[1] D.E. Kirk, Optimal control theory: an introduction. New York: Dover Publications, 2004.
[2] H.N. Foghahayee, and M.B. Menhaj, “A near nonlinear optimal controller for the nonlinear inverted pendulum,” in Proc. 2016 4th Int. Conf. on Cont., Ins., and Aut. (ICCIA), pp. 273-278.
[3] M.N. Monfared, A. Fakharian, and M.B. Menhaj, “A new modified polynomial-based optimal control design approach,” Proc. of the Ins.of Mech. Eng., Part I: J. of Sys. and Contr. Eng., vol. 235, pp. 355-370, 2021.
[4] E. Al’Brekht, “ On the optimal stabilization of nonlinear systems,” J. Appl. Math. Mech., vol. 25, pp. 1254–1266, 1961.
[5] C.L Navasca, and A.J. Krener, “Solution of Hamilton Jacobi Bellman equations,” in Proc. of 2000 39th IEEE conf. on dec. and cont.l (Cat no.00CH37187), Sydney, NSW, Australia, pp.570–574.
[6] A. Fakharian, and M.T. H. Beheshti, “Solving linear and nonlinear optimal problem using modified Adomian decomposition method,” J. of Comp. and Rob., vol. 1, pp. 1 -8, 2010.
[7] M.E. Dehshalie, M.B. Menhaj, and M. Karrari, “Fault tolerant cooperative control for affine multi-agent systems: an optimal control approach,” J Franklin Inst., vol. 356, pp. 1360–1378, 2019.
[8] B. Luo, H.N. Wu, T. Huang, et al., “Reinforcement learning solution for HJB equation arising in constrained optimal control problem,” Neu. Netw., vol. 71, pp. 150–158, 2015.
[9] I. Hwang, J. Li, and D. Du, “Differential transformation and its application to nonlinear optimal control,” J. Dyn. Syst. Meas. Contr., vol. 131: 051010. 2009.
[10] T. Cimen, “State-dependent Riccati equation (SDRE) control: a survey,” IFAC P , vol. 41, pp. 3761–3775. 2008.
[11] M.H. Korayem, N.Y. Lademakhi, and S.R. Nekoo , “Application of the state-dependent Riccati equation for flexible-joint arms: Controller and estimator design,” Optimal Control Applications and Methods. vol 39, pp. 792-808, 2018.
[12] M. H. Korayem, and S. R. Nekoo, “Controller design of cooperative manipulators using state-dependent Riccati equation,” Robotica, vol. 36, pp. 484-515, 2018.
[13] N.Nasiri, and N.Y. Lademakhi, “Nonlinear combined SMC-SDRE control versus SMC and SDRE approaches for electrical flexible-joint robots based on optimal observer”, 2021 9th RSI Int. Conf. on Rob. and Mechat. (ICROM), pp. 568-573.
[14] R. Shadi, F. B. Liavoli and A. Fakharian, “Nonlinear Sub-Optimal Controller for Ebola Virus Disease: State-Dependent Riccati Equation Approach,” in Proc. 2021 7th Int. Conf. on Cont., Inst. and Aut. (ICCIA), pp. 1-6.
[15] F. Lotfi, S. Ziapour, F. Faraji, and H. D. Taghirad, “ A switched SDRE filter for state of charge estimation of lithium-ion batteries,” Int. J. Elec. Pow. Ener. Sys., vol. 117, pp.1-10, 2020.
[16] N. Nasiri, A. Fakharian, and M.B. Menhaj, “Observer-based robust control for flexible-joint robot manipulators: A state-dependent Riccati equation-based approach,” Trans. I. Meas. Contr., vol. 42, pp. 3135–3155, 2020.
[17] N. Nasiri, A. Fakharian, and M.B. Menhaj, “A novel controller for nonlinear uncertain systems using a combination of SDRE and function approximation technique: Regulation and tracking of flexible-joint manipulators,” J. Frankl. I., vol. 358, pp. 5185-5212, 2021.
[18] A. H. Korayem, S. R. Nekoo and M. H. Korayem, “Sliding mode control design based on the state-dependent Riccati equation: theoretical and experimental implementation,” Int. J. of Control., vol. 92, pp. 2136-2149, 2019.
[19] A. H. Korayem, S. R. Nekoo and M. H. Korayem, “Optimal sliding mode control design based on the state-dependent Riccati equation for cooperative manipulators to increase dynamic load carrying capacity,” Robotica, vol. 37, pp. 321-337, 2019.
[20]Y.L. Kuo, “Robust chaos synchronizations using an SDRE-based sub-optimal control approach,” Nonlin. Dyn., vol. 76, pp. 733-742, 2014.
[21] N.Nasiri, H. Sadjadian, and A.M.Shahri, “Nonlinear Stabilizing Controller for a Special Class of Single Link Flexible Joint Robots”, J. of Comp. and Rob., vol 5, pp. 37-42, 2012.
[22] N.Nasiri, A. Fakharian, M.B. Menhaj, “State-Dependent Differential Riccati Equation: A novel Application to Finite-Time Robust Tracking Control of Flexible-Joint Manipulators” , Submitted to: ISA Transactions.
[23] S.R. Nekoo, “Model reference adaptive state-dependent Riccati equation control of nonlinear uncertain systems: regulation and tracking of free-floating space manipulators,” Aerospace Science and Technology, vol. 84, 348-360, 2019.
[24] N. Nasiri, H. Sadjadian, and A. M. Shahri, “Voltage-based control of a flexible-joint electrically driven robot using backstepping approach,” 2013 4th Annu. Int. Pow. Elec., Drive Sys. and Tech. Conf. (PEDSTC), pp 541-546.
[25] A. Izadbakhsh, and M.M. Fateh, “Robust Lyapunov-based control of flexible-joint robots using voltage control strategy,” Arab. J. Sci. Eng., vol. 39, pp. 3111–3121, 2014.
[26] A. Izadbakhsh, “Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification ,” Nonlin. Dyn., vol. 85, pp. 751–765, 2016.
[27] A. Izadbakhsh, and S. Khorashadizadeh, “Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification ,” Rob. and Nonlin. Cont., vol. 30, pp. 2719–2735, 2020.
[28] M. H. Korayem, and S. R. Nekoo, “Non-linear suboptimal SDRE controller for cooperative manipulators to increase dynamic load carrying capacity,” 2015 3th RSI International Conference on Robotics and Mechatronics (ICROM), pp. 19-24.
[29] J. H. Barragan, C. L. Franco, A. Y, Alanis, N. A. Daniel, and M. L. Franco, “Dual-arm cooperative manipulation based on differential evolution,” Int. J. of Adv. Rob. Sys., vol. 16, 2019.
[30] A. Izadbakhsh, N. Nikdel, and A. Deylami, “Cooperative and robust object handling by manipulators based on the differential equation approximator,” ISA Trans.,in press.
[31] A. Deylami, and A. Izadbakhsh, “FAT-based robust adaptive control of cooperative multiple manipulators without velocity measurement,”Robotica, pp.1-31, 2021.
[32] A. Izadbakhsh, N. Nasiri, M.B. Menhaj,”Linear/nonlinear PID control of cooperative multiple robot manipulators: A robust approach,” AUT J. of Modelling and Simulation, vol. 55, pp.1-5, 2023.
[33] F. Lin, Robust control design: An optimal control approach. New Jersey: John Wiley &Sons.,2007.
[34] C. J. Li, “Coordinated motion control of multi-arm robot systems with optimal load distribution,” Syst. Control Lett., vol. 15, pp. 237–245, 1990.
[35] S.R. Nekoo, A. Ollero, “A robust state-dependent Riccati equation controller with parameter uncertainty and matched disturbance,” J. Franklin Ins., vol. 360, pp. 14584-14595, 2023.
[36] R.J. Schilling, “ Fundamentals of robotics analysis and control”, Prentice Hall, New Delhi, 2003.