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ABSTRACT: In this paper, a new application of State-Dependent Riccati Equation (SDRE) is
proposed as a framework to design a robust controller for the system of multiple cooperative arms with
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parametric uncertainties. The cooperative arms are tracking a trajectory holding a mass. Transforming
the complicated robust control design to a parallel auxiliary sub-optimal design leads to a considerable
facility in design and extensive applicability specifically for complex systems. An auxiliary system
with a modified performance criterion is first introduced. The modification in performance criterion

is through the incorporation of uncertainties in upper bounds obtained from stability proof. Uncertain
State- Dependent Coefficient (USDC) regarding joints’ friction for the robotic system is utilized
to obtain the auxiliary USDC structure. Two control policies are considered: independent control of

Keywords:
Robust Control

. . . . Cooperative Manipulators
each arm and simultaneous control of overall multiple manipulators. The sub-optimal problem for the P P

auxiliary system is solved. The achieved optimal control input for the auxiliary system is the robust State-Dependent Riccati Equation
input for the equivalent uncertain system. Simulation results in both policies verify the effectiveness and ~ Load Carrying
satisfactory robustness (30%) of the proposed scheme in load carrying. Moreover, considering the same  Dynamic Load Carrying Capacity
(DLCC)

Mixed SDRE-SMC (MiSS)

trajectory, payload, and design parameters controlling the overall robotic system is superior with respect
to separately controlling each arm. Finally, a comparison study is presented for the proposed scheme and
Mixed SDRE-SMC (MiSS) for the overall robotic system carrying the same payload through simulation

results.

1- Introduction

Hamilton-Jacobi-Bellman (HJB) equation arises in
optimal control design, due to applying the principle of
optimality to the nonlinear dynamic programming [I-
2]. As mentioned in [3], due to the extreme complexity of
analytically solving HIB, especially for complicated systems,
some techniques have been proposed to approximately solve
the problem such as power series expansion [4-5], Adomian
decomposition [6], reinforcement learning [7-8], differential
transformation [9], State-Dependent Riccati Equation (SDRE)
[10] and so on. Regarding the advantages of the SDRE, it
has been employed as an approach to optimal control and
estimator design for several systems such as robotic systems
[11-13], Ebola [14], batteries [15], etc. However, there are a
few investigations on robust controller design based on the
SDRE [13], [15-19]. Kuo [20] proposed SDRE to solve the
robust control problem for chaos synchronization. Nasiri et
al. in [21], extended [20] to design an observer-based robust
controller for physical systems such as flexible-joint and
electrical flexible-joint robotic manipulators in the presence
of disturbances. A differential form of SDRE was employed

*Corresponding author’s email: ahmad.fakharian@qiau.ac.ir

to solve the robust tracking problem for non-affine systems
and applied to flexible joint robots [22]. As another robust
control scheme based on SDRE, in [18] and [19], SDRE is
employed to design the sliding surface and the combined
SDRE-SMC applied to cooperative manipulators.

Due to the broad applications of robot manipulators, many
controllers have been proposed for robot manipulators in the
literature [16-17], [21-27]. However, in some applications
such as carrying a load, cooperation between two or more
arms has a great deal of importance. To simply illustrate the
importance of cooperation in holding an object, as mentioned
in [28], imagine a situation in which a few persons intend
to carry a load with the same power as one strong person.
Obviously, it is superior for the object to be carried with more
than one person, in cooperation. Hence, it can be concluded
cooperative robotic system is superior in some applications.
A system of two manipulators exerts forces on an object to
move, referred as multiple arms or robot manipulators in
cooperation [29-32].

Inspiring by [16], [20], the main contributions of this
paper are:

* Proposing the application of SDRE framework to
solve the robust control problem for non-affine systems with
unmatched and input uncertainties.
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e Applying the proposed method to cooperative
manipulators with friction and input saturation holding
an object in two situations: separately controlled arms and
control of the overall system of cooperative manipulators.
The control objective is to increase the Dynamic Load
Carrying Capacity (DLCC) and track a trajectory with small
errors and control effort.

To design the robust controller, an equivalent auxiliary
system with a modified cost function is first considered.
Then by using the SDRE, the parallel suboptimal problem
is solved. The solution to the parallel problem is the robust
control input. This technique considerably facilitates the
procedure of solving the complicated robust control problem.
The main novelty of this work is to apply the simplifying
procedure given in [16], [20] for robust control of multiple
cooperative arms handling an object to increase DLCC.
The results are compared in both situations to indicate the
superiority of simultaneous robust control of the robotic
system with respect to independent robust control of each
arm. Furthermore, to verify the superiority of the proposed
robust controller versus SDRE-based SMC simulation results
are compared. A comparison among SDRE-based optimal
and robust schemes for cooperative manipulators with this
study is presented in Table 1.

This paper is organized as follows; in section 2 the
structure of the robust SDRE-based controller and stability
proof are given. In section 3, the dynamics of cooperative
manipulators are presented. Section 4, is dedicated to robust
SDRE-based controller design for cooperative manipulators
using two policies: independent robust SDRE-based control
and simultaneous robust SDRE-based control for the overall
system. In section 5, simulations for both cases are presented,
compared with each other and SDRE-based SMC. Finally,
section 6, concludes the paper.

2- Proposed Robust Controller Design
Consider the non-linear non-affine system as:

x(t) = f(x(2),v) + gx(t), u(t), v)

y(©) = h(x(®))

(M

where X(t) e R" is the vector of states; u(t ) eR" is
the vector of inputs; y (z ) € R? denotes the vector of outputs;
v eR" indicates the vector of parametric uncertainties.

Assumption 1: f (x(t ) , u) eR" and
g(x(t ),u(t ) , U) e R" are smooth Lipschitz and piecewise
continuous functions.

The first step is to shape the Uncertain State-Dependent
Coefficient (USDC) representation for Eq. (1) as:

x(t) = A(x(t),v)x(t) + B(x(t),u(t) ,v)u(t)

y(®) = C(x()x(t)

2
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where A(x (t ),U) eR™ B (x (t)u (t),u) e R™™
and C x(t )) e RP™ are USDC matrix functions.
Furthermore, B (x (t),u (t),u):B (x (t),u (t ))Q(U)
where Q(v)e R™™ is the matrix of uncertainty in the input
matrix and B(x(t),u(t )) e R™.
Assumption : he pair of
A(x(¢),0),B(x(¢)u(t),v is pointwise stabilizable
a{nd( tl(le) pa}ir (()f ({,)4 ()(c ()t),)z})),C (x (t ))} is pointwise
detectable [16], [20].
Assumption 3: The uncertain system matrix A4 (x (t ), 1))
is bounded [16], [20].
Considering [16], and [20] for affine systems, the second
step is to define a subsidiary system as follows for non-affine
systems:

x(t) = A(x(t), v0)x(t)

3)
+§(X(t): Utotal (t), Uo)utotal (t)

where u,,, (t) is combined control input consists
of control input wu(r)eR™ and an augmented input
u(r)eR" to cope with the uncertainties. Moreover,
B (x (1)t (t),uo) is defined as:

B(x(1), ugorar (1), 09) = @)
Bx(t),u(t),v9) a(—Bx(t), u(t),v)B*(x(t), u(t),vy))]

and the subsidiary USDC of the system (1) is obtained
using Egs. (3) and (4):

X(t) = A(x(2),v0)x(t) + B(x(t), u(t), vo)u(t)
_ _ ®)
+a (1 = B&(6), u(t), vo)B* (x(1), u(t), vy) ) U(t)

where B (x (t).u (t),uo) =B (x t),u (t))Q , the
nominal value v, €v and Qe Q(u is positive constant
matrix , furthermore @ is a positive constant and

B#(x (t),u (l‘),uo):
(BT(x (t).u (t),UO)B (x (t).u (z)’uo))fl « [20].
BT(X (t)’” (Z)’Uo)

The Third step is to reflect the uncertainties upper bounds
in the cost function for subsidiary system Eq. (5) as given in
[16]:

J= J- {XT(t)Q(X(t))X(t) + qutal(t)ﬁ“total(t)}dt (6)
0
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Table 1. Comparison the SDRE-based schemes for cooperative manipulators with presented work

Reference

Method

Performance Index, Control input

Novelty Description

(12]

Optimal control
based on SDRE

1= [ 6T©ex® + o ORu(0) a1
0
u(t) = —R"1BTKX

Increasing DLCC  for
cooperative manipulators
using SDRE

[18]

[19]

Robust control
based on
combining
SDRE and SMC

1 t
]= E(xT(tf)l-'x(tf) + fof(xT(t)QX(t) +uT(Ru(t)) dt

u(t) = (BTKB) " 1(B"K%4.s — BTKX — BTK& — BTKf — Ko rSgD(S))
u(t) = —R1BTKx — K¢, 5gn(s)

Combining SMC  and
SDRE by considering the
SDRE in design of the
algebraic sliding surface.

Increasing dynamic load
carrying  capacity  of
cooperative manipulators

Combining SMC and
SDRE by considering the
SDRE in design of
algebraic and integral
sliding surfaces

Providing robust attitude
with desired finite-time
control option for
cooperative manipulators

[22]

Robust SDDRE-
based control
for trajectory

tracking

1
J=5ly(t) -va ()] Fly(tr) - va(e)]
1t _
+5 [ /0 - 3OO, 0O - 7o)
0
+UT(ORX(®), HU(D}

QX(t),t) = M + a?H + b%S + c2Q(X(t),t)
- _ [REX®, 1) 0
RX(®),0) = [ 0 (@ + b))l

and:

u(®) = |40 = -R1 X0, OB, V(D). 10, H(KK(O, (O, DX

u(t)
+ZX (), U(), 1)
wllere:
BX(6), U(®), Mo, ) )
= [BX(®),U®),n0,t) (I —BX(®),U(®),no, )B*(X(8), U(t), Mo, 1))(a + bW)]

Proposing differential
SDRE to solve the robust
tracking control for non-
affine time-dependent
systems with input and
mismatched uncertainty.
Applying the proposed
scheme to flexible-joint
manipulators for trajectory
tracking

This work

Robust SDRE-

based control

for increasing
DLCC

J= f {XTOUXO)X®) + 0fora(OR(X(O) ugorar (D}t
0

where:
Q(X(®) = H+ a?M + c2Q(X(D)
- _ [Rx(®)) 0
R(x®) = [ 0 (a*+ bz)l]
and:

eora(®) = [45] = —R*(x(0)BT (0, voIK(x(0)x(0)

—R™1BT(x(t), u(t),vy)

= |=(a? + b)) a[l - B(x(1), u(t), vo)B* (x(t), u(t), vp)]"
where:

K(X(t)' utotal(t)' X(t))

E(X(t)r Ugorq1 (1), Vo)
= [Bx(1), u(t),v) a(l— B(x(t),u(t),ve)B*(x(t), u(t),vy))]

Proposing a robust
controller in an SDRE-
based optimal framework
for cooperative
manipulators to increase
DLCC.

Considering two situations
to design the controller:
independent robust control
for each arm  and
simultaneous control of
overall dual-arms system
regarding friction and input
saturation.

Comparing the results with
MiSS to illustrate
superiority of the proposed
scheme
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where weighting matrice§ Q(x(t )) (which is symmetric
positive semi-definite) and R (which is symmetric positive
definite) are formed using subsidiary weighting matrices for
states Q>0 and for inputs R >0 in the cost function Eq.
(6) and the uncertainties upper bounds are reflected in the
performance criterion through modifying design weighting
matrices as:

Q(x(t)) =H+ a*M + c2Q (7)

R= [l(} (a? f bz)l] ©)

in which a, b, ¢ > 0 are constant parameters and the upper
bounds for mismatched uncertainties are obtained using
subsequent stability analysis as :

(B#(X(t)! U(t), UO)A(X(t)' v, UO))TRB#

9
(x(8), u(t),vo)A(x(t),v,v9) < H,

a 2AT (x(t),v,v9)Ax(t),v,v5) < M. (10)

Auxiliary weighting matrices R and Q have been
considered to increase design flexibility for inputs and states,
respectively.

The augmented control input u,,,, (t) is as givenin [16]:

utotal(t) = [;Eg =

_ﬁ_lﬁT(x(t)' utotal(t): UO)K(X(t): utotal(t))x(t)

_ [ —R7IBT(x(8), u(t), o)
=@ + b»)7"all - Bx(®), u(t), v0)B* (x(£), u(t), v)1"

(11)

x K(X(1), Ugorar(t) )x(t)

in which K (x (t )) is the solution of the Uncertain SDRE
(USDRE):
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K(X(t)' Ugotal (t)) =
—K(x(t), Ugorar(t) ) A(X(1), V)

—AT(x(0), v)K(x(1), Usorai(t))
(12)
+K(X(0), Wyorar () B (1), u(t),vp)

ﬁ—lﬁT(X(t)' U(t), UO)K(X(t)' utotal(t))

—CT(x()Q(x(0)C(x(1))

Now, the objective is to prove SDRE as an optimal
framework can be used to obtain robust control input by
modifying the performance index and input matrix. Moreover,
the upper bounds of uncertainty Egs. (9) and (10) are obtained
using stability proof.

Note: In order to simplify the notations, in this paper,

(X(t),u(t )) is replaced with () .

2- 1- Stability Proof

Theorem: Consider the robust control problem for
the nonlinear non- affine system (1) to be solved. Towards
this aim, regarding assumptions (1)-(3), the equivalent sub
optimal problem for the subsidiary USDC structure (5) must
be solved. If:

1- The design parameters a ,d b ,c and the
subsidiary weighting matrices Q and R can be chosen in
such a way the solution to the sub-optimal control problem,
u,,., (t ) in Eq.(11) exists;

2- The necessary condition ¢’Q —2(a”> +b*)Q'Q >0
be satisfied where U is the feedback gain of ﬁ(t) element
Ofutotal (t) ;

then the u(t) part of u, (t) is the solution of the
robust control problem.

Proof:

The objective is to prove SDRE as an optimal framework
can be used to obtain robust control input by modifying the
performance index and input matrix. Mimicking the selected
Lyapunov function for LQR-based robust control in [33], the
Lyapunov function is defined as the minimum performance
index with incorporation of uncertainties upper bounds with
modification:

V(x) = minﬁ,ﬁf xT(H+ a®>M + c2Q)x + u'Ru
0

13)

+ul(a® +bHu)dt

V(x) should be satisfied in the Hamilton-Jacobi-
Bellman equation [32]. Therefore, considering the equivalent
subsidiary USDC structure Eq. (3), Eq. (14) is obtained:
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miny,,,., (X (H+ a®?M + c2Q)x
+uTRu +u(a? +bh?)u)
+V{ (A(x(t), v9)X(t) + B(., vp)u(t)

+@ (1= B(,00)B*(.,05) ) W(t)) = 0

Hence, the derivative with respect to U and U must be
equal to zero. As a result:

2uR + VIB(,,vy) =0 (15)

2(a® +b2)u' +Vla (1 —B(,v)B*(,v,)) =0 (16)

Considering the time derivative of V(x , substituting
Eq. (2) and adding and subtracting B (.,UO u , regarding
B (.,U) =B ()Q(U) and B (.,UO)ZB ()Q we have:
V(x) = VIX = VT (A(x(t),v)x(t) + B(.,v)u)

= Vy (A(x(1), vo)x(t) + A(x(t),v,V,)

(17)
Q -0
+(I+ %)B(.,Uo)u)
where v, = v (x) . Substituting Eq. (15), V(x)can be

. X
rewritten as:

V(x) = V{ (A(x(1), v0)x(t)

Q) -0

+A(x(t),v,v9) + B(.,v5)u) — 2( 0 yuTRu (18)

< Vy (A(x(8),99)X + B(., vp)u + A(X(t), v, 9))

Addingandsubtractingy’ "B (.,v,)B"*(.,v,)4 (x ()., uo)
and V" (I-B(.v,)B"(.0,))a to Eq. (18), with slight
manipulation, Eq. (19) is obtained.

V(%) < Vi (A(x(D), vo)x(t)
+B(, vo)u + (1= B(, v0)B*(.,v,)) W)
+VTAGX(6),0,90) = V¥ (1= B, v)B*(,v0))d  (19)

+V)’(TB( ’ UO)B#(' ’ UO) (A(X(t), v, UO))

_V)’(TB( ’ UO)B#(- ’ UO)A(X(t)r v, UO)
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Replacing Egs. (15) and (16) into Eq. (19) and some slight
changes in arrangement, Eq. (20) yields:

V(x) < VT (AX(E),00)x(t) + B(.,vp)u
+ (1 - B(.,UO)B#(.,UO)) au)
+2(a® + b?)u'u (20)

—2uTR B#(,,v9)A(x(t),v,vy) + V&

x (1 - B(.,uo)B#(.,uo))A(x(t),u,uo)

Now Eq. (20) can be rewritten as Eq. (21):

V(x) < —xT(H + a’M + c?Q)x—u"Ru
—u"(a? + b?)u + 2b%u"u
(21)
—2u"R B*(,,v0)A(x(t),v,v)

—2uta ta?A(x(t),v,vq)
Hence, one can represent Eq. (21) as:

V(x) < —xT(H + a®M + c2Q)x
- (uTRu + 2u"R B#(. ,UO)A(X(t),U,UO))
(22)
—@Ta?u + 2uta'h2A(x(t),v,vy))

—uThZu + 2a%uTu + 2b%uTu

On the other hand, the following relations are held:

- (uTRu + 2uTR B¥(. ,UO)(A(x(t),v,uo)))
(23)
< (B*(,v) (AX(1),v,90)) R B¥(,, 00)A(X(t),v,v;)

—@Ta?u + 2uTata?A(x(t),v,vy)) <

(24)

a2a?AT(x(t),v,v9)AX(),v,vq)
Finally, regarding Egs. (23)-(24) and choosing
the uncertainty bounds as Egs. (9)-(10), it can be

concluded that V(x)<0where the necessary condition
0 —Z(az +b2)QTQ > must be satisfied.
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M1 5 Imis lna

myq,1z1,121

Fig. 1. Schematic view of a system of n cooperative manipulators with m link.

2- 2- Design procedure summary

We can summarize the design procedure as follows:

1- Obtain the pseudo linear formulation of the uncertain
system Eq. (2)

2- Achieve the auxiliary uncertain SDC representation
Eq. (3).

3- Obtain the modified cost function Eq. (6) considering
upper bounds of uncertainty Egs. (9)-(10).

4- Determine uncertainty upper bounds using the stability
proof.

5- Solve the USDRE (12) to obtain optimal gain.

6- Obtain the total control input Eq. (11) and extract
robust input.

7- Apply the robust input to the system with uncertainty

Eq. (1).

3- Dynamics of Cooperative Manipulators

In this section, the dynamics model of cooperative
manipulators shown in Fig. 1, for separate structures to be
controlled and overall cooperative manipulators are presented
briefly.

304

3- 1- Dynamics of each of cooperative manipulators
The equation of motion of the kth manipulator is as [12]:

Dy (8,)0 + Ci(0y,0y)
. (25)
+Gk(9k) + bk(ek) = Uy + ]Z(Bk)fe’k

where 1<k <n .The representation of each parameter
is clarified as:

* g, (r)eMR" : vector of states

e D, (6,)eR"™™ : matrix of inertia

e C, (Hk,ék)e%" : matrix of Coriolis and centrifugal
force

G, (6, ) €R" : vector of gravity

® b, (6’k ) eR" : vector of friction
°u, (t ) e R" : vector of inputs
*J, (Hk ) € DA% : matrix of Jacobian
* for €R°

: vector of the external force of object to
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each arm. )
J,(6,) and b, g&k) are defined in the appendix.
Moreover, f, , isas[12]:

for(t) = (];{(ek))# {Dy(8;)6) + C(0,,0y)

)~ 0 ' (26)
+Gi(8,) + by (8;) — Qi [(IE(ek))#] ,
ug(t)
where 0 is
N (Z; (ko0) @ [(ll(ek))#r)_l
(27)

<1

_fe(t)]

]k (9k) [Dk(ek)ék + Ci (81, 0x) + Gi(8;) + by (6,3

in which f, (¢) is obtained using [34]:

[mll3x3 0353 rl(t)l
03x3 Dy3xsl Lo (t)
(28)
mlG
+ - l=-—e(w
w (1) (Do (1))
where I, ; is the identical matrix of 3x3, D,y ,-is the

inertia matrix of the load, #, is the mass of the load, a; (l‘ )
represents acceleration vector in reference coordinates,
, (t ) denotes angular velocity and @, (t) is the vector of
angular acceleration. The three rows on top of Eq. (3-133)
denote Newton’s second law and the next three rows present
Euler’s rotation equations generated from the derivation of
angular momentum with respect to time H, (t) D, o, t7)
. The gravity vector is shown by G where G = [0,0,g,]
expresses that there is gravity acceleration in Z, direction.
External force f, (z‘)eR6X1 caused by the Load must be
divided between manipulators = Zk: S (t)
assign f, (t) to each arm.

3- 2- Dynamics of overall system of cooperative manipulators
The equation of motion of overall manipulators is as [12]:

D(0)6+C(6,0) +G(0) +b(6) =u+]Ji(OFf (29

305

where the state Vector 9:[9 (t),....0, t)] , control
input u:[ul (t),.. f(¢) [ A ﬁ and D (6),
C (0,9), G(0) (9) and J( ) areas
D,(6,) O 0
WHE ;
0 0 Dm(em) mnxmn
C1(91,91)
c(0,0) = ’
m(em’ em) mnx1
G1(04)
G(0) = : l
Gm(em) mnx1

b (1)
2(0)=|

bm(ém) mnx1

J1(61) 0 0
j@=| 9 .
0 0 ]m(em) emxmn

and the state space form has been presented in [34].

4- Robust SDRE-based Control
Manipulators

In this section, the proposed robust SDRE-based scheme
is designed by two policies: independent control of each arm
and simultaneous control of the overall system.

of Cooperative

4- 1- Robust SDRE-based control of each of the cooperative
manipulators

Considering uncertainty in SDC representation of [12]
and Eq. (4) to obtain B, ... (x (1 ),EO) , the USDC form
for independent robust control of cooperative arms holding a
load is obtained as:

Ak2nx2n(X(t)'U0) =
O Lxn (30)
C,(x(t),v9) +
0rxn _Dkl(x(t) UO) [dlaggbi 1) O)bllc’ )]
L] n
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Ek 2mnx3mn (X(t), UO) =

( lZmanmn >] (31)
[Dkl(x(t) 1’0)] [Dkl(x(t) vg)

After determining USDC matrices, the next step is to
solve the USDRE in Eq. (12), to obtain the gain. Then, by
using Eq. (11), the augmented control is obtained. The terms
could not be structured as the USDC form will be added to the
control input. Finally, robust input is separated and applied to
the system.

It is worth to note that since some terms in the dynamic
equation of cooperative manipulators could not be extracted
as USDC representation, by mimicking [12] they are added
to the total control input w,,, (t) as an additional term

u, .., (7) in Eq. (32).

Omnxmn

D;.* (x(t),vo)

Wy aa(t) = Gi(0) + by (8) — J¥ (0)f, (32)

Hence, for each left arm or right arm of the cooperative
system, we have:

U = Ugorar(t) + Ugqqa(t) (33)

u
Then, considering U, =L‘k , W, can be separated using
u

a separation matrix [16]. In

k =1 denotes for the first or left arm and k£ =2
denotes for the second or right arm. A similar formulation can
be presented for the overall cooperative system.

An illustrative flowchart of the design process is presented
in Fig. 2.

s paper k =1,2.

4- 2- Robust SDRE-based control of the overall system of
cooperative manipulators

Considering uncertainty in SDC representation of [12]
and Eq. (4) to obtain B, . Qf (t ), = ) the USDC form
for simultaneous robust SDRE-based control of cooperative
arms holding an object is achieved as:

Azmnxzmn (x(®), UO) =

lmnxmn ]

C x(t),v )+
—p:! [ 1 0
Omnxmn : dlag { ' (X(t) 0) dia g(bk 1, bk TL) }
)

; i m(x(t) vo)
l | —D;(x(t),v0) +diag(by,, - Obk")

[Omnxmn

(34)

!
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§2mn><3mn (x(t), &) =

Omnxmn .
D 1(x(t), ) [

IZmanmn -

)] (35)
D1 (x(t), Uo)] [D Lx(t), vo)

where D (x (t),uo) = diag{D1 (x (t),uo),...,Dm (x (t),uo)},
The next stages of the procedure of achieving control input
are the same as the previous subsection.

5- Simulation Results

In order to verify the satisfactory performance of the
robust SDRE-based control to cooperative manipulators,
multiple arms in cooperation carrying a load are considered.
Each arm has three DoF. The state space and specifications of
the system are as given in [12]. The randomly found value
of parametric uncertainty is y =diag (rand (6,1)) z, in which
Yo =[0.3,0.1,0.05,0.5,0.3,0.2] is the upper bound for the
parametric uncertainty of each arm. The first three elements
of X, represents uncertainty in links’ length and the second
three elements are uncertainty in links’ mass which yields
nominal SDC. rand (6,1) provides a random vector with six
elements which are between [0,1] [35].

The design parameters and subsidiary weighting matrices
for both following cases are as: a =15 ;b =30;c =5;a =0.5

Q, =5x10"[I,; © 0,,];R, =10"diag{0.1 0.1 1};

Q, =5x10"[I,, ! 0,,];R, =0.01diag{0.1 0.1 0.1}

In subsequent presented cases, we want to illustrate that
different USDC formulations for separated manipulators
carrying a mass and cooperative ones holding an object,
result in the same outputs. However, cooperation is superior
in terms of less error and control effort with the same payload.
This implies that cooperation increases the DLCC. Then the
proposed robust optimal scheme is compared with SDRE-
based SMC to show the superiority of the proposed controller.

5- 1- Casel:

In this case, two separated arms holding an object tracking
a linear path are considered. The weight of the mass for the
left arm is 3.1Kg and for the right arm is 2.2 Kg. Hence, the
total weight of the mass is 5.3 Kg. Load distribution between
the left and right arms can be accomplished using the optimal
load distribution given in [12]. However, in this paper, load
distribution is accomplished by trial and error. The position
and velocity of the left arm and right arm are plotted in Figs
(3a) - (3d). The control inputs are depicted in Figs (3e) - (3j).
Furthermore, the tracked linear path, error of end-effectors,
and the norm of control inputs are illustrated in Figs. (3k),
(31) and (3m), respectively.

In order to obtain tracking error, consider a trajectory path
as a line defined as [12]:

X =0
{ des(t) (36)

Y5 () = 6.625t% — 12.125¢t3 + 6.25t2
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ﬂ Setting tf \

= Setting initial points for left and right arms.

=  Determining object dimension.

= Determining path equation.

= Setting weighting matrix for each arm Q,, R, , Q; and

R;.
=  Determining saturation bounds for control inputs.
\ = Setting parameter uncertainty of each arm. /
.

(-

K' Dynamic parameters:

\
DkackaGks bk

®  Determining Jacobian

Solving inverse kinematic problem to calculate joint angles
and displacement of start point.

matrix: J {}
=  Specifying design
parameters Putting dynamics matrices in USDC structure for each arm
®  Obtaining external separatelv using Eas. (30)-(31).
\ force for each arm j ! !
[ Computing upper bounds M and H Obtaining Q,, R, , Q; and R; using Egs. (7)-(8). ]

-

Computing combined
control input U using Eq.

[ Solving USDRE (12) for each arm

Obtaining (13) adding Eq.(32)
Uk,add ! !
Putting saturation bounds on inputs.

-

Applying U to uncertain system of
cooperative manipulators Eq. (25)

End

Fig. 2. Flowchart of robust SDRE-based control of cooperative manipulators holding an object
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Fig. 4. Robust SDRE-based controller performance for the overall system of multiple arms in cooperation
(continued)

which connects the statrt point (0,-0.5)m to the end point
(0,0.5)m in 5 seconds. The values for the position of the end
effector in x-axis, X, (t) and in y-axis, ¥, (t) are achieved
using direct kinematics. The error between the end-effector of
each arm and the desired linear path is obtained using:

Errorleft arm =

(7)
JEe® =X ) + (Yer®) ~ Yaear®)

Errotyignt arm =

000 % @) + (Yer O~ Yarrr @)

The maximum value of the error norm for each arm’s end-
effector is gained as 67 mm for the left arm and 43 mm for the
right arm. Furthermore, while the task has been completed, the
control input can not be zero due to additional term u, 4, (¢ ).
Moreover, when the mass reaches the endpoint, increasing ¢
leads to an increase in the distance between the end-effector
and the final point. Hence, by increasing the distance, u(t)
increases. However, it remains in the saturation bounds.
Saturation bounds is obtained using parameters given in [12]:

310

ustall,m,k
Umax,mk = Ustallmk — ® em,k(t) )

nl,m,k
(39)
m=12;k=1,23
Ustall,mk
Uninmk = ~Ustallmk — Mem,k(t)f
nl,m,k (40)

m=12;k=123

where u,, . 1s stall torque and @, , . is no load
speed of the motor of kth link of mth manipulator.

5-2- Case2:

In this case, two arms in cooperative form holding an
object which is 5.3 kKg, tracking a linear path is considered.
The position and velocity of the left arm and right arm are
plotted in Figs (4a) - (4d). The control inputs are depicted in
Figs (4e) - (4)). Furthermore, the tracked linear path, error of
end-effectors, and input norm are illustrated in Figs (4k)- (4m).
The difference between this case and the previous one is that
in this case, the total mass (5.3 kg) is holding cooperatively
and the robotic system is tracking a linear trajectory between
two points. The objective is reaching the endpoint carrying
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Fig. 5. Comparison of the robust SDRE-based controller and MiSS performance for the overall system of mul-
tiple arms in cooperation (RSB denotes the proposed Robust SDRE-Based control)

the object. However, in the previous case, the total mass
is distributed between the left and the right arm and they
separately carry the load along the linear trajectory toward the
final point. The angular positions illustrated in Figs. (4a) and
(4b) for the end-effectors are gained using inverse kinematics
for the start point and end point. Saturation bounds in Figs.
(4e), (41),(42),(4h),(41),(4j), for inputs are achieved utilizing
Egs. (39)- (40).

The maximum numerical values for error norm
considering Egs. (37) and (38) for each arm’s end-effector is
gained 37 mm for the left arm and 35 mm for the right arm.
Comparing the previous case, handling a 5.3 kg mass, with
cooperation leads to a decrease in error norms and control
inputs of manipulators. Hence, cooperation increases DLCC.

5- 3- Discussion on Simulation Results

Regarding simulation results, the robust SDRE-based
controller has a satisfactory performance in controlling
such a complicated nonlinear robotic system in tracking
a path holding an object. The error is negligible in both
cases and control inputs are inside the saturation bounds.
Moreover, comparing two cases, possessing similar total
payload (5.3 Kg), the same design parameters, and subsidiary
weighting matrices, cooperation enhances the performance of
manipulators in terms of negligible error and smaller control

efforts. This is obvious by considering numerical values
presented for each case and comparing end-effectors’ errors
and input norms in Figs (31) and (3m) with Figs (41) and (4m).
As a result, cooperation leads to an increase in DLCC.

Moreover, comparing the results of the proposed robust
controller and Mixed SDRE-SMC [19] for the second case,
the superior performance of robust SDRE-based control can
be easily observed as illustrated in Fig. 5.

The numerical performance indices for each arm to
compare the proposed scheme and MiSS are presented in
Table 2.

6- Conclusion

In this paper, an USDRE framework was employed to cope
with the difficulty introduced by robust controller design for
cooperative manipulators handling an object. To design the
proposed robust controller, a subsidiary sub-optimal problem
with a modified performance index was solved. By separating
the robust input, the robust control problem was solved with
considerable facility. Simulation results on the system of
multiple arms in cooperation carrying a load easily validate
the efficient performance of the proposed scheme as well
as the superiority of cooperation compared with a separate
robust control strategy. Furthermore, the proposed scheme is
superior versus MiSS as illustrated in the simulation results.
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Table 2. Comparison the SDRE-based scheme and MiSS [19]

Performance max||Error|| for max||Error|| for max||u|| for Left max||ul| for
Index Left arm Right arm arm Right arm
Controller
Proposed scheme 0.0037 0.0035 78.79 78.77
MiSS[19] 0.0100 0.0058 80.91 80.97
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_|9k,m (t)l (I'A)
— )

Fork = 1,2and 1 < m < 3, by, is viscous friction, b,‘im is dynamic friction, by ,,, is static friction and &

denotes for small positive constant. Moreover, matrix of Jacobian J,(0,) is as given in [12]:

[al a2 a3
|a4 a5 a6
0O 0 O
lo 0 OJ
1 1 1
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where:

al = =l Sin(Oxq + Byz) — Ly SIN(Ox1) — Lz SIN(Ogq + Bz + Oi3)
a2 = —ly, sin( By + Oxy) — lxz SIn( Oy + Oy + 6y3)

a3 = —ly3sin( By + Opy + Ox3)

a4 = ly, cos(Bxq + Oyp) + 11c0S(0g1) + lg3c05(Ox1 + Oy + Oy3)
a5 = ly, cos(Ogq + Oyy) + lx3c0s(0pq + Opn + Ox3)

a6 = lk3COS(9k1 + ekz + ek3)
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