[1] M. Ranjbar, S. Feli, Temperature-dependent analysis of axially functionally graded CNT reinforced micro-cantilever beams subjected to low velocity impact, Mechanics of Advanced Materials and Structures, 26(13) (2019) 1154-1168.
[2] M. Ranjbar, S. Feli, Low velocity impact analysis of an axially functionally graded carbon nanotube reinforced cantilever beam, Polymer Composites, 39(S2) (2018) E969-E983.
[3] M. Ranjbar, S. Feli, Mechanical and low-velocity impact properties of epoxy-composite beams reinforced by MWCNTs, Journal of composite materials, 53(5) (2019) 693-705.
[4] R.S.S. Alhusseini, A.S.G. Qanber, B.D.H. Al-Kasob, M.H. Jasim, M. Ranjbar, Effect of graphene on the methyl methacrylate beam under lateral low-velocity impact, World Journal of Engineering, 18(3) (2021) 389-396.
[5] A.S.G. Qanber, R.S.S. Alhusseini, B.D.H. Al-Kasob, M.H. Jasim, M. Ranjbar, Effect of the multiple projectile on the low-velocity impact response of CNTs reinforced beam, Multidiscipline Modeling in Materials and Structures, 17(1) (2020) 1-17.
[6] M.H. Jasim, A.M.A. Al-Araji, B.D.H. Al-Kasob, M. Ranjbar, Analytical analysis of jute–epoxy beams subjected to low-velocity impact loading, International Journal of Structural Integrity, 12(3) (2021) 428-438.
[7] M.S. Hassan, H.T. Shomran, A.A. Abbas, B.D.H. Al-Kasob, M.H. Jasim, M. Ranjbar, Multi-layer polymer beam reinforced by graphene platelets on low velocity impact response, Pigment & Resin Technology, 51(3) (2022) 320-326.
[8] P. Malekzadeh, M.G. Haghighi, M. Atashi, Out-of-plane free vibration of functionally graded circular curved beams in thermal environment, Composite Structures, 92(2) (2010) 541-552.
[9] J. Wu, F. Lin, H. Shaw, Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements, Applied Mathematical Modelling, 37(14-15) (2013) 7588-7610.
[10] S. Rajasekaran, Analysis of curved beams using a new differential transformation based curved beam element, Meccanica, 49 (2014) 863-886.
[11] L. Jun, R. Guangwei, P. Jin, L. Xiaobin, W. Weiguo, Free vibration analysis of a laminated shallow curved beam based on trigonometric shear deformation theory, Mechanics Based Design of Structures and Machines, 42(1) (2014) 111-129.
[12] A.-T. Luu, N.-I. Kim, J. Lee, Isogeometric vibration analysis of free-form Timoshenko curved beams, Meccanica, 50 (2015) 169-187.
[13] R.-A. Jafari-Talookolaei, M. Abedi, M. Hajianmaleki, Vibration characteristics of generally laminated composite curved beams with single through-the-width delamination, Composite Structures, 138 (2016) 172-183.
[14] T.-A. Huynh, A.-T. Luu, J. Lee, Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach, Meccanica, 52 (2017) 2527-2546.
[15] N. Mohamed, M. Eltaher, S. Mohamed, L. Seddek, Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations, International Journal of Non-Linear Mechanics, 101 (2018) 157-173.
[16] F. Yang, R. Sedaghati, E. Esmailzadeh, Free in-plane vibration of curved beam structures: a tutorial and the state of the art, Journal of Vibration and Control, 24(12) (2018) 2400-2417.
[17] B. Anirudh, M. Ganapathi, C. Anant, O. Polit, A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling, Composite Structures, 222 (2019) 110899.
[18] S.-Q. Ye, X.-Y. Mao, H. Ding, J.-C. Ji, L.-Q. Chen, Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions, International Journal of Mechanical Sciences, 168 (2020) 105294.
[19] M.S. Beg, M.Y. Yasin, Bending, free and forced vibration of functionally graded deep curved beams in thermal environment using an efficient layerwise theory, Mechanics of Materials, 159 (2021) 103919.
[20] T. Liu, W. Liang, Q. Wang, B. Qin, C. Guo, A. Wang, Random vibration study of functionally graded porous curved beams with elastically restrained ends, Engineering Structures, 270 (2022) 114874.
[21] S. Karampour, E. Ghavanloo, S.A. Fazelzadeh, Free vibration analysis of elastic metamaterial circular curved beams with locally resonant microstructures, Archive of Applied Mechanics, 93(1) (2023) 323-333.
[22] E. Sadeghpour, M. Afshin, M. Sadighi, A theoretical investigation on low-velocity impact response of a curved sandwich beam, International Journal of Mechanical Sciences, 101 (2015) 21-28.
[23] A.K. Miri, A. Nosier, Out-of-plane stresses in composite shell panels: layerwise and elasticity solutions, Acta mechanica, 220 (2011) 15-32.
[24] I. Ahmadi, Free edge stress prediction in thick laminated cylindrical shell panel subjected to bending moment, Applied Mathematical Modelling, 65 (2019) 507-525.
[25] I. Ahmadi, Three-dimensional stress analysis in torsion of laminated composite bar with general layer stacking, European Journal of Mechanics-A/Solids, 72 (2018) 252-267.
[26] I. Ahmadi, Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation, Structural engineering and mechanics: An international journal, 57(4) (2016) 733-762.
[27] A. Nosier, A.K. Miri, Boundary-layer hygrothermal stresses in laminated, composite, circular, cylindrical shell panels, Archive of Applied Mechanics, 80 (2010) 413-440.