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ABSTRACT 

Manufacturers need to evaluate the reliability of their products in order to increase the customer 

satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, 

especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis 

of the system that has been less focused on. This paper introduces a framework defining an approach for the 

failure process modeling with censored data in Constant Stress Accelerated Life Tests (CSALTs). For the 

first time, various types of censoring schemes are considered in this study. Usually, in data analysis, it is 

impossible to get closed form of estimates of the unknown parameter due to complex and nonlinear 

likelihood equations. As a new approach, a mathematical programming problem is formed and the Maximum 

Likelihood Estimation (MLE) of parameters is obtained to maximize the likelihood function. A case study in 

red Light- Emitting Diode (LED) lamps is also presented. The MLE of parameters is obtained using genetic 

algorithm (GA). Furthermore, the Fisher information matrix is obtained for constructing the asymptotic 

variances and the approximate confidence intervals of estimates of the parameters. 
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1.  INTRODUCTION 

Reliability is one of the most important qualitative 

characteristics of the complex products. It measures the 

level of efficiency of systems. In recent years, many 

manufacturers have used reliability as an essential factor 

for improving the quality of their products and aimed at 

reducing the failures of costly components as a strategic 

policy, since inadequate reliability results in poor 

economic performance and extra costs for both the 

manufacturer and the customer. So, manufacturers need to 

evaluate the reliability of their products in order to 

increase the customer satisfaction. In order to improve the 

reliability of products, quantitative methods should be 

used to predict and analyze various aspects of reliability. 

Proper analysis of reliability also requires an effective 

study of the failure process of a product, especially its 

failure time. So the failure process modeling plays a key 

role in reliability analysis of the systems. Different 

frameworks have been suggested for the investigation of 

the FPM of systems in the literature; for example, see [1-

4]. 

Lifetime experiments are performed on products to 

obtain their failure times. One of the important issues in 

reliability analysis is how to collect the lifetime data of the 

products in a limited time, as the mean time to failure of 

products might be very high under the normal operating 

conditions. So, in reliability and lifetime measurement 

experiments, test units are usually exposed to stress levels 

higher than normal operating conditions, leading to a 

shorter lifetime and accelerated damage. As a result, 

lifetime data required to determine unknown parameters is 

are obtained faster than the normal operating conditions 

[5].Consequently, components are affected by different 

types of stresses such as temperature, voltage, vibration, 

pressure, load, and humidity, which directly affect their 

lifetime. This type of testing is known as Accelerated Life 

Test (ALT). For the first time, Chernoff [6] and Bessler et 

al. [7] introduced the concept of accelerated life testing in 

1962. Data obtained from these experiments are used to 

estimate the lifetime parameters such as Mean Time To 

Failure (MTTF) and reliability in normal operating 

conditions. 

In general, ALTs can be classified into three 

categories: constant stress accelerated life test, Step Stress 

Accelerated Life Test (SSALT), and Continuously 

Increasing Stress Accelerated Life Test (CISALT). The 

basis for this classification is the time dependency of the 

stress variables. CSALT is the most common method. In 

this method, the stress applied to the units is time-

independent and each unit runs at a constant stress level 

until the test is terminated [8]. This method has been 

studied extensively by several authors. Bai and Chung [9] 

proposed CSALT models based on the Weibull lifetime 

distributions. Kolarik and Teng[10] designed and 

performed a CSALT on direct current motors. It involved 

on/off cycling vs. continuous operation under multiple 

stresses. They considered the voltage, load, and operation 

mode as the stress factors. The two-parameter Weibull 

distribution with a constant shape parameter was used for 

the failure data analysis. Fan and Yu [11] discussed the 

reliability analysis of the CSALTs when a parameter in 

the generalized Gamma lifetime distribution is linear in 

the stress level. Zhang et al. [12] predicted the life of 

White Organic Light Emitting Display (OLED) using 

CSALTs. Guan et al. [13] studied the optimal CSALTs 

with complete sample for the generalized Exponential 

distribution. 

Usually in data analysis, it is impossible to get closed 

form of estimates of the unknown parameter due to the 

complex and nonlinear likelihood equations. In this paper, 

as a new approach, a mathematical programming problem 

was formed and the maximum likelihood estimation of 

parameters is obtained to maximize the likelihood 

function using optimization tools. 

In order to be effective, reliability data set should 

contain both failure times and censored times. Therefore, 

lifetime data could be separated into two categories:  

complete or censored. Complete data means the failure 

time of each test unit is observed or known. Censoring is 

one of the most common ways in reliability analysis that 

plays an important role in FPM. This method is applied 

when some of the units in the sample do not fail during 

the test, or the exact failure times of all units are not 

known. In general, censoring is done based on the time of 

failures, their number, or a combination of both. There are 

different types of censoring schemes: left censoring, right 

censoring, interval censoring, random censoring, Type-I 

and Type-II censoring, Type-I and Type-II hybrid 

censoring, and progressive censoring [14]. 

CSALT have been studied under different types of 

censoring in the recent years. Yang [15] calculated the 

optimum plan of four-level CSALT with various 

censoring times. In this study, the optimum plan was 

chosen by the stress levels, test units allocated to each 

stress, and censoring times to minimize the asymptotic 

variance of the MLE of the mean (log) life at design stress 

and test length. Mettas [16] described a model for a 

typical three stress type CSALT data with censoring. The 

temperature, voltage, and operation type were considered 

to be the stress factors. The Weibull distribution with a 

http://eej.aut.ac.ir/
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constant shape parameter was also used to analyze the 

failure data. Three scenarios were considered in the tests: 

(a) only the temperature effect, (b) temperature and 

voltage, and (c) all three stress variables. Zhou et al. [17] 

considered the geometric process implementation of the 

CSALT model based on the progressive Type-I hybrid 

censored data. 

In previous studies, up to three types of censoring 

schemes which have been investigated; however, various 

types of censoring schemes have been considered in this 

study. A summary of the literature review based on type 

of ALT, type of censoring scheme, lifetime distribution, 

estimation method, and case study is presented in Table 1. 

A correct definition of the model describing the failure 

process is a very important issue that has been less 

focused on.This paper presents a framework defining an 

approach for FPM with the censored data in CSALTs. For 

the first time, various types of censoring schemes have 

been considered in this study. As a new approach, 

mathematical programming tools were used for getting the 

maximum likelihood estimation of the unknown 

parameters with mathematical solving approach in data 

analysis phase. As a case study, the framework was used 

for the reliability analysis of red light-emitting diode 

lamps. This paper has been organized as follows: 

Description of FPM framework discusses the framework 

for the FPM. Case study presents a case study describing 

the reliability analysis of the red LED lamps. Finally, the 

conclusion outlines the conclusions and further research. 

2. DESCRIPTION OF FAILURE PROCESS MODELING 

FRAMEWORK 

This section provides a framework defining an 

approach for FPM with censored data in CSALTs from 

initial data collection to reliability parameter estimation. 

The aim of framework is to estimate the reliability under 

the normal operating conditions, which is achieved by 

FPM and analysis of failure data from accelerated stress 

conditions. In other words, reliability characteristics can 

be obtained in normal operating conditions using lifetime-

stress model. Figure 1 presents the framework. Each phase 

of the framework will be described in the following. 

A.  Understanding The Stresses Affecting Product 

Failure 

In order to investigate the failure process of any 

product, it is necessary to study the factors that directly 

affect its lifetime. In other words, if ALT is considered to 

accelerate the failure process of product, the type of 

stresses used in the test must also be specified. Any factor 

that directly reduces the lifetime of the product and its 

variations are measurable could be used. These factors are 

often introduced by manufacturers. For example, in 

electrical system, factors such as temperature, voltage or 

electric current, and power fluctuations can reduce 

lifetime. 

B. Determining The Number Of Stresses 

Among the stresses that affect the lifetime of any 

product, one or more types of stresses can be considered 

to accelerate the failure process in ALT. The number of 

stresses is determined based on the type of product and the 

test conditions. Usually one type of stress is used in 

experiments when the lifetime of product is not too long. 

Also focusing on one type of stress makes performing the 

test easier compared to when two or more types of stress 

are used. Two or more types of stress can be used if the 

lifetime of product is long, which makes the experiment 

become more complex. 

C.  Determining The Stress Levels 

Depending on the number of considered stresses, it is 

necessary to determine the levels of each stress variable, 

since in CSALT; the product could be exposed to several 

levels of one type of stress. The first level of stress is 

chosen to be a little more than the stress level in normal 

operating conditions, so that it decreases the lifetime of 

product. The next levels further reduce the lifetime of the 

product. The last level is chosen so that the product does 

not fail immediately. 

 

D. Performing Accelerated Life Test 

After determining the stresses and their levels, a 

certain number of products are selected as a sample for 

each level, and the test is then performed accordingly for a 

certain period or up to when a number of failures occur. 

The Observed failure times are recorded during the test. 

E. Determining The Type Of Censoring Data  

In order to reduce the test time and related costs, it is 

necessary to end the test at the specified time or after 

observing a number of failures for each stress level. Based 

on time or number of the failures, different types of 

censoring like left censoring, right censoring, interval 

censoring, random censoring, progressive censoring and 

Type-I and Type-II censoring can be considered for ALT. 

Likewise , by considering time and number of failures 

simultaneously, Type-I and Type-II hybrid censoring can 

be performed. Collecting information about both exact 

failure times and censored data is a fundamental task. 

http://eej.aut.ac.ir/
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F. Data Analysis 

After collecting the required data, statistical analysis 

of them begins. Statistical analysis consists of six steps 

which will be explained in the following. 

Step 1.Choosing the lifetime distribution 

When performing the reliability analysis, a distribution 

must be chosen to model the data. The more closely the 

distribution fits the data, the more likely the reliability 

statistics will accurately describe the performance of the 

product. The major distributions used in reliability 

analysis are: Exponential, Normal, Log-normal, Gamma, 

and Weibull. Using goodness of fit tests such as the 

Kolmogorov-Smirnov test and Anderson-Darling, the best 

distribution that fits the failure data is selected. 

Step 2.Choosing the lifetime-stress model 

Due to the changes in the shape or scale parameter of 

lifetime distribution in terms of the stress, a proper 

relationship between lifetime and stress is selected. 

Usually, when the stress level increases, less time is 

needed to reach the failure point, and when the stress level 

is reduced, the lifetime will increase. Different models are 

presented that describe the relationship between lifetime 

and stress, such as Arrhenius model [5], Eyring model, 

Inverse power law model, Log-Linear model and 

Proportional Hazards (Cox) model [42]. 

Step 3.Forming the likelihood function 

The likelihood function is formed based on the type of 

sample observations (complete or censored) which is a 

function of the population parameters and observed 

samples. Here, the observations are known whereas the 

population parameters are unknown. Lifetime-stress 

relationship is also considered in the function. In general, 

suppose a random sample of size n is put into test, and  

𝐗𝟏, 𝐗𝟐, … , 𝐗𝐧 is the set of random failure times. Denote O 

as the set containing the indices which the failure times 

are observed; R as the set containing the indices which the 

failure times are right censored; L as the set containing the 

indices which the failure times are left censored; and I as 

the set containing the indices which the failure times are 

interval censored with the only knowledge that the real 

failure time 𝐱𝐢  is in the interval [ 𝐔𝐢, 𝐕𝐢] . Then the 

likelihood (L) based on this sample is 

L (xi, θ) =∏ f(xi; θ)i𝜖𝑂 ∏ [1 − F(xi; θ)]i𝜖𝑅  

∏F(xi; θ)

i𝜖𝐿

∏[F(Vi; θ) − F(Ui; θ)]

i𝜖𝐼

 

(1) 

where 𝛉 is an unknown parameter, i=1,2,…,n, and 

𝐟(𝐱𝐢; 𝛉) and   𝐅(𝐱𝐢; 𝛉)  are probability density function 

(PDF) and cumulative distribution function (CDF), 

respectively. Likelihood for other type of censoring can be 

constructed from following the same rationale. 

Step 4.Maximum Likelihood Estimation 

The method is based on the unknown population 

parameters. By optimizing the likelihood function based 

on parameters, the ones that are most consistent with the 

observed samples will be determined. In other words, the 

idea behind the maximum likelihood parameter estimation 

is to determine the parameter values that maximize the 

likelihood (or, equivalently, the log likelihood). In the 

case of censored data, other estimation methods such as 

least square method are less precise. Therefore, using 

MLE method in this case is considered to be more robust 

and results in estimators with good statistical properties. 

Usually, explicit expressions cannot be obtained through 

directly solving the likelihood equations. Instead, the 

numerical methods such as Newton-Raphson method or 

powerful tools in the analysis of incomplete data such as 

the Expectation–Maximization (EM) algorithm can be 

used. Fisher information matrix and consequently 

asymptotically variances of estimates are obtained directly 

from the numerical methods. The EM algorithm possesses 

several advantageous properties, such as stable 

convergence, compared to the Newton– Raphson method. 
So as a new approach, mathematical programming tools 

were used for estimating the maximum likelihood 

estimates of unknown parameters with mathematical 

solving approach. The general form of mathematical 

programming problem is 

 

Max  L                                   (2) 

 s.t 

C1 > 0                     (3) 

 C2 < 0                     (4) 

. 

 

 

 

t = 0 Time 400

40 

424 450 

Three 

failures 
Eight 

failures 

Three 

failure 

times are 

interval 

censored 

Two 

failure 

times are 

right 

censored 
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TABLE 1.  COMPARISON OF PROPOSED MODEL WITH PRIOR MODELS. 

Reference Type 

of ALT 

Type of censoring 

scheme 

Lifetime 

distribution 

Estimation features Case 

study 

Bai and Kim [18] SSALT Type-I Weibull 
MLE (Minimizing the asymptotic variance of the maximum 

likelihood estimator of a stated percentile at design stress.) 

No 

 

Xiong [19] SSALT Type-II Exponential MLE 
No 

 

Tang et al. [20] CSALT Type-I and Type-II Exponential The unbiased estimates were obtained for the parameters. 
No 

 

Abdel-Ghaly et al. 
[21] 

SSALT Type-I and Type-II Weibull MLE with a modified quasi-linearization method 

No 

 

 

Balakrishnan et al. 

[22] 
SSALT Type-II Exponential MLE for a cumulative exposure model 

No 
 

 

Balakrishnan and 

Xie [23] 
SSALT Type-I hybrid Exponential MLE for a cumulative exposure model 

No 
 

 

Li and Fard [24] SSALT Type-I Weibull 
MLE (Minimize the asymptotic variance of the maximum 

likelihood estimator of the life for a specified reliability) 

No 

 

Kateri and 

Balakrishnan [25] 
SSALT Type-II Weibull 

MLE with an iterative procedure in simplified estimator for 

initial estimates in the iterative process of MLE 

No 

 

Watkins and John 
[26] 

CSALT Type-II Weibull MLE 
No 

 

Abdel-Hamid and 

AL-Hussaini [27] 
Guan and Tang [28] 

SSALT Type-I Exponential MLE 
No 

 

Ling et al. [29] SSALT Type-I hybrid Exponential 
MLE minimizing the asymptotic variance of reliability 

estimate at a typical operating condition 

No 

 
 

Attia et al. [30] CSALT Type-I Logistic MLE 
No 

 

Lee and Pan [31] SSALT Type-II Exponential Bayesian Analysis No 

Wang et al. [32] SSALT Type-II Geometric MLE Yes 

Srivastava and 
Mittal [33] 

CSALT Type-I Burr type-XII MLE No 

Kamal and Zarrin 

[34] 
CSALT Type-I Pareto MLE No 

Aly and Bleed [35] CSALT Type-II Logistic Bayesian analysis No 

Shi et al. [36] CSALT 
Progressive Type-II 

Hybrid 
Exponential MLE and Bayes estimator No 

Aly and Bleed [37] SSALT Type-I Logistic MLE No 

Asser and Abd EL-

Maseh [38] 
CSALT Type-I Exponential MLE No 

Amal et al. [39] SSALT 
progressively type-I 

interval 
Weibull 
Poisson 

MLE No 

Saleem [40] SSALT 
progressive type-I 

right 

Weibull 

 
Bayesian approach No 

Zhao et al. [41] CSALT 
Progressive Type-I 

Hybrid 
Burr type-XII MLE (The numerical method) No 

Proposed model CSALT 
Various types of 

censoring schemes 
Weibull 

MLE by a mathematical programming problem with meta-
heuristic solution method 

Yes 

http://eej.aut.ac.ir/
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6. Data analysis 
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Fig. 1. The framework for Failure Process Modeling
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As can be seen in (2), the objective of the mathematical 
programming problem was to obtain the maximum 
likelihood estimates of the unknown parameters which 
was derived by maximizing the likelihood function. 
The constraint (3) shows that the parameters of lifetime 
distribution should be positive. The constraint (4) 
indicates an inverse relationship between the lifetime 
and stress. The MLE of unknown parameters was 
obtained to maximize the likelihood function using 
optimization tools 

Step 5.Forming the Fisher information matrix 

The Fisher information matrix is a key tool in 

parameter estimation. It is a measure of the information 

content of the data relevant to the parameters being 

estimated. It is a symmetric matrix, the elements of which 

are the negative second partial and mixed partial 

derivations of of unknown parameters. 

Denoteθ1, θ2, … , θ𝑛 as the set of unknown parameters, 

then the Fisher information matrix is [5] 

 

 

(5) 

 

F = 

[
 
 
 
 
 
 
 
−∂2lnL

∂θ1
2

− ∂2lnL

∂θ1 ∂θ2
…

−∂2lnL

∂θ1 ∂θn

−∂2lnL

∂θ2 ∂θ1

− ∂2lnL

∂θ2
2 …

−∂2lnL

∂θ2 ∂θn
. . . .
. . . .
. . . .

−∂2lnL

∂θn ∂θ1

− ∂2lnL

∂θn ∂θ2
…

−∂2lnL

∂θn
2 ]

 
 
 
 
 
 
 

 

 

Step 6.Calculating the Covariance matrix 

Covariance matrix is a symmetric matrix that shows 

the covariance between the variables. In general, 

estimation of Covariance matrix is asymptotic equals to 

the inverse of the Fisher information matrix and is given 

by [5] 

 

 

(6) 

 

 Σ ̂ = F−1

=

[
 
 
 
 
 
 

var(θ1̂) cov(θ1̂, θ2̂ ) … cov(θ1̂, θn̂)

cov(θ2̂, θ1̂ ) var(θ2̂) … cov(θ2̂, θn̂)
. . . .
. . . .
. . . .

cov(θn̂, θ1̂ ) cov(θn̂, θ2̂ ) … var(θn̂) ]
 
 
 
 
 
 

 

 

The variances all appear on the main diagonal of 

Covariance matrix. In other words, the purpose of 

calculating the Fisher information matrix is to obtain the 

asymptotic variance of the maximum likelihood estimates 

of the unknown parameters, the result of which is the 

confident intervals of the estimated parameters. 

3. CASE STUDY 

The object of this case study is the application of the 

framework in red LED lamps. An LED is a semiconductor 

light source. LEDs are used as indicator lamps in many 

devices and are increasingly used for other lighting 

applications such as aviation lighting, digital microscopes, 

automotive lighting, advertising, general lighting, and 

traffic signals. LEDs can have a relatively long useful life. 

The six phases of framework from initial data 

collection to reliability parameter estimation will be 

described in the following. 

A. Understanding The Stresses Affecting Led 

Lamps Failure 

The definition of useful life is often given as the hours 

of operation during in which the LED’s output light has 

been decreased to 70% of initial output. The selection of 

70% is based on vision research indicating that in general 

lighting applications, the typical human eye does not 

detect the decrease in light until it exceeds 30%. Optical 

and electrical parameters are critical in LED lamps. The 

input electric current and temperature cause stress in the 

LED crystalline structure. Also other factors such as 

power fluctuations, humidity, on and off frequency, and 

isolation affect the failure of LED lamps. 

B.  Determining The Number Of Stresses 

Among the stresses mentioned in the previous phase, 

electric current, temperature, and humidity can be used 

because their levels could be increased. In this study, only 

electric current was investigated as the stress variable 

since a fixed electric current at a specified level is easier 

than fixing temperature or humidity at a specified level. 

By using the same experimental conditions, the effect of 

temperature and humidity was ignored. 

C. Determining The Stress Levels 

The stress level in the normal operating condition is 

five milliampere (mA). The stress levels of 20, 30 and 40 

mA were selected. These stress levels were selected as 

follows: the first level (20 mA) was slightly greater than 

the level in the normal operating condition, and it resulted 

in reduction of the lifetime of the lamp. The second level 

(30 mA) reduced the lifetime of the lamp more quickly. 

The third level (40 mA) had the most effect in reduction 

of the lifetime of the lamp. Higher electrical current 

causes very fast failure and even melting of the lamp. 

D.  Performing Accelerated Life Test 

Thirty four red LED lamps were tested at the room 

temperature. For stress level of 20 mA, 30 mA, and 40 

mA, 16 lamps, 12 lamps, and six lamps were selected 

respectively. 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Navigation_light#Aviation_navigation_lights
http://en.wikipedia.org/wiki/Digital_microscope
http://en.wikipedia.org/wiki/Automotive_lighting#Light_emitting_diodes_.28LED.29
http://en.wikipedia.org/wiki/Traffic_signal


Amirkabir International  Journal of Science& Research 

(Electrical & Control Engineering)  

(AIJ-EEE)  

N. Ramezanianpour, MS. Esfahani and TH.Hejazi 

 

60   Vol. 46 - No. 2 - Fall 2014 

E. Determining The Type Of Censoring Data  

For stress level of 20 mA, the test was continued for 

400 hours and failure times were recorded. For the period 

of 400 to 424 hours, no observation was performed. Then 

from 424 hours to 450 hours, observation was carried on 

and failure times were recorded. For stress level of 30 

mA, the test was continued for 55 hours and failure times 

were recorded. For stress level of 40 mA, the test was 

continued for 30 hours and failure times were recorded. 

The type of censoring data used is represented as in 

Figures 2 to 4. 

 

Fig 3. Schematic representation of censoring data under stress 

level of 30 milliampere. 

 

Fig 4. Schematic representation of censoring data under stress 

level of 40 milliampere. 

So for stress level of 20 mA, the failure times of three 

lamps were interval censored while the failure times of 

two lamps were right censored. For stress level of 30 mA, 

the failure times of three lamps were right censored. For 

stress level of 40 mA, the failure time of one lamp was 

right censored. The observed failure times in three stress 

levels are listed in Table 2. 

F. Data Analysis 

Step 1.Choosing the lifetime distribution 

The two-parameter Weibull distribution is widely used 

in reliability evaluation and analysis of lifetime data. Let 

us assume the lifetime random variable T follows the 

Weibull distribution with the shape and scale parameters 

of β and  α , respectively.  So the CDF and PDF of T are 

(7)  FT(t; α, β) = 1 − e−(
t

α
)β

 

and  

fT(t; α, β) =

 
βtβ−1

αβ e−(
t

α
)β                                                                              (8) 

 

where 

  t > 0   , α > 0 , β > 0 . 

TABLE 2. THE OBSERVED FAILURE TIMES IN THREE STRESS 

LEVELS. 

Stress levels (mA)    Failure times 

20                             211   288   399   428   429   430   432   444 

                                 446   449   450           

30                             27   39   39   44   45   48   48   50   53 

40                             10   17   21   24   29 

Step 2.Choosing the lifetime-stress model 

In order to determine the best relationship between 

stress and Weibull distribution parameters, the parameters 

in each of the stress levels were estimated using Minitab 

software. These values are shown in Table 3. 

TABLE 3. PARAMETERS OF WEIBULL DISTRIBUTION AT 
DIFFERENT STRESS LEVELS. 

Stress levels(mA)             α                     β 

20                                      426.542           9.018 

30                                      46.562             7.922 

40                                      22.474             3.649 

Considering the Linear relationship, Ln(power) 

relationship, Inverse power law relationship, and 

Arrhenius relationship between stress values and each of 

the parameters, the coefficient of determination (R2) were 

calculated as reported in Table 4. 

The Arrhenius relationship between the scale 

parameter and stress and the linear relationship between 

the shape parameter and stress were selected, because 

compared to the other relationships, their coefficients of 

determination are closer to one. 

TABLE 4.  𝐑𝟐VALUES REGARDING THE RELATIONSHIP 
BETWEEN THE PARAMETERS AND STRESS. 

Relationships                             α                                 β 

Linear                                0.794                      0.896 

Ln(power)                         0.867                      0.828 

Inverse power law             0.966                      0.780 

Arrhenius                           0.991                      0.699 

 

Therefore, the lifetime-stress models were obtained as 

follows: 

             (9) β = A1 + B1S 

       (10) 

 
α = A2 e

B2
S  

where A1, B1, A2and B2 are unknown parameters and S is 

the stress level. 

Nine 

failures 

t = 0 Time 

Three failure 

times are right 

censored 

55 

Five 

failures 

30 t = 0 Time 

One failure 

time is right 

censored 
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Step 3.Forming the likelihood function 

For forming the likelihood function, it is necessary to 

define a notation that is shown in Table 5. 

Based on the interval and right censored data from 

Weibull distribution, the likelihood function under 

CSALT is given by: 

L(A1, B1, A2, B2)

= ∏ f(ti)

n–d−c

i=1

∏ F(tRj) − F(tLj)

d

j=1

∏1 − F(Tk)

c

k=1

= ∏
A1 + B1Si

(A2 e
B2
Si )

A1+B1Si
ti

A1+B1Si−1

n−d−c

i=1

e

−(
ti

A2 e

B2
Si

)

A1+B1Si

 

∏[e

−

(

 
tLj

A2e

B2
Sj )

 

A1+B1Sj

e

−

(

 
tRj

A2e

B2
Sj )

 

A1+B1Sj

d

j=1

] 

 ∏ e

−(
Tk

A2e

B2
Sk

)

A1+B1Sk

 

𝑐

k=1

 

 

(11) 

 

TABLE 5. LIST OF NOTATIONS. 

  Notation        Definition 

  ti                        Observed failure time of unit i 

  Si                        The stress applied to unit i at time ti 

  Sj                        The stress applied to unit j upon failure 

  Sk                       The stress applied to unit k upon  failure   

  tLj                 The lower bound of the time interval in which 

                        unit j fails         

  tRj                     The upper bound of the time interval in which  

                        unit j fails 

   Tk                     The lower bound of the time interval in which  

                        unit k fails 

   n                   Sample size  

                        (total number of test units in CSALT) 

   d                   The number of units that fail in the time  

                        interval [tLj, tRj]  

                        (interval censored observations) 

   c                   The number of units that fail in the time  

                        interval [Tk, +∞]  

                        (right censored observations) 

   n-d-c             The number of units for which  the exact  

                        failure times are observed 

                        (complete observations) 

Using ln L to denote the natural logarithm of 

L(A1, B1, A2, B2), then we have 

Step 4.Maximum Likelihood Estimation 

In this case study, the estimation of parameters was 

considered under CSALT with interval censored and right 

censored data assuming two-parameter Weibull lifetime 

distribution. After equating the first partial derivatives of 

ln L with respect to A1 , B1 , A2  and B2  to zero and 

substituting the numerical values in the equations, it was 

observed that due to complex and nonlinear equations, 

getting closed form of estimates of the unknown 

parameter was not possible. So, as a new approach, 

mathematical programming tools were used for estimating 

these parameters with the mathematical solving approach. 

(12) 

lnL(A1, B1, A2, B2)

= ∑ ln(A1 + B1Si)            

n−d−c

i=1

+ (A1 + B1Si − 1) ln(ti)

− ti
A1+B1Si(A2e

B2
Si )−A1−B1Si −(A1

+ B1Si) (ln(A2) +
B2

Si

)

+ ∑ln(e−tLj
A1+B1Sj(A2e

B2
Sj )

−A1−B1Sj

d

j=1

− e−tRj
A1+B1Sj(A2e

B2
Sj )

−A1−B1Sj
)

+ ∑−Tk
A1+B1Sk (A2e

B2
Sk)−A1−B1Sk

c

k=1

 

) 

 

The mathematical programming problem is 

(13) Max   ln L(A1, B1, A2, B2) 

s. t 

(14) 

(15) 

(16) 

(17) 

         A1 + 40B1  ≥ 0 

         A2 ≥ 0 

         B1 ≤ 0 

         B2 ≥ 0 

As can be seen in (13), the objective of the 

mathematical programming problem was to obtain the 

maximum likelihood estimates of the unknown 

parameters  A1 , B1 , A2  and B2  which was derived by 

maximizing ln L. The inequality (14) shows the positive 

lifetime constraint. In other words, even at the highest 

stress level (40 mA), negative lifetime should not be 

observed, and the shape parameter of Weibull distribution 

should be positive. The inequality (15) also shows that the 

scale parameter of Weibull distribution should be positive. 

The Inequalities (16) and (17) indicate an inverse 

relationship between shape parameter and scale parameter 

of lifetime distribution and stress respectively.  
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 Considering this case as a minimization problem, 

since the logarithm of likelihood function was not convex, 

the optimization toolbox of Matlab software was unable to 

find the global optimum solution. Due to the nonlinear 

programming problem, meta-heuristic algorithms could be 

used to solve the problem. Among the meta-heuristic 

algorithms, GA has accuracy and requires less time in 

solving problems. Likewise, this algorithm has more 

capability and is easier to model. Therefore, based on the 

predictability and convergence of genetic algorithm, GA 

toolbox was used to solve the problem.  

GA became popular through the work of  Holland in 

the early 1970s, particularly his book “Adaptation in 

Natural and Artificial Systems” [43]. GA is a search 

heuristic that mimics the process of natural selection and 

is routinely used to generate useful solutions to 

optimization and search problems.  

The evolution usually starts from a population of 

randomly generated individuals, and is an iterative 

process, with the population in each iteration called a 

generation. In each generation, the fitness of every 

individual in the population is evaluated; the fitness is 

usually the value of the objective function in the 

optimization problem being solved. The more fit 

individuals are stochastically selected from the current 

population, and each individual's genome is modified 

(recombined and possibly randomly mutated) to form a 

new generation. The new generation of candidate 

solutions is then used in the next iteration of the 

algorithm. Commonly, the algorithm is terminated when 

either a maximum number of generations has been 

produced, or a satisfactory fitness level has been reached 

for the population. 

After 160 iterations, the GA is converged to the 

optimum solution as follows: 

 

(18) 

(19) 

(20) 

(21) 

(22) 

 Â1= 0.183 

 B̂1= -0.001 

 Â2= 16.105 

 B̂2= 5.067 

ln L = 219.289 

The convergence graph of GA is shown in Figure 5. 

 

 

Fig 5. The convergence graph of genetic algorithm. 

Step 5.Forming the Fisher information matrix 

In order to form the Fisher information matrix, the 

second order partial and mixed partial derivations of the 

log likelihood function were calculated with respect to A1, 

B1 , A2  and B2  . By substituting the numerical values 

consisting of the MLE of parameters, stress levels, the 

observed failure times and censored times, the Fisher 

information matrix was obtained as follows: 

F=  (23) 

[
 
 
 
 
 
 
 
 
 
−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐀𝟏
𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐀𝟏𝛛𝐁𝟏

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏,𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐀𝟏𝛛𝐀𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐀𝟏𝛛𝐁𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐁𝟏𝛛𝐀𝟏

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐁𝟏
𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏,𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐁𝟏𝛛𝐀𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐁𝟏𝛛𝐁𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐀𝟐𝛛𝐀𝟏

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐀𝟐𝛛𝐁𝟏

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏,𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐀𝟐
𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐀𝟐𝛛𝐁𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐁𝟐𝛛𝐀𝟏

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐁𝟐𝛛𝐁𝟏

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏,𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐁𝟐𝛛𝐀𝟐

−𝛛𝟐𝐥𝐧𝐋(𝐀𝟏, 𝐁𝟏, 𝐀𝟐, 𝐁𝟐)

𝛛𝐁𝟐
𝟐 ]

 
 
 
 
 
 
 
 
 

= 

 [

1397.874 36822.168 −2.006 −1.476
36822.168 1051471.328 −45.730 −32.314

−2.006 −45.730 0.0153 0.003
−1.476 −32.314 0.003 0.002

] 

 

 

Step 6.Forming the Covariance matrix 

The asymptotic Covariance matrix Σ̂
 of the 

maximum likelihood estimates Â1 ,  B̂1  , Â2 and B̂2 was 

obtained by inverting the Fisher information matrix F for 

the large sample size. So the Covariance matrix was 

obtained as follows 

 Σ ̂ = F−1 =

[
 
 
 
 

var( Â1) cov( Â1,  B̂1 ) cov( Â1,  Â2) cov( Â1,  B̂2)

cov( B̂1 ,  Â1) var( B̂1) cov( B̂1,  Â2) cov( B̂1 ,  B̂2)

cov( Â2,  Â1) cov( Â2,  B̂1 ) var( Â2) cov( Â2,  B̂2)

cov( B̂2,  Â1) cov( B̂2,  B̂1) cov( B̂2,  Â2) var( B̂2) ]
 
 
 
 

=  (24) 

 [

0.1533        −0.0040    −0.9008    46.4559       
−0.0040     0.0001       0.0235        −1.1799     
−0.9008     0.0235       95.2362      −395.9830
46.4559       −1.1799    −395.9830 15104.7969

]     

 

The approximate (1-α) 100% confidence intervals for 

A1, B1, A2 and B2 are given by [44] 

Â1 ± Zα 2⁄ √var(Â1 ),  B̂1 ± Zα 2⁄ √var( B̂1 ), 

 Â2  ±  Zα 2⁄ √var( Â2 ), 
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 B̂2  ±  Zα 2⁄ √var( B̂2)                                                       (25) 

where Zα 2⁄  is the 100(1- α 2⁄ ) percentile of a standard 

normal variate. The 95% confidence intervals A1, B1, A2 

and B2 are presented in Table6. 

TABLE 6.  THE 95% CONFIDENCE INTERVALS OF 

PARAMETERS. 

Parameters                95% lower limit            95% upper limit 

Â1 = 0.183               -0.583                              0.949 

B̂1= -0.001              -0.0206                            0.0186 

Â2= 16.105             -3.0224                            35.2324 

B̂2= 5.067               -235.8199                        245.9539  

 

According to the estimates obtained for the parameters 

A1, B1, A2 and B2, the shape and scale parameters of the 

Weibull distribution in stress level of 5 mA (normal 

operating conditions) can be obtained from equations (9) 

and (10) as follows: 

(26) β̂ = 0.178 

(27) α̂ = 44.3685  

Reliability function of two-parameter Weibull 

distribution (which has been plotted in Figure 6) for a 

specified period of time t can be directly derived by using 

the estimated parameters from equations (26) and (27) as 

follows: 

(28) 
R(t) = e−(

t

44.3685
)0.178

 

 

 

Fig. 6. Reliability function at different service times in normal 

operating condition. 

The main percentiles of lifetime distribution were 

calculated according to the reliability function as shown in 

Table 7. 

 

 

 

TABLE 7. PERCENTILES OF LIFETIME DISTRIBUTION. 

Percentiles            Lifetime 

10
th
                       0.464 

25
th
                       0.405 

50
th
                       0.360 

     75
th
                       0.333 

90
th
                       0.322 

95
th
                       0.318 

4. CONCLUSION 

In this paper, we have presented a framework defining 

a new approach for FPM with censored data in CSALTs. 

The FPM plays a key role in the reliability analysis of 

systems. Therefore, a correct definition of the model 

describing the failure process is a very important issue that 

has been less focused on. In addition, in the previous 

studies, up to three types of censoring schemes have been 

investigated, whereas the various types of censoring 

schemes have been considered for the first time in this 

study. 

A case study was developed in red LED lamps. 

CSALT with three stress levels under interval censored 

and right censored data was applied. After forming the 

likelihood function, it was observed that the maximum 

likelihood estimates could not be obtained in the closed 

form. Numerical methods such as Newton-Raphson 

method can be used to compute them. The Newton-

Raphson method is a direct approach for estimating the 

relevant parameters in a likelihood function, which uses 

the observed information matrix. When censoring is used, 

the observed information matrix shows more variability, 

especially when the sample size is small. In this paper, as 

a new approach, mathematical programming with a 

mathematical solving approach was proposed and used as 

a tool to compute the maximum likelihood estimates. The 

maximum likelihood estimates of unknown parameters 

were obtained using GA. The Results obtained for the 

Covariance matrix show that some asymptotic variances 

of estimates of the parameters were great. In general, the 

estimates obtained from the censored data have less 

accuracy compared to the complete data. In other words, 

the greater the amount of censored data, the less the 

convergence of estimates of the parameters to the true 

value is, and thus, the asymptotic variance increases. The 

precision of estimation will be improved by increasing the 

sample size. 

In fact, the precision of estimates of the parameters 

depends on the test design (sample size, test time, number 

of failures, etc.).Similarly, since the reducing test time and 

related costs are some of the main reasons for censoring 
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data, there should be a balance between test time, sample 

size and results performance of statistical inference of test. 

Finally, as a future work, in order to increase the 

precision of estimation, optimization criteria such as 

minimization of asymptotic variance of estimates of the 

reliability parameters can be considered and the optimum 

model can be designed accordingly. The optimal design of 

CSALTs can be studied to specify the optimal sample size 

and censoring times. Additionally, using powerful tools in 

the analysis of censored data such as the Expectation–

Maximization algorithm is proposed for estimating the 

parameters.  
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