑡
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𝐾̃𝐾𝑡𝑡 

+𝐵𝐵𝑈𝑈𝑡𝑡      𝑋̂𝑋0 = X0 = 𝐸𝐸[𝑋𝑋0]                                                                     (7) 
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3- 1- 2- Decoder Description
For each linearized system, the pre-decoding part (i.e., 

tK ) is described by

   𝑍̃𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝑊̃𝑊𝑡𝑡                                                    (1) 

 

{𝑋𝑋𝑡𝑡+1 = 𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑊𝑊𝑡𝑡
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 {
𝑋̇𝑋(𝑡𝑡) = v(𝑡𝑡) cos(𝜙𝜙(𝑡𝑡))

  𝑌̇𝑌(𝑡𝑡) = v(𝑡𝑡) sin(𝜙𝜙(𝑡𝑡))  
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  (3) 
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𝐷𝐷𝑣𝑣

  , 𝜂𝜂𝑡𝑡 = 1 − 𝐷𝐷𝑣𝑣
𝜓𝜓𝑡𝑡

, 𝛾𝛾𝑡𝑡 = √𝐷𝐷𝑣𝑣𝜂𝜂𝑡𝑡
𝑊𝑊𝑐𝑐

                                         (6) 
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where tZ  is the channel output and ,t tα γ +∈  are 
defined as follows:

   𝑍̃𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝑊̃𝑊𝑡𝑡                                                    (1) 
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𝑌𝑌𝑡𝑡 = 𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑉𝑉𝑡𝑡                                     (2) 

 

 {
𝑋̇𝑋(𝑡𝑡) = v(𝑡𝑡) cos(𝜙𝜙(𝑡𝑡))

  𝑌̇𝑌(𝑡𝑡) = v(𝑡𝑡) sin(𝜙𝜙(𝑡𝑡))  
𝜙̇𝜙(𝑡𝑡) = 𝑢𝑢(𝑡𝑡)                    

  (3) 

 

𝑍𝑍𝑡𝑡 = 𝛼𝛼𝑡𝑡𝐾𝐾𝑡𝑡, 𝐾𝐾𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑌̂𝑌𝑡𝑡, 𝑌̂𝑌𝑡𝑡 = 𝐶𝐶𝑋̂𝑋𝑡𝑡                                         (4) 

 

𝐾̃𝐾𝑡𝑡 = 𝛾𝛾𝑡𝑡𝑍𝑍𝑡𝑡                                                                                       (5) 

 

𝛼𝛼𝑡𝑡 = √𝜂𝜂𝑡𝑡𝑊𝑊𝑐𝑐
𝐷𝐷𝑣𝑣

  , 𝜂𝜂𝑡𝑡 = 1 − 𝐷𝐷𝑣𝑣
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 (6)

where 
Í  

.  v t vt
D min Dψ+<

ò
is a given threshold and  tψ  

will be defined shortly. The mean square state estimator, when 
the linearized system is valid, has the following description:

   𝑍̃𝑍𝑡𝑡 = 𝑍𝑍𝑡𝑡 + 𝑊̃𝑊𝑡𝑡                                                    (1) 

 

{𝑋𝑋𝑡𝑡+1 = 𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑊𝑊𝑡𝑡
𝑌𝑌𝑡𝑡 = 𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) + 𝑉𝑉𝑡𝑡                                     (2) 
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  , 𝜂𝜂𝑡𝑡 = 1 − 𝐷𝐷𝑣𝑣
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, 𝛾𝛾𝑡𝑡 = √𝐷𝐷𝑣𝑣𝜂𝜂𝑡𝑡
𝑊𝑊𝑐𝑐

                                         (6) 

 

 

𝑋̂𝑋𝑡𝑡+1 = 𝐴𝐴𝑋̂𝑋𝑡𝑡 

+ 1
 𝛼𝛼𝑡𝑡. 𝛾𝛾𝑡𝑡

𝐴𝐴𝜋𝜋𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡 (𝐶𝐶𝜋𝜋𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑐𝑐
𝛼𝛼𝑡𝑡

2)
−1

𝐾̃𝐾𝑡𝑡 

+𝐵𝐵𝑈𝑈𝑡𝑡      𝑋̂𝑋0 = X0 = 𝐸𝐸[𝑋𝑋0]                                                                     (7) 

 

 

 

 (7)

Where tπ  is the mean square state estimation error given 
by the following Riccati equation:

𝜋𝜋𝑡𝑡+1 =  𝐴𝐴𝜋𝜋𝑡𝑡𝐴𝐴𝑡𝑡𝑡𝑡 − 

𝐴𝐴𝜋𝜋𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡 (𝐶𝐶𝜋𝜋𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑐𝑐
𝛼𝛼𝑡𝑡

2)
−1

𝐶𝐶𝜋𝜋𝑡𝑡𝐴𝐴𝑡𝑡𝑡𝑡  

+𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡        𝜋𝜋0 = 𝑉̅𝑉0                                                                         (8) 

 

𝐸𝐸[𝑍𝑍𝑡𝑡
2] = 𝛼𝛼𝑡𝑡

2𝜓𝜓𝑡𝑡 = 𝜂𝜂𝑡𝑡𝑊𝑊𝑐𝑐
𝐷𝐷𝑣𝑣

𝜓𝜓𝑡𝑡 ≜ 𝑃𝑃𝑡𝑡                                                        (9) 

lim
𝑇𝑇→∞

1
𝑇𝑇 ∑ 𝐸𝐸[‖𝑋𝑋𝑡𝑡‖2

𝐶𝐶𝑡𝑡𝑡𝑡𝐶𝐶 + ‖𝑈𝑈𝑡𝑡‖2
𝐻𝐻] (𝐻𝐻 > 0)𝑇𝑇−1

𝑡𝑡=0                                                   (10) 

 

𝑈𝑈𝑡𝑡 = −∆𝑐𝑐𝑋̂𝑋𝑡𝑡                                                                        (11) 

 

𝑃𝑃∞ = 𝐴𝐴𝑝𝑝∞𝐴𝐴𝑡𝑡𝑡𝑡 − 

𝐴𝐴𝑡𝑡𝑡𝑡𝑝𝑝∞𝐵𝐵(𝐻𝐻 + 𝐵𝐵𝑡𝑡𝑡𝑡𝑃𝑃∞𝐵𝐵)−1𝐵𝐵𝑡𝑡𝑟𝑟𝑃𝑃∞𝐴𝐴 + 𝐶𝐶𝑡𝑡𝑡𝑡𝐶𝐶                                      (12) 

 

 𝑈𝑈𝑡𝑡 = −𝐿𝐿𝑡𝑡𝑋̂̃𝑋𝑡𝑡 + 𝜇𝜇𝑡𝑡                                                                (13) 

 

𝜇𝜇𝑡𝑡 = −𝐵𝐵[𝑗𝑗]
+ ((𝐴𝐴[𝑗𝑗] − 𝐵𝐵[𝑗𝑗]𝐿𝐿[𝑗𝑗])(𝑅𝑅𝑡𝑡 − 𝑋𝑋[𝑗𝑗]) 

+𝐵𝐵[𝑗𝑗]𝐿𝐿[𝑗𝑗]𝑅𝑅𝑡𝑡 − 𝑅𝑅𝑡𝑡+1 + 𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡))                                          (14) 

 

 (8)

Then,  tr tr
t tC C DRDψ π +

 and ˆ
t t tY K CX= +  . It has 

been shown in [11] that using this coding
the scheme, we have real-time reliable communication up 

to the distortion level vD , as follows: 
2 2  ,t t t t vEY Y EK K D t +− = − = ∀ ∈   . To achieve this 
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real-time reliable communication by allocating the minimum 
channel capacity (bandwidth), we should tune the antenna’s 
power as follows:

𝜋𝜋𝑡𝑡+1 =  𝐴𝐴𝜋𝜋𝑡𝑡𝐴𝐴𝑡𝑡𝑡𝑡 − 
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𝜓𝜓𝑡𝑡 ≜ 𝑃𝑃𝑡𝑡                                                        (9) 
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 (9)

3- 1- 3- Controller Description
With the assumptions that the pair ( ,trC C A ) is detectable 
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Where [ ]jB +  is the pseudo-inverse of the matrix [ ]jB .

3- 2- Method for variable rate linearization 
In the variable linearization case, the encoder and decoder 

should agree on the time of linearization.  Linearizing 

nonlinear dynamics in each step around the current operating 
point is used in this paper. Following that, in the beginning, 
the nonlinear dynamic system (2) is linearized around

( )0 0 0 ( . ) 0X U U = . Then for each linearized step, the proposed 
method in [11] is applied to estimate the states of the linear 
system. Since in the initial moments of linearization, linear 
dynamics are a good approximation of non-linear dynamics, 
the mean square of the estimation error decreases with 
increasing time due to receiving more measured information 
from the output. Therefore, to maintain this decreasing trend 
of the mean square of the estimation error, it is necessary to 
continuously linearize the nonlinear dynamic. To determine 
the right time for the linearization of the nonlinear dynamic 
system at a new operating point, i.e., ( )ˆ .t tX U , we look at 
the trend of 2ˆ

t tEX X− . In each linearized zone, the mean 
square estimation error has either an increasing or decreasing 
trend as time progresses depending on the value of the mean 
square estimation error at the beginning of the linearization 
which is the steady state value for the linearized system. For 
example, if at the beginning of the linearization, the mean 
square estimation error is smaller than its steady state value, 
the mean square estimation error in this linearized zone has 
an increasing trend. Now, when the linearized system is no 
longer a good approximation for the nonlinear system, the 
trend for the mean square estimation error is reversed; and 
this is the right time for updating the linearized system. To 
implement this coding scheme, both the encoder and decoder 
should observe the trend of the mean square estimation error 
to linearize the nonlinear dynamic system at the new operating 
point. Note that the encoder and decoder in the proposed 
method reconstruct the mean square estimation error using 
the Monte Carlo approximation method by the knowledge of 

ˆ
tX∆  communicated to the encoder by the feedback channel. 

This method works as follows:
1- At the sample time   0t = , the encoder and decoder 

choose M  realization for ( )0 0 0 ~ ,X N X Q  and Compute 

[ ]i
0 0

1

ˆ 1 M

i

X X
M −

= ∑ , and then

2- They compute [ ] [ ]( )1
0 0 0 0 0 ˆ1 ˆ  ME X X X X

M
= − − , where 

[ ]
0
iX  is the  ith realization of 0X , and then
3- They compute ( )0 0 0

trtrace E Eπ = . 
4- At the time instant  1 t = , using the dynamic system 

model (2) for the nonlinear dynamic system and M realization 
obtained for 0X  available from the previous time instant as 
well as M realization for the process noise, the encoder, and 
decoder compute M  realization for 1X  and compute 1X̂
, and then

5- They compute [ ] [ ]( )1
1 1 1 1 1 ˆ1 ˆ  ME X X X X

M
= − − , 

where [ ]
1  iX the ith  realization of 1X , and then

6- They compute ( )1 1 1 trtrace E Eπ = , and then this 
procedure is repeated:

7- Go to the step 4 for the next time step ( ) 1 t + . 
For the other time instances, tπ  is reconstructed at the 

encoder and decoder. By observing the increasing or decreasing 
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trend of ( )ttrace π  encoder and decoder determine the right 
time for updating the linearized system. As soon as the trend 
of ( )ttrace π  changes, the encoder and decoder notice that 
this is the right time to update the linearized model. So, in this 
way, the variable (optimal) linearization rate is determined.

4- Simulation Results
In this section, for illustration, we set 

( ) ( ) ( )0 0 00.01, ~ 1,1 , ~ 1,1 , ~ 1,1T x N y N Nφ= , and apply the 
proposed encoder, decoder, and controller to the autonomous 
vehicle dynamic (3). The discrete-time equivalent model is 
(15), where T is the sampling period.

𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = {
x𝑡𝑡+1 = x𝑡𝑡 + Tv𝑡𝑡 cos(𝜙𝜙𝑡𝑡)             
y𝑡𝑡+1 = y𝑡𝑡 + Tv𝑡𝑡 sin(𝜙𝜙𝑡𝑡)              

 𝜙𝜙𝑡𝑡+1 = 𝜙𝜙𝑡𝑡 + T𝑢𝑢(𝑡𝑡)                                             
                                                             (15) 

𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = 𝑋𝑋𝑡𝑡 

 

(16) 

𝐴𝐴 = [
1 0 −𝑇𝑇v[𝑗𝑗] sin(𝜙𝜙[𝑗𝑗])
0 1 𝑇𝑇v[𝑗𝑗] cos(𝜙𝜙[𝑗𝑗])
0 0 1

]                                                             (17) 

𝐵𝐵 = [
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜙𝜙[𝑗𝑗]) 0
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙[𝑗𝑗]) 0

0 𝑇𝑇
]                                                             (18) 

 

[𝑟𝑟𝑡𝑡
[𝑥𝑥] 𝑟𝑟𝑡𝑡

[𝑦𝑦] 𝑟𝑟𝑡𝑡
[𝝓𝝓]]

𝑡𝑡𝑡𝑡
= 

[5 + 2 cos(3𝑇𝑇𝑇𝑇)  3 + 2 sin(3𝑇𝑇𝑇𝑇)  arctan (𝑟𝑟𝑡𝑡
[𝑦𝑦]−𝑦̂𝑦𝑡𝑡−1

𝑟𝑟𝑡𝑡
[𝑥𝑥]−𝑥̂𝑥𝑡𝑡−1

)]
𝑡𝑡𝑡𝑡

                               (19) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑥𝑥𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝑥𝑥])

2
+ (𝑦𝑦𝑡𝑡 − 𝑟𝑟𝑡𝑡

[𝑦𝑦])
2

+ (𝜙𝜙𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝜑𝜑])

2𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

𝑡𝑡=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

                              (20) 

 

𝑐𝑐𝑐𝑐𝑐𝑐 = [
0.00036 −0.0004 0.0000

−0.00045 0.0004 0.0000
0.0000 −0.0000 0.0000

] 

 

 (15)

 Denoting the function (15) as F  with the input vector
 tU  in (2), and for ( ),t tG X U  we have:𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = {

x𝑡𝑡+1 = x𝑡𝑡 + Tv𝑡𝑡 cos(𝜙𝜙𝑡𝑡)             
y𝑡𝑡+1 = y𝑡𝑡 + Tv𝑡𝑡 sin(𝜙𝜙𝑡𝑡)              

 𝜙𝜙𝑡𝑡+1 = 𝜙𝜙𝑡𝑡 + T𝑢𝑢(𝑡𝑡)                                             
                                                             (15) 

𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = 𝑋𝑋𝑡𝑡 

 

(16) 

𝐴𝐴 = [
1 0 −𝑇𝑇v[𝑗𝑗] sin(𝜙𝜙[𝑗𝑗])
0 1 𝑇𝑇v[𝑗𝑗] cos(𝜙𝜙[𝑗𝑗])
0 0 1

]                                                             (17) 

𝐵𝐵 = [
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜙𝜙[𝑗𝑗]) 0
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙[𝑗𝑗]) 0

0 𝑇𝑇
]                                                             (18) 

 

[𝑟𝑟𝑡𝑡
[𝑥𝑥] 𝑟𝑟𝑡𝑡

[𝑦𝑦] 𝑟𝑟𝑡𝑡
[𝝓𝝓]]

𝑡𝑡𝑡𝑡
= 

[5 + 2 cos(3𝑇𝑇𝑇𝑇)  3 + 2 sin(3𝑇𝑇𝑇𝑇)  arctan (𝑟𝑟𝑡𝑡
[𝑦𝑦]−𝑦̂𝑦𝑡𝑡−1

𝑟𝑟𝑡𝑡
[𝑥𝑥]−𝑥̂𝑥𝑡𝑡−1

)]
𝑡𝑡𝑡𝑡

                               (19) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑥𝑥𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝑥𝑥])

2
+ (𝑦𝑦𝑡𝑡 − 𝑟𝑟𝑡𝑡

[𝑦𝑦])
2

+ (𝜙𝜙𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝜑𝜑])

2𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

𝑡𝑡=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

                              (20) 

 

𝑐𝑐𝑐𝑐𝑐𝑐 = [
0.00036 −0.0004 0.0000

−0.00045 0.0004 0.0000
0.0000 −0.0000 0.0000

] 

 

 (16)

Note also that for this model, the state vector is 
[ ]  tr

t t t tX x y φ= . The discrete-time equivalent dynamic (15) 
is obtained by applying a control signal to the dynamic (3) 
using Z.O.H and sampling its outputs using a sampler.

Subsequently, the state space representation of the family 
of the discrete-time equivalent linearized systems, for the
 jth  linearization have the following state space matrices:

𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = {
x𝑡𝑡+1 = x𝑡𝑡 + Tv𝑡𝑡 cos(𝜙𝜙𝑡𝑡)             
y𝑡𝑡+1 = y𝑡𝑡 + Tv𝑡𝑡 sin(𝜙𝜙𝑡𝑡)              

 𝜙𝜙𝑡𝑡+1 = 𝜙𝜙𝑡𝑡 + T𝑢𝑢(𝑡𝑡)                                             
                                                             (15) 

𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = 𝑋𝑋𝑡𝑡 

 

(16) 

𝐴𝐴 = [
1 0 −𝑇𝑇v[𝑗𝑗] sin(𝜙𝜙[𝑗𝑗])
0 1 𝑇𝑇v[𝑗𝑗] cos(𝜙𝜙[𝑗𝑗])
0 0 1

]                                                             (17) 

𝐵𝐵 = [
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜙𝜙[𝑗𝑗]) 0
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙[𝑗𝑗]) 0

0 𝑇𝑇
]                                                             (18) 

 

[𝑟𝑟𝑡𝑡
[𝑥𝑥] 𝑟𝑟𝑡𝑡

[𝑦𝑦] 𝑟𝑟𝑡𝑡
[𝝓𝝓]]

𝑡𝑡𝑡𝑡
= 

[5 + 2 cos(3𝑇𝑇𝑇𝑇)  3 + 2 sin(3𝑇𝑇𝑇𝑇)  arctan (𝑟𝑟𝑡𝑡
[𝑦𝑦]−𝑦̂𝑦𝑡𝑡−1

𝑟𝑟𝑡𝑡
[𝑥𝑥]−𝑥̂𝑥𝑡𝑡−1

)]
𝑡𝑡𝑡𝑡

                               (19) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑥𝑥𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝑥𝑥])

2
+ (𝑦𝑦𝑡𝑡 − 𝑟𝑟𝑡𝑡

[𝑦𝑦])
2

+ (𝜙𝜙𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝜑𝜑])

2𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

𝑡𝑡=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

                              (20) 

 

𝑐𝑐𝑐𝑐𝑐𝑐 = [
0.00036 −0.0004 0.0000

−0.00045 0.0004 0.0000
0.0000 −0.0000 0.0000

] 

 

 (17)

𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = {
x𝑡𝑡+1 = x𝑡𝑡 + Tv𝑡𝑡 cos(𝜙𝜙𝑡𝑡)             
y𝑡𝑡+1 = y𝑡𝑡 + Tv𝑡𝑡 sin(𝜙𝜙𝑡𝑡)              

 𝜙𝜙𝑡𝑡+1 = 𝜙𝜙𝑡𝑡 + T𝑢𝑢(𝑡𝑡)                                             
                                                             (15) 

𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = 𝑋𝑋𝑡𝑡 

 

(16) 

𝐴𝐴 = [
1 0 −𝑇𝑇v[𝑗𝑗] sin(𝜙𝜙[𝑗𝑗])
0 1 𝑇𝑇v[𝑗𝑗] cos(𝜙𝜙[𝑗𝑗])
0 0 1

]                                                             (17) 

𝐵𝐵 = [
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜙𝜙[𝑗𝑗]) 0
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙[𝑗𝑗]) 0

0 𝑇𝑇
]                                                             (18) 

 

[𝑟𝑟𝑡𝑡
[𝑥𝑥] 𝑟𝑟𝑡𝑡

[𝑦𝑦] 𝑟𝑟𝑡𝑡
[𝝓𝝓]]

𝑡𝑡𝑡𝑡
= 

[5 + 2 cos(3𝑇𝑇𝑇𝑇)  3 + 2 sin(3𝑇𝑇𝑇𝑇)  arctan (𝑟𝑟𝑡𝑡
[𝑦𝑦]−𝑦̂𝑦𝑡𝑡−1

𝑟𝑟𝑡𝑡
[𝑥𝑥]−𝑥̂𝑥𝑡𝑡−1

)]
𝑡𝑡𝑡𝑡

                               (19) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑥𝑥𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝑥𝑥])

2
+ (𝑦𝑦𝑡𝑡 − 𝑟𝑟𝑡𝑡

[𝑦𝑦])
2

+ (𝜙𝜙𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝜑𝜑])

2𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

𝑡𝑡=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

                              (20) 

 

𝑐𝑐𝑐𝑐𝑐𝑐 = [
0.00036 −0.0004 0.0000

−0.00045 0.0004 0.0000
0.0000 −0.0000 0.0000

] 

 

 (18)

Now, for tracking a circle with the center located at (5, 3) 
and a radius of 2, by the autonomous vehicle, we need to choose 
the elements of the reference vector [ ] [ ] [ ]  

trx y
t t t tR r r r φ =  

as 
follows [10]:

𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = {
x𝑡𝑡+1 = x𝑡𝑡 + Tv𝑡𝑡 cos(𝜙𝜙𝑡𝑡)             
y𝑡𝑡+1 = y𝑡𝑡 + Tv𝑡𝑡 sin(𝜙𝜙𝑡𝑡)              

 𝜙𝜙𝑡𝑡+1 = 𝜙𝜙𝑡𝑡 + T𝑢𝑢(𝑡𝑡)                                             
                                                             (15) 

𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = 𝑋𝑋𝑡𝑡 

 

(16) 

𝐴𝐴 = [
1 0 −𝑇𝑇v[𝑗𝑗] sin(𝜙𝜙[𝑗𝑗])
0 1 𝑇𝑇v[𝑗𝑗] cos(𝜙𝜙[𝑗𝑗])
0 0 1

]                                                             (17) 

𝐵𝐵 = [
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜙𝜙[𝑗𝑗]) 0
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙[𝑗𝑗]) 0

0 𝑇𝑇
]                                                             (18) 

 

[𝑟𝑟𝑡𝑡
[𝑥𝑥] 𝑟𝑟𝑡𝑡

[𝑦𝑦] 𝑟𝑟𝑡𝑡
[𝝓𝝓]]

𝑡𝑡𝑡𝑡
= 

[5 + 2 cos(3𝑇𝑇𝑇𝑇)  3 + 2 sin(3𝑇𝑇𝑇𝑇)  arctan (𝑟𝑟𝑡𝑡
[𝑦𝑦]−𝑦̂𝑦𝑡𝑡−1

𝑟𝑟𝑡𝑡
[𝑥𝑥]−𝑥̂𝑥𝑡𝑡−1

)]
𝑡𝑡𝑡𝑡

                               (19) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑥𝑥𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝑥𝑥])

2
+ (𝑦𝑦𝑡𝑡 − 𝑟𝑟𝑡𝑡

[𝑦𝑦])
2

+ (𝜙𝜙𝑡𝑡 − 𝑟𝑟𝑡𝑡
[𝜑𝜑])

2𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

𝑡𝑡=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

                              (20) 

 

𝑐𝑐𝑐𝑐𝑐𝑐 = [
0.00036 −0.0004 0.0000

−0.00045 0.0004 0.0000
0.0000 −0.0000 0.0000

] 

 

 (19)

Fig. 2- Fig.5 illustrates the performance of theoretical 
developments and tracking. Fig.5 illustrates that using the 
proposed method, tracking is achieved eventually. Also, 
Fig.6 shows that using the proposed method, tracking 
faster reference signals is possible. Fig.7 corresponds to the 
proposed technique in [11] with the fixed rate linearization 
period. Comparing the simulation result of Fig.6 with that of 
Fig.7 illustrates that our proposed method has much better 
performance. Comparing Fig.6 and Fig.7 clearly shows that 
the method presented in [9], unlike the technique proposed in 

 

Fig. 2. 𝑥𝑥𝑡𝑡 and 𝑟𝑟𝑡𝑡
[𝑥𝑥] for the variable rate linearization method  

when 𝑊𝑊𝑡𝑡, 𝑉𝑉𝑡𝑡~𝑁𝑁(0, 0)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. xt  and rt
[x]  for the variable rate linearization method when ( ), ~ 0, 0  t tW V N
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Fig. 3. 𝑦𝑦𝑡𝑡 and 𝑟𝑟𝑡𝑡
[𝑦𝑦] for the variable rate linearization method  

when 𝑊𝑊𝑡𝑡, 𝑉𝑉𝑡𝑡~𝑁𝑁(0, 0) an 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. yt  and rt
[y]  for the variable rate linearization method when ( ), ~ 0, 0  t tW V N

 

Fig. 4. 𝜙𝜙𝑡𝑡 and 𝑟𝑟𝑡𝑡
[𝜙𝜙] for the variable rate linearization method  

when 𝑊𝑊𝑡𝑡, 𝑉𝑉𝑡𝑡~𝑁𝑁(0, 0)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. ϕt  and rt
[ϕ]  for the variable rate linearization method when ( ), ~ 0, 0  t tW V N

 

Fig. 5. 𝑥𝑥𝑡𝑡 − 𝑦𝑦𝑡𝑡- time diagram for the variable rate linearization period 
when 𝑾𝑾𝒕𝒕, 𝑽𝑽𝒕𝒕~𝑵𝑵(𝟎𝟎, 𝟎𝟎)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. xt-yt- time diagram for the variable rate linearization period when ( ), ~ 0, 0  t tW V N
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this article, loses its tracking ability when faced with a fast 
reference signal.

Now to quantify the performance of the proposed method, 
we define the Root Sum Square Error (RSSE)

criterion as follows:

𝐹𝐹(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = {
x𝑡𝑡+1 = x𝑡𝑡 + Tv𝑡𝑡 cos(𝜙𝜙𝑡𝑡)             
y𝑡𝑡+1 = y𝑡𝑡 + Tv𝑡𝑡 sin(𝜙𝜙𝑡𝑡)              

 𝜙𝜙𝑡𝑡+1 = 𝜙𝜙𝑡𝑡 + T𝑢𝑢(𝑡𝑡)                                             
                                                             (15) 

𝐺𝐺(𝑋𝑋𝑡𝑡, 𝑈𝑈𝑡𝑡) = 𝑋𝑋𝑡𝑡 

 

(16) 

𝐴𝐴 = [
1 0 −𝑇𝑇v[𝑗𝑗] sin(𝜙𝜙[𝑗𝑗])
0 1 𝑇𝑇v[𝑗𝑗] cos(𝜙𝜙[𝑗𝑗])
0 0 1
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Fig. 6. 𝑥𝑥𝑡𝑡 − 𝑦𝑦𝑡𝑡- time diagram for the variable rate linearization period 
when 𝑾𝑾𝒕𝒕, 𝑽𝑽𝒕𝒕~𝑵𝑵(𝟎𝟎, 𝟎𝟎)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. xt-yt- time diagram for the variable rate linearization period when ( ), ~ 0, 0  t tW V N

 

Fig. 7. 𝑥𝑥𝑡𝑡 − 𝑦𝑦𝑡𝑡- time diagram for the fixed rate linearization period 
when 𝑾𝑾𝒕𝒕, 𝑽𝑽𝒕𝒕~𝑵𝑵(𝟎𝟎, 𝟎𝟎)  

 

 

 

 

 

 

 

 

 

Fig. 7. xt-yt- time diagram for the fixed rate linearization period when ( ), ~ 0, 0  t tW V N
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5- Conclusion
In this paper, a new method for state tracking as well as 

reference tracking of noisy nonlinear dynamic systems over 
the AWGN channel with applications in the telepresence and 
teleoperation of autonomous vehicles was presented. The 
proposed method was based on a linearization technique with 
a variable rate. A proper encoder, decoder, and controller for 
tracking the state trajectory of nonlinear dynamic systems at 
the end of the communication link as well as reference tracking 
over the AWGN channel were presented. The satisfactory 
performances of the proposed method were illustrated by 
implementing this method on the unicycle model, which is 
an abstract model for representing the autonomous vehicle 
dynamic. One of the major contributions of this paper is the 
presentation of an extended version of the extended Kalman 
filter with the variable linearization rate over the AWGN 
channel.
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