
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 55(2) (2023) 227-242
DOI: 10.22060/miscj.2024.22381.5324

RMMOC: Refactoring Method based on Multi-Objective Algorithms and New Criteria
Mohammad Reza Keyvanpour*, Zahra Karimi Zandian, Zohreh Razani

Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran

ABSTRACT: Some factors can change the software and affect the quality, such as the new users’
requirements and the need for compatibility with modern techniques. These factors impose a high
cost on technical software maintenance. One of the techniques for software quality improvement
and maintenance cost reduction is refactoring. The advantage of this method is software behavior
preservation. Because the cost of refactoring manually is high, a technique called the hybrid optimization
problem has been proposed. The main challenge in refactoring is to propose a technique with high
accuracy and less runtime. Hence, in the present work, a refactoring method based on the multi-objective
algorithms called RMMOC is proposed to tradeoff between quality and runtime. This method uses a
helpful search-based method called UMOCell to increase refactoring quality. This method inspires both
population-based and local-based search algorithms. Another novelty in this paper is using new metrics
for program quality assessment that help increase accuracy, decrease refactoring runtime, and find the
best solutions. Because software metrics play a significant role in search-based refactoring approaches,
this paper introduces two effective criteria called MPC and refactoring number reduction in addition to
previously presented metrics. The experiments’ results show that the proposed method’s performance is
remarkable and that using new metrics is effective.

Review History:

Received: Jun. 03, 2023
Revised: Jan. 09, 2024
Accepted: Mar. 02, 2024
Available Online: May, 30, 2024

Keywords:

Refactoring

Software Quality

Search-Based Refactoring

Multi-Objective Algorithm

227

1- Introduction
Software changes during the whole of its lifecycle [1].

These changes can be due to adding new features, software
correction, improving the design and optimization of resource
consumption, adapting the software to new needs and
technologies, etc [2]. These developments reduce reliability,
change the software’s initial and expected behavior, and
increase technical software maintenance costs [3]. Therefore,
it is necessary to take appropriate actions to reduce these
impacts and increase quality [4]. One of the approaches to
improving software quality and design is refactoring [5][6]
[7]. Changing a software system that improves its internal
structure without any alteration in the code’s external
behavior is called refactoring [8][9]. The idea is to organize
variables, methods, and classes for subsequent development
and adaptation [10]. This approach decreases software
complexity [6] and increases developers’ understanding.
Memory and start-up time performance is recovered by
refactoring [11], upgrading software comprehensibility, and
modifying it at a lower cost.

One of the challenges in manual refactoring is the
high cost of this process. Indeed, there is more than one
correct solution. It means the order of the candidate sets of
refactoring can be different, and, as a result, different designs

are obtained [12].
On the other hand, choosing the best set is hard in

complicated and extensive software. Researchers have
proposed refactoring as a hybrid optimization problem
and applied search-based methods to address this shortage
[13]. The idea is to convert different problems to hybrid
optimization or search solutions by meta-heuristic methods
[14]. Search-based refactoring finds the best refactoring
order automatically to improve software quality. The general
structure of software search-based refactoring is shown in
Figure 1.

As the main challenge in refactoring is to propose a
technique with high accuracy and less runtime [15], a new
search-based refactoring method called RMMOC is proposed,
where an open-source tool called Recoder [16] and an
automatic refactoring tool called Multi-refactor [17] are used.
A new and valuable algorithm based on population-based and
local-based algorithms is introduced to increase performance
and quality. In addition, two effective criteria called Message
Passing Coupling (MPC) and refactoring number reduction
are suggested. These metrics help increase accuracy, decrease
refactoring runtime, and find the best refactoring solutions.
The results show the efficiency of the proposed method in
refactoring.

The rest of the paper is organized as follows. In Section
2, the related work is discussed. In Section 3, the proposed *Corresponding author’s email: keyvanpour@alzahra.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article

 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/miscj.2024.22381.5324

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

228

method is introduced; experiments and evaluation results are
presented in Section 4, followed by the concluding remarks
in Section 5.

2- Related Work

Each article should contain the following main parts: This
section provides an overview of the related work in search-
based refactoring. Before explaining the related work, we
must define the software search-based refactoring problem
for easy understanding.

Problem definition. : ,A AR M ST M R IΩ→ Ω = × × ×
where AR is artifact refactoring, AM represents modified or
refactored artifact obtained from the search-based algorithm,
ST shows the chosen search-based algorithm, M is the
metrics used or proposed for refactoring, R is candidate
refactorings, and I is additional information.

So far, different methods have been proposed for problem
optimization in software; one is a search-based algorithm. This
approach has also been considered in the software refactoring
field. As mentioned in some research, like [18][19], search-
based refactoring has various challenges. A review of the
proposed methods in search-based refactoring indicates that
they can be classified based on five different views, as shown
in Figure 2: refactored artifact, automated level, refactoring
technique, search algorithm, and user feedback.

2- 1- Refactored Artifact
As shown in Figure 2, refactoring methods have used

two artifact types: code-based and model-based. Approaches
based on the model consider models as the first group of
artifacts in the software life cycle [20]. In these methods, the
source code quality created based on the models depends on
the models’ quality [21]. Recently, different methods have

been proposed based on the model for class diagram [21]
[22][23], activity diagram [24], and sequence diagram [25]
refactoring. The researchers in [26][27] have used model
transformation for the refactoring method. In this approach,
the model is obtained from the source code. The designer
must decide about the applicable refactorings and metrics.
Evaluating the effect of refactorings on the model takes much
work.

Approaches based on the code consider source codes in the
software life cycle [28] and try to boost code structures [29].
Source code refactoring is reported in various programming
languages. Most search-based refactoring approaches have
been designed for object-oriented open-source programs
based on Java language [30]. In code-based methods,
programs with various sizes and applications are used, and
different metrics are presented for their evaluation. Besides,
a wide range of search algorithms have been applied in this
type of software refactoring. Some techniques decrease
search spaces by removing the refactoring operations that
overlap or are interdependent, such as [31][32]. Others do
this by removing the refactoring sequence of the operations
overlapped, like [26][27]. Some methods have been proposed
for code refactoring at the packet level among code-based
approaches, like [33][34]. In this approach, evaluating the
effect of refactorings on the source code is easier than the
model. On the other hand, due to the existing information
in the code, investigating pre-conditions and applying the
refactorings take much work.

2- 2- Automated Level
Figure 2 shows that the refactoring methods can be divided

into two categories based on the automated level: manual
and automated. In some methods like [33][34][35][36],

Fig. 1. The general structure of software search-based refactoring [13]

Fig. 1. The general structure of software search-based refactoring [13]

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

229

refactoring is applied by the users manually. In this category,
developers manually select and implement the refactoring
when the search process is finished and the optimized
refactorings are found. Indeed, the output of these methods is
the proposed optimized order of refactorings. In this approach,
the user’s idea is applied to choose the refactorings, but this
method is expensive and time-consuming. The application of
refactoring is the user’s task.

In contrast, automated approaches like those proposed in
[17][37][38][39][40][41][42][43] are the methods where the
refactorings are applied directly to the artifact. The output is
the refactored artifact. As the refactoring process is automated
in this category, the necessary time for refactoring is decreased
compared to the manually refactoring-based category. It is
also easier to ensure behavior preservation of the program to
change unwantedly in the automated methods due to regular
refactoring [13]. On the other hand, the programmers must be
informed of the different changes in software designs [44],
and the users have no role in the final decision.

2- 3- Refactoring Technique
The proposed methods in the area of refactoring use

different refactoring techniques regarding how they are
combined with other programming activities and repetition
intervals of refactoring operations. By investigating these
methods, the refactoring techniques can be divided into two
groups [45] (Figure 2): floss and root-canal refactoring. In

floss refactoring, the programmers perform refactoring
simultaneously as the other kinds of program change. In
other words, during the refactoring process, floss mixes other
program changes with refactoring to keep the source code
intact [45]. In [46], the researchers have proposed a floss-
based method called ReCon.

In comparison, root-canal refactoring is used to modify
degraded codes. Root-canal refactoring is suitable for search-
based refactoring using the whole program and providing a
set of refactorings as solutions, such as [47][48][49]. This
approach improves the design quality more than the other
one. On the other hand, the floss technique needs less time
to refactor and is more common than root-canal refactoring
[50].

2- 4- Search Algorithm
Search-based refactoring methods are divided into three

categories (Figure 2) based on the algorithm used to search
for the best solution: mono-objective, multi-objective, and
many-objective algorithms [18]. The mono-objective search
algorithm optimizes the problem based on one fitness function
metric and returns just one final solution. Mono-objective
methods can be divided into local and evolutionary ones like
[44][46][51][52]. Despite local mono-objective methods, a
sequence of valuable refactorings that improve the system’s
overall quality is evaluated in evolutionary mono-objective
methods [52]. Eqs. (1) and (2) show the evaluation method

Fig. 2. Software Search-Based Refactoring Classification based on five views

Fig. 2. Software Search-Based Refactoring Classification based on five views

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

230

for local mono-objective and evolutionary algorithms,
respectively.

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (1)
1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (2)

Mono-objective methods are the easiest, although they
do not allow different metrics and various solutions to be
investigated simultaneously.

Multi-objective-based methods optimize more than one
metric in fitness functions [33][48][49]. Eq. (3) expresses the
evaluation method for multi-objective algorithms.

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (3)

In some approaches, the metrics are calculated by their

weighted sum [17][53]. Developers can choose a solution
from this algorithm’s solutions [47]. If the functions do not
conflict, the second-category results are improved more
than the first-category. Developers can investigate and
choose suitable solutions among various ones, but runtime
increases in this approach compared to mono-objective
search algorithms. Having more than three fitness functions
in a refactoring problem causes researchers to use a many-
objective algorithm such as [54][55][56]. Eq. (4) shows the
evaluation method for many-objective algorithms.

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (4)

Due to several objectives to optimize this method,

monitoring and displaying the solutions are more complex
[54][56]. As the purpose is to achieve the best solution among
various solutions that is suitable for many objectives, the
runtime is also the highest in this method [56], although the
method improves the scalability of search-based approaches
(due to investigating many objectives), which increases their
efficiency in industrial and natural environments [57]. Also,
developers can choose the best solutions in these methods.

2- 5- User Feedback
Based on the user participation rate in the search process,

solution evaluation can be divided into user interaction and
user absence (Figure 2). After obtaining solutions, user
interactions can be utilized in solution fitness evaluation
algorithms [58]. In this approach, the users contribute to
choosing the target solutions, and their ideas affect the

final result. Some approaches interact with the user in the
refactoring sequence production step, like [22]. In addition,
user interaction is considered in the UML designing step [42]
or for source code refactoring [33][40][48]. In contrast, in
some algorithms, users do not have any role in solution quality
improvement, and the method chooses the best solution in the
search process [59].

3- RMMOC: Refactoring Method based on Multi-
Objective Algorithms and New Criteria

As mentioned before, the main challenge in refactoring is
to propose a technique with high accuracy and less runtime.
Therefore, we propose a new refactoring method based on
the search-based algorithm. The proposed system receives
the Java source code as the input, and the refactored source
code in the particular file is presented as the output after the
refactoring process. The general structure of RMMOC is
shown in Figure 3. As indicated in this figure, the proposed
software search-based refactoring includes three steps:
converting source code to meta-model and vice versa using
Recoder [16] framework, determining optimized refactorings,
and applying optimized refactorings on the meta-model. As
shown in the figure, we propose a new method to determine
optimized refactoring.

3- 1- Converting Source Code to Meta-Model and vice versa
based on Recoder

As shown in Figure 3, the input for converting the source
code to the meta-model step is the Java source code, and the
output is Abstract Syntax Trees (ASTs). Refactored Abstract
Syntax Trees (RASTs) are the input of converting meta-model
to source code step, and its output is refactored source code.

Recoder is a Java framework for source code meta-
programming, whose purpose is to present an advanced
infrastructure for analyzer, parser, and Java converter tools
[16]. Recoder makes a meta-model, including source code
entities and class files, to provide meta-programming. Indeed,
this model is the exact syntax model of the program, including
the comments. The syntax model is the attributed syntax tree
where each entity connects to its parents and children. The
Recoder uses this tree to transfer, analyze, parse, and convert
source code to meta-model and vice versa.

3- 2- Determining Optimized Refactorings
This step receives ASTs, Desired Refactorings (DR), and

Desired Metrics (DM) as inputs. The output of determining
the optimized refactoring step is Optimized Refactoring
Operations (ORO). Each embedded refactoring in the
system and the preconditions determining their application
are implemented in this step. Besides, each metric and its
calculation method is introduced and investigated. DR used
in the proposed method is mentioned in [8][17][37]. As
shown in Figure 3, we propose novel metrics in addition to
previous metrics like DM. To increase the accuracy of the
refactoring and find the best refactoring solutions, we propose
novel metrics in addition to previous metrics like DM. As
shown in Figure 4, the first step in the search algorithm for
solution space mining is to choose a refactoring operation

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

231

sequence. A refactoring operation includes declaring the
refactoring operation type, method, field, or class undergoing
the refactoring. After choosing the refactoring operation
sequence, the chosen sequence applies to the meta-model
in the second phase. According to the proposed method, the
amount of the used metrics or meta-model fitness is calculated
by RASTs obtained from the previous step in the next step.
Then, in the last step, the meta-model is restored to its
original state, or if the refactoring improves the meta-model,
it is added to the refactoring order. Then, the stop condition
and satisfying it are investigated. Optimized refactoring
operations are returned from this step as the output.

In the proposed search algorithm, population-based search
algorithms like NSGA-II [60], genetic algorithms, and search
algorithms based on the local search, such as Hill Climbing
and Simulated Annealing (SA), are used and investigated.
When we use a population-based search algorithm, as shown
in Figure 4, the meta-model is restored to its original state
after calculating meta-model fitness. However, when we
utilize a local-based algorithm, after calculating meta-model
fitness, it is added to the refactoring order if the refactoring
improves the meta-model.

In the population-based search algorithm, a refactoring
sequence is chosen in each step of choosing refactoring
until a sequence population is created. In contrast, in the
search algorithm based on the local searches, one refactoring
sequence is used throughout the search process. After applying
the sequence on the meta-model and calculating the fitness

function, if the program quality is improved, that sequence
is added to previously optimized sequences. According to
the proposed method in this paper, the updated search-based
algorithm called UMOCell is used based on a multi-objective
cellular genetic algorithm (MOCell) [61]. In UMOCell, the
current sequence (individual) is replaced with the new one
(obtained after combination and mutation) if it overcomes
the current one. If both sequences are unsuccessful, the
new sequence is compared with all the neighbors of the
refactoring sequence in the population; if the new one has
the worst congestion distance, that sequence is added to the
optimal population (archive) and is not included in the current
population. If the worst congestion gap does not belong to the
new sequence, the sequence is added to the current population
(auxiliary population) and the optimal population.

3- 2- 1- Choosing Refactoring Operation Sequence
As shown in Figure 4, this step receives DRs and ASTs as

inputs and forwards OROs to the next step. In this step, the first
one, refactoring, is chosen at random among the refactorings
used in the system (DRs). The proposed method searches for
suitable elements in ASTs for each chosen refactoring. If a
suitable element is not found for the chosen refactoring, another
refactoring is chosen from the list. Finally, the searching process
is finished if the list becomes empty or all of the refactorings are
matched with the elements. Upon completion of this process,
refactorings used in this step and suitable for the elements
(OROs) are forwarded to the next step.

Fig. 3. The general structure of the RMMOC method

Fig. 3. The general structure of the RMMOC method

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

232

3- 2- 2- Calculating Meta-Model Fitness
After applying the refactoring operation sequence on

the meta-model and obtaining RASTs, this output is sent to
the calculating meta-model fitness as an input. In this step,
in addition to RASTs, DMs are another input. According to
RMMOC, this step aims to combine the valuable metrics
existing in DMs and obtain a comprehensive meta-model
fitness. The metrics are used for program quality assessment
and measurement of the effect of the proposed refactoring
on the system’s performance. In this paper, we use object-
oriented programming-based metrics like metrics sequence of
QMOOD [62] (CDS, NOH, ANA, DAM, DCC, CAM, Agg,
FA, NPM, CIS, NOM) and CK/MOOSE [63] (WMC, NOC).
To create the fitness function from DMs, we need to combine
them. For the metric combination, we use a normalization
method, as Eq. (5) shows:

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (5)

Where mD is metric direction, which means is it desirable

to reduce the metric or increase it? (-1 or +1). mW indicates
the metric weight. mC is the current amount of the metric.

mI is the initial amount of the metric. N implies the number
of metrics.

As it is clear from Eq. (5), the method increment shows an
improvement in the amounts of metrics. Therefore, according
to the proposed normalization method, the proposed search-
based algorithm aims to maximize the fitness function based
on this normalization method.

The new metrics can promote the accuracy of refactoring
and improve QMOOD and CK/MOOSE quality metrics,
in addition to being helpful in program quality assessment.
According to the RMMOC and previous metrics, two other
metrics are proposed in this paper to evaluate the effect of

refactoring on the program performance more accurately.
One of the metrics proposed in QMOOD is direct class
coupling (DCC). This metric is a count of different numbers
of classes that a class is directly related to. DCC metric does
not consider the methods called the class methods bodies,
while these methods belong to other classes. Therefore, we
use message-passing coupling (MPC) [36][64]. Eq. (6) is
used to calculate the MPC metric.

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (6)

Where _classes num is the number of all classes in

the project. Exmethods is the number of external methods.
Decreasing MPC is desirable.

In the real world, applying extensive changes and
refactoring is unpleasant. Many reforms cause the program to
stay away from the original design. On the other hand, these
changes make developers make more effort to apply or review
them in the program. Therefore, researchers and developers
prefer solutions that change the program less [33]. In contrast,
decreasing the changes must maintain quality. Consequently,
another metric proposed in this paper is refactoring number
reduction. While x is a refactoring sequence, the purpose of
the refactoring number reduction metric is to minimize the
size of x .

4- Experiments
We used a system with an Intel Corei7 processor and 8

G RAM to perform the experiments. Eclipse software was
used to run the programs. To evaluate the proposed method,
it needs to present three main parts. First, the data set used
in this paper is explained. In the second part, the evaluation

Fig. 4. The general structure of the determining optimized refactorings step

Fig. 4. The general structure of the determining optimized refactorings step

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

233

criteria are introduced. In the last part, different test methods
are introduced, and the results obtained are analyzed and
compared with each other based on the evaluation criteria.

4- 1- Dataset
In this paper, the input of the proposed system (RMMOC)

is the Java source code. This source code includes Java
libraries and applications. The list of programs used in this
paper to study and evaluate the RMMOC system is presented
in Table 1. The number of lines and classes in each program is
shown in this table. These programs have been used in some
previous works in search-based refactoring, such as [17][40]
[43][65][66].

Jason is a format for data storage and interchange. Mango
is a Java library. Beaver is a parser generator. Apache xml-
rpc is an implementation for xml-rpc. This program uses
XML for the remote procedure call. JHotDraw is a two-
dimensional graphical framework for structural drawing
editors. GanttProject is a tool for project scheduling and
management. XOM is an API for XML file processing.

4- 2- Evaluation Criteria
Before explaining the evaluation criteria, we must express

the desired refactorings used and introduce the proposed
metrics in this paper. As in other studies, we use some
refactorings introduced in [8][17][37]. These refactorings
are in field, method, or class levels. In previous sections, DR
showed desired refactorings. Table 2 presents the refactorings
used in the proposed system.

Researchers have also used various metrics to evaluate the
program quality and the effect of the proposed and applied
refactorings on the system. As mentioned before, the metrics
used or proposed in this paper are based on object-oriented
programming. We utilize some metrics applicable in some
research, namely the metrics sequence of QMOOD [62] and
CK/MOOSE [63].

As mentioned before, we proposed two other metrics in
this paper and used what was proposed in other research.
MPC and refactoring number reduction are proposed to
accurately evaluate the effect of refactoring on the program’s
performance.

Table 1. The characteristics of the programs usedTable 1. The characteristics of the programs used

Program The number of
lines

The number of
classes

Json 1.1 2196 12
Mango 3470 78

Beaver 0.9.11 6493 70
Apache xml-rpc 3.0 11616 79

JHotDraw 5.3 27824 241
GanttProject 1.11.1 31978 245

XOM 1.2.1 47691 217

Table 2. The refactorings used in the proposed systemTable 2. The refactorings used in the proposed system

Refactorings at class
level

Refactorings in method-
level

Refactorings in field
level

Make class final Increase method visibility Increase field visibility

Make class non-final Decrease method visibility Decrease field visibility

Make class abstract Make method final Make field final

Make class concrete Make method non-final Make field non-final

Collapse hierarchy Make method static Make field static

Extract subclass Make method non-static Make field non-static

Remove class Move method down Move field down

Remove interface Move method up Move field up

- Remove method Remove field

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

234

After introducing the desired refactoring and metrics,
as well as the proposed metrics, evaluation criteria are
expressed. In software search-based refactoring, different
criteria are generally used to evaluate the performance of the
proposed methods. In this paper, we use runtime [36][33][67]
[68], and the fitness function amount [36][67][69] to evaluate
RMMOC system.

We use the following equations to measure the
improvement of our fitness function from the desired metrics
and the proposed metrics in this paper.

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (7)

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (8)

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (9)

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11)

 (10)

1 2(); { , ,..., }nEvaluateF x x ref ref ref (1)

  1 2 1; { , ,..., }; { ,..., }m i nEvaluateF X X x x x x ref ref  (2)

1 2 3

1 2

1 2

(), (), ();
{ , ,..., };
{ , ,..., }

m

i n

Evaluate F X F X F X
X x x x
x ref ref ref




 (3)

1 2 3

1 2

1 2

(), (), (),..., ();
{ , ,..., };
{ , ,..., }

k

m

i n

Evaluate F X F X F X F X
X x x x
x ref ref ref




 (4)

1
. (1)

N
m

m m
m m

CD W
I

 (5)

_

1

_

classes num exmethods
all methodsMPC

classes num



 (6)

. (1)MPC

MPC

MPC DW C
I

  (7)

 . (1)DCC

DCC

DCC DW C
I

  (8)

Coupling MPC DCC  (9)

(),Size x x refactoring sequence (10)

1
. (1)

n
m

m m
m m

Quality D W C
I

  (11) (11)

Where iD is metric direction, which examines if it is

desirable to reduce the metric or increase it (-1 or +1). iW
indicates the metric weight. iC is the current amount of the
metric. iI is the initial amount of the metric. n implies the
number of metrics.

To evaluate the proposed system based on the proposed
metric MPC , investigate the effect of MPC and DCC
on performance and use the benefits of both, Eqs. (7)-(9)
are introduced. To assess the RMMOC system based on the
refactoring number reduction metric, Eq. (10) is used.
We finally utilize Eq. (11) to evaluate the proposed system
based on the previous section and MPC ’s desired metrics.
As mentioned before, they need to be combined to create a
fitness function from metrics. Therefore, we use this equation
for this purpose. In this paper, we consider the effect of each
metric on the fitness function to be the same and set the
weight of each metric at 1. This decision is to prevent biasing
the results to special metrics.

4- 3- Experiments Results
It must be tested in different respects to evaluate each new

method in each field comprehensively. Therefore, in this paper,
two tests have been designed and performed to evaluate the
proposed system. In Test 1, the effect of 3 metrics, i.e., MPC,
DCC, and Coupling, on the quality function is investigated

first. With this test, the necessity of the proposed metric is
specified. Then, mono-objective and multi-objective search-
based algorithms are compared based on quality function,
refactoring number reduction, and runtime. This part of
Test 1 determines the superiority of the two search-based
algorithm types. Test 2 compares the proposed search-based
algorithm UMOCell and NSGA-II based on quality function
and runtime for plenary evaluation.

4- 3- 1- Test 1: the effect of MPC, DCC, and Coupling on the
quality function and the comparison between search-based
algorithms based on quality function, refactoring number
reduction, and runtime

The first purpose of this test is to investigate the effect
of MPC as the proposed metric on the quality function. The
second and main goal is to compare search-based algorithms
based on quality function, refactoring number reduction, and
runtime. To achieve this aim, we compare the quality function
results based on MPC with the quality function results based
on DCC and Coupling. Another motivation for doing this test is
to compare mono-objective and multi-objective search-based
algorithms based on quality function, refactoring number
reduction, and runtime. This test shows the advantages and
disadvantages of these algorithms. To investigate the effect
of MPC on the quality of different refactoring search-based
algorithms, we use Eqs. (7)-(9). The genetic algorithm is the
primary search algorithm to run this test. The effect of MPC,
DCC, and Coupling metrics on the quality function is studied
and reported in Figure 5.

Discussion: As shown in Figure 5, the quality improvement
gained from using both MPC and DCC as coupling metrics is
the highest. Between MPC and DCC, using MPC increases the
quality more than the other. This means using coupling leads
to the use of the advantages of both, improving refactoring
quality. According to these results, the quality based on the
Coupling metric is used as the quality metric for other tests.

To compare mono-objective and multi-objective search-
based algorithms based on quality function and refactoring
number, we use the genetic algorithm as a basic mono-
objective algorithm and the NSGA-II algorithm as a known
multi-objective algorithm. The fitness functions utilized in
this test are quality and refactoring number reduction. Six
programs introduced in Table 2 are used as the input dataset.
Json project is not used due to its small size. According to the
test method in the search-based refactoring approaches [17]
[47][48][54], each program runs for each algorithm 30 times.
The average of these 30 times is reported for each program
and algorithm. Table 3 reports the results of Test 1 based on
the proposed metrics.

For greater transparency of the impact of using the
proposed metrics, the mean of 5 values of quality and number
of refactoring for each program is displayed in Figures 6 and 7.

Discussion: As shown in Figure 6, the mono-objective
algorithm’s mean quality is better than the multi-objective
one for each input. It illustrates that considering the
refactoring number reduction function, the quality function
amount is decreasing. On the other hand, as shown in Table

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

235

Fig. 5. The quality obtained from different metrics

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

MPC DCC Coupling(DCC,MPC)

Q
ua

lit
y

Fig. 5. The quality obtained from different metrics

Table 3. The results of Test 1 based on the proposed metricsTable 3. The results of Test 1 based on the proposed metrics

Number of
refactoring:

multi-objective

Number of
refactoring:

mono-
objective

Quality: multi-
objective

Quality: mono-
objective Run#

Mango
41 104 0.190647 0.196568 1
32 104 1.017633 0.314965 2
37 89 0.250703 0.342409 3
63 84 0.26635 0.178561 4
74 109 0.176998 1.935016 5

beaver
41 100 0.365738 0.730704 1
32 56 0.391962 0.593734 2
14 72 0.315106 0.699963 3
23 70 0.469109 0.875781 4
22 97 0.376679 0.579344 5

xml-rpc
96 82 0.457224 0.322768 1
53 172 0.204879 0.313031 2
37 65 0.153211 0.31061 3
27 116 0.149758 0.295811 4
30 90 0.17347 0.377166 5

JHotDraw
42 101 0.413414 0.545903 1
23 112 0.310589 0.670168 2
40 183 0.431168 0.502241 3
28 124 0.369394 0.562147 4
41 134 0.402261 0.684667 5

Ganttproject
44 130 0.148812 0.273976 1
21 142 0.091526 0.278955 2
101 93 0.235551 0.224911 3
32 91 0.118144 0.253131 4
21 189 0.138006 0.246035 5

XOM
42 145 0.688116 0.838478 1
27 53 0.682168 0.649268 2
40 148 0.64568 0.775633 3
28 120 0.586945 0.893336 4
61 86 0.664308 0.786251 5

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

236

4, the quality fitness function does not necessarily increase
with the increasing refactoring number. Different refactoring
sequences have different effects on the quality fitness
function.

Discussion: According to Figures 6 and 7, for GanttProject
input, more refactoring is suggested, and the lower quality
fitness function is obtained. This can be attributed to
the software structure under consideration or the type of
applicable refactoring. Generally, these two figures show that
the quality function fits more by increasing the number of
refactoring.

Figure 7 indicates that the mean number of refactoring
for multi-objective algorithms is lower than that for mono-
objective algorithms.

Figure 8 presents the runtime of the mono and multi-
objective algorithms. The unit of runtime in this figure is
minute (m). Generally, runtime has increased due to the
number of classes in the program. As shown in this figure,
the runtime for the mono-objective algorithm is longer for
all inputs than for the multi-objective algorithm. Since the
number of applicable refactorings is significantly more

significant in the mono-objective approach than in the
multi-objective approach, it is natural to spend more time
implementing the mono-objective algorithm.

4- 3- 2- Test 2: the comparison between UMOCell and
NSGA-II based on runtime and quality function

It must be compared with other methods to evaluate
the proposed method. Therefore, this section compares the
refactoring method based on the UMOCell algorithm and
NSGA-II based on quality function and runtime. Two fitness
functions are measured to compare two multi-objective
algorithms: positive and negative. The positive fitness
function is the sum of the metrics with positive improvement,
mainly CDS, NOH, ANA, DAM, CAM, Agg, FA, NPM,
Abstractness, and Abstract ratio. The negative fitness function
shows the sum of the metrics with negative improvement,
mainly DCC, CIS, NOM, and WMC. The measurement of
the sum of all metrics as an objective function regarding
positive or negative improvement leads the improver to apply
his preference on the improvement rate.

Consequently, we have proposed a multi-objective

Fig. 6. The results of Test 1 based on the quality

0

0.2

0.4

0.6

0.8

1

mango beaver
0.9.11

xml-rpc 3.0 jhotdraw-5.3 Ganttproject
1.11.1

xom 1.2.1

Q
ua

lit
y

mono-objective multi-objective

Fig. 6. The results of Test 1 based on the quality

Fig. 7. The results of Test 1 based on the number of refactoring

0
20
40
60
80

100
120
140
160

mango beaver
0.9.11

xml-rpc 3.0 jhotdraw-5.3 Ganttproject
1.11.1

xom 1.2.1

N
um

be
r o

f R
ef

ac
to

rin
g

mono-objective multi-objective

Fig. 7. The results of Test 1 based on the number of refactoring

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

237

algorithm. To measure positive and negative fitness functions
and evaluate the UMOCell algorithm, we compare UMOCell
and NSGA-II based on runtime and quality functions in this
test. Like Test 1, each program runs for each algorithm 30
times. The average of these 30 times is reported for each
program and algorithm. Table 4 reports the examples of

running these algorithms for five programs and five times.
Figures 9 and 10 show the results of test 2 based on the

quality function and the positive or negative one, respectively.
Discussion: Figures 9 and 10 show that the UMOCell

algorithm performs better on average than the NSGA-II
algorithm. This performance is due to the more significant

Fig. 8. The results of Test 1 based on the runtime (m)

0

50

100

150

200

250

mango beaver
0.9.11

xml-rpc 3.0 jhotdraw-5.3 Ganttproject
1.11.1

xom 1.2.1

Ru
nt

im
e

(m
)

mono-objective multi-objective

Fig. 8. The results of Test 1 based on the runtime (m)

Table 3. The results of Test 1 based on the proposed metricsTable 4. The examples of running NSGA-II and UMOCell algorithms

UMOCell-
negative

NSGA-II-
negative

UMOCell-
positive

NSGA-II-
positive Run#

json
0.385934 0.077675 1.182398 0.64693 1
0.58787 0.101982 1.226165 0.467005 2

0.040883 0.101476 1.182163 0.693031 3
0.700748 0.106152 1.343456 0.326917 4
0.178292 0.131038 1.598973 0.645893 5

beaver
0.16876 0.022562 0.964044 0.213142 1

0.200258 0.045591 0.863172 0.264097 2
0.016637 0.06414 0.921 0.490644 3
0.026182 0.038908 0.71617 0.217302 4
0.040277 0.018955 0.4644 0.442556 5

xml-rpc
0.127065 0.070596 1.033293 0.335702 1
0.182831 0.055543 0.69258 0.322416 2
0.140621 0.061149 0.882906 0.329173 3
0.050555 0.01342 0.994462 0.267743 4
0.121653 0.031711 0.807297 0.444467 5

JHotDraw
0.068899 0.014521 0.811985 0.471024 1
0.07562 0.028133 0.922504 0.572528 2
0.09732 0.018221 0.933846 0.327728 3

0.099403 0.015237 0.890966 0.350792 4
0.089403 0.017769 0.820966 0.484191 5

XOM
0.0763 0.0438 0.900388 0.653733 1

0.079897 0.038428 1.033102 0.679188 2
0.059233 0.037831 0.795776 0.60562 3
0.071314 0.041729 0.745144 0.688629 4
0.099403 0.020739 0.890966 0.595766 5

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

238

number of the proposed refactorings in the UMOCell
algorithm than in NSGA-II.

Figure 11 illustrates the results of Test 2 based on runtime.
The unit of runtime in this figure is minute (m).

Discussion: As shown in Figure 11, the runtime in
UMOCell is more than that in NSGA-II. Contrary to NSGA-
II, the UMOCell algorithm performs more slowly in selecting
the solution and conducts dominance evaluation to add the
solution to the optimal set at each step. It leads the proposed
algorithm to have more runtime.

5- Conclusion
Refactoring is to improve the design and internal structure

of the software while maintaining its external behavior and
quality. Proposing a fast and accurate refactoring method
is the main challenge in this field. Hence, researchers have
formulated refactoring as an optimization problem and use
search-based techniques. This research proposes a refactoring
method based on multi-objective algorithms called RMMOC
to develop search-based refactoring. In addition, a metric
called MPC has been added to the system to measure the

Fig. 9. The results of Test 2 based on the positive quality function

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

json beaver xml-rpc jhotdraw xom

Po
sit

iv
e

qu
al

ity

NSGA-II-positive UMOCell-positive

Fig. 9. The results of Test 2 based on the positive quality function

Fig. 10. The results of Test 2 based on the negative quality function

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

json beaver xml-rpc jhotdraw xom

N
eg

at
iv

e
qu

al
ity

NSGA-II-negative UMOCell-negative

Fig. 10. The results of Test 2 based on the negative quality function

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

239

coupling metrics used by the system more accurately. The
number of refactorings metric has also been proposed to
reduce software deviation from the original design as a
secondary novelty. The experiments’ results show that the
proposed method’s performance is remarkable and that using
new metrics is effective.

References
[1]  B. Bafandeh Mayvan, A. Rasoolzadegan, and A. Javan

Jafari, “Bad smell detection using quality metrics and
refactoring opportunities,” J. Softw. Evol. Process, vol.
32, no. 8, p. e2255, 2020.

[2] M. Akour, M. Alenezi, and H. Alsghaier, “Software
refactoring prediction using SVM and optimization
algorithms,” Processes, vol. 10, no. 8, p. 1611, 2022.

[3]  P. Tripathy and K. Naik, Software evolution and
maintenance: a practitioner’s approach. John Wiley &
Sons, 2014.

[4]  R. C. Martin, Agile software development: principles,
patterns, and practices. Prentice Hall, 2002.

[5]  R. Alsarraj and others, “Refactoring for software
maintenance: A Review of the literature,” J. Educ. Sci.,
vol. 30, no. 1, pp. 89–102, 2021.

[6]  S. M. Akhtar, M. Nazir, A. Ali, A. S. Khan, M. Atif,
and M. Naseer, “A Systematic Literature Review on
Software-refactoring Techniques, Challenges, and
Practices,” 2022.

[7]  H. Ahmadi, M. Ashtiani, M. A. Azgomi, and R. Saheb-
Nassagh, “A DQN-based agent for automatic software
refactoring,” Inf. Softw. Technol., vol. 147, p. 106893,
2022.

[8]  M. Fowler, K. Beck, and W. R. Opdyke, “Refactoring:

Improving the design of existing code,” in 11th European
Conference. Jyväskylä, Finland, 1997.

[9]  H. Khosravi and A. Rasoolzadegan, “A Meta-Learning
Approach for Software Refactoring,” arXiv Prepr.
arXiv2301.08061, 2023.

[10] W. F. Opdyke, “Refactoring: An aid in designing
application frameworks and evolving object-oriented
systems,” in Proc. SOOPPA’90: Symposium on
Object-Oriented Programming Emphasizing Practical
Applications, 1990.

[11] B. Du Bois, S. Demeyer, J. Verelst, T. Mens, and M.
Temmerman, “Does god class decomposition affect
comprehensibility?,” in IASTED Conf. on Software
Engineering, 2006, pp. 346–355.

[12] R. Morales, F. Chicano, F. Khomh, and G. Antoniol,
“Exact search-space size for the refactoring scheduling
problem,” Autom. Softw. Eng., vol. 25, no. 2, pp. 195–
200, 2018.

[13] T. Mariani and S. R. Vergilio, “A systematic review on
search-based refactoring,” Inf. Softw. Technol., vol. 83,
pp. 14–34, 2017.

[14] M. O’Keeffe and M. O. Cinnéide, “A stochastic
approach to automated design improvement,” in ACM
International Conference Proceeding Series, 2003, vol.
42, pp. 59–62.

[15] V. Cortellessa, D. Di Pompeo, V. Stoico, and M.
Tucci, “Many-objective optimization of non-functional
attributes based on refactoring of software models,” Inf.
Softw. Technol., vol. 157, p. 107159, 2023.

[16] D. Heuzeroth, U. Aßmann, M. Trifu, and V. Kuttruff,
“The COMPOST, COMPASS, Inject/J and RECODER
tool suite for invasive software composition: Invasive

Fig. 11. The results of test 2 based on runtime (m)

0

50

100

150

200

json beaver xml-rpc jhotdraw xom

Ru
nt

im
e

(m
)

NSGA-II UMOCell

Fig. 11. The results of test 2 based on runtime (m)

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

240

composition with COMPASS aspect-oriented
connectors,” in International Summer School on
Generative and Transformational Techniques in Software
Engineering, 2005, pp. 357–377.

[17] M. Mohan, D. Greer, and P. McMullan, “Technical debt
reduction using search based automated refactoring,” J.
Syst. Softw., vol. 120, pp. 183–194, 2016.

[18] Z. Razani and M. Keyvanpour, “SBSR Solution
Evaluation: Methods and Challenges Classification,” in
2019 5th Conference on Knowledge Based Engineering
and Innovation (KBEI), 2019, pp. 181–188.

[19] N. Shafiei and M. R. Keyvanpour, “Challenges
Classification in Search-Based Refactoring,” in 2020
6th International Conference on Web Research (ICWR),
2020, pp. 106–112.

[20] D. C. Schmidt, “Model-driven engineering,” Comput.
Comput. Soc., vol. 39, no. 2, p. 25, 2006.

[21] A. Ghannem, G. El Boussaidi, and M. Kessentini,
“Model refactoring using examples: a search-based
approach,” J. Softw. Evol. Process, vol. 26, no. 7, pp.
692–713, 2014.

[22] A. Ghannem, G. El Boussaidi, and M. Kessentini,
“Model refactoring using interactive genetic algorithm,”
in International Symposium on Search Based Software
Engineering, 2013, pp. 96–110.

[23] A. Ghannem, M. Kessentini, M. S. Hamdi, and G. El
Boussaidi, “Model refactoring by example: A multi-
objective search based software engineering approach,”
J. Softw. Evol. Process, vol. 30, no. 4, p. e1916, 2018.

[24] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb,
“Multi-view refactoring of class and activity diagrams
using a multi-objective evolutionary algorithm,” Softw.
Qual. J., vol. 25, no. 2, pp. 473–501, 2017.

[25] A. A. B. Baqais and M. Alshayeb, “Sequence diagram
refactoring using single and hybridized algorithms,”
PLoS One, vol. 13, no. 8, p. e0202629, 2018.

[26] B. Alkhazi, T. Ruas, M. Kessentini, M. Wimmer,
and W. I. Grosky, “Automated refactoring of ATL
model transformations: a search-based approach,”
in Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages
and Systems, 2016, pp. 295–304.

[27] M. Hentati, A. Trabelsi, L. Ben Ammar, and A.
Mahfoudhi, “MoTUO: An Approach for Optimizing
Usability Within Model Transformations,” Arab. J. Sci.
Eng., vol. 44, no. 4, pp. 3253–3269, 2019.

[28] M. Paixão et al., “Behind the intents: An in-depth
empirical study on software refactoring in modern
code review,” in Proceedings of the 17th International
Conference on Mining Software Repositories, 2020, pp.
125–136.

[29] E. Fernandes et al., “Refactoring effect on internal
quality attributes: What haven’t they told you yet?,” Inf.
Softw. Technol., vol. 126, p. 106347, 2020.

[30] M. Mohan and D. Greer, “A survey of search-based
refactoring for software maintenance,” J. Softw. Eng.
Res. Dev., vol. 6, no. 1, pp. 1–52, 2018.

[31] R. Morales, F. Chicano, F. Khomh, and G. Antoniol,
“Efficient refactoring scheduling based on partial order
reduction,” J. Syst. Softw., vol. 2, no. 5, pp. 25–51, 2018.

[32] H. Liu, G. Li, Z. Y. Ma, and W. Z. Shao, “Conflict-
aware schedule of software refactorings,” IET Softw.,
vol. 2, no. 5, pp. 446–460, 2008.

[33] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide,
A. Ouni, and Y. Cai, “An Interactive and Dynamic
Search-Based Approach to Software Refactoring
Recommendations,” IEEE Trans. Softw. Eng., 2018.

[34] A. Ouni, M. Kessentini, M. Ó Cinnéide, H. Sahraoui,
K. Deb, and K. Inoue, “MORE: A multi-objective
refactoring recommendation approach to introducing
design patterns and fixing code smells,” J. Softw. Evol.
Process, vol. 29, no. 5, p. e1843, 2017.

[35] M. Kessentini, T. J. Dea, and A. Ouni, “A context-based
refactoring recommendation approach using simulated
annealing: two industrial case studies,” in Proceedings of
the Genetic and Evolutionary Computation Conference,
2017, pp. 1303–1310.

[36] A.-R. Han and S. Cha, “Two-Phase Assessment
Approach to Improve the Efficiency of Refactoring
Identification,” IEEE Trans. Softw. Eng., vol. 44, no. 10,
pp. 1001–1023, 2017.

[37] M. Mohan and D. Greer, “MultiRefactor: automated
refactoring to improve software quality,” in International
Conference on Product-Focused Software Process
Improvement, 2017, pp. 556–572.

[38] I. Griffith, S. Wahl, and C. Izurieta, “TrueRefactor: An
automated refactoring tool to improve legacy system
and application comprehensibility,” in 24th International
Conference on Computer Applications in Industry and
Engineering, ISCA 2011, 2011.

[39] I. H. Moghadam, “Multi-level automated refactoring
using design exploration,” in International Symposium
on Search Based Software Engineering, 2011, pp. 70–75.

[40] V. Alizadeh and M. Kessentini, “Reducing interactive
refactoring effort via clustering-based multi-objective
search,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE),
2018, pp. 464–474.

[41] I. H. Moghadam and M. Ó Cinnéide, “Code-Imp: A tool
for automated search-based refactoring,” in Proceedings
of the 4th Workshop on Refactoring Tools, 2011, pp.
41–44.

[42] I. H. Moghadam and M. O. Cinnéide, “Resolving
conflict and dependency in refactoring to a desired
design,” e-Informatica Softw. Eng. J., vol. 9, no. 1, 2015.

[43] M. O’Keeffe and M. Ó. Cinnéide, “Search-based
software maintenance,” in Conference on software
maintenance and reengineering (CSMR’06), 2006, pp.

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

241

10--pp.
[44] M. O’Keeffe and M. O. Cinnéide, “Search-based

refactoring for software maintenance,” J. Syst. Softw.,
vol. 81, no. 4, pp. 502–516, 2008.

[45] E. Murphy-Hill and A. P. Black, “Refactoring tools:
Fitness for purpose,” IEEE Softw., vol. 25, no. 5, pp.
38–44, 2008.

[46] R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F.
Chicano, “On the use of developers’ context for automatic
refactoring of software anti-patterns,” J. Syst. Softw.,
vol. 128, pp. 236–251, 2017.

[47] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S.
Hayashi, and K. Deb, “A robust multi-objective approach
to balance severity and importance of refactoring
opportunities,” Empir. Softw. Eng., vol. 22, no. 2, pp.
894–927, 2017.

[48] H. Wang, M. Kessentini, and A. Ouni, “Interactive
refactoring of web service interfaces using computational
search,” IEEE Trans. Serv. Comput., 2017.

[49] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K.
Deb, “Multi-criteria code refactoring using search-based
software engineering: An industrial case study,” ACM
Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 1–53,
2016.

[50] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we
refactor, and how we know it,” IEEE Trans. Softw. Eng.,
vol. 38, no. 1, pp. 5–18, 2011.

[51] M. Harman and L. Tratt, “Pareto optimal search based
refactoring at the design level,” in Proceedings of the
9th annual conference on Genetic and evolutionary
computation, 2007, pp. 1106–1113.

[52] S. Kebir, I. Borne, and D. Meslati, “A genetic algorithm-
based approach for automated refactoring of component-
based software,” Inf. Softw. Technol., vol. 88, pp. 17–36,
2017.

[53] O. Seng, J. Stammel, and D. Burkhart, “Search-based
determination of refactorings for improving the class
structure of object-oriented systems,” in Proceedings of
the 8th annual conference on Genetic and evolutionary
computation, 2006, pp. 1909–1916.

[54] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó.
Cinnéide, and K. Deb, “On the use of many quality
attributes for software refactoring: a many-objective
search-based software engineering approach,” Empir.
Softw. Eng., vol. 21, no. 6, pp. 2503–2545, 2016.

[55] A. L. Jaimes, C. A. C. Coello, and J. E. U. Barrientos,
“Online objective reduction to deal with many-objective
problems,” in International Conference on Evolutionary
Multi-Criterion Optimization, 2009, pp. 423–437.

[56] H. Ishibuchi, N. Tsukamoto, and Y. Nojima,
“Evolutionary many-objective optimization: A short
review,” in 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational
Intelligence), 2008, pp. 2419–2426.

[57] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
M. Ó Cinnéide, “High dimensional search-based software
engineering: finding tradeoffs among 15 objectives for
automating software refactoring using NSGA-III,” in
Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, 2014, pp. 1263–1270.

[58] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant,
and N. Gaud, “A review and taxonomy of interactive
optimization methods in operations research,” ACM
Trans. Interact. Intell. Syst., vol. 5, no. 3, pp. 1–43, 2015.

[59] A. Ramirez, J. R. Romero, and C. L. Simons, “A
systematic review of interaction in search-based software
engineering,” IEEE Trans. Softw. Eng., vol. 45, no. 8, pp.
760–781, 2018.

[60] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast and elitist multiobjective genetic algorithm: NSGA-
II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–
197, 2002.

[61] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro,
and E. Alba, “Mocell: A cellular genetic algorithm for
multiobjective optimization,” Int. J. Intell. Syst., vol. 24,
no. 7, pp. 726–746, 2009.

[62] P. K. Goyal and G. Joshi, “QMOOD metric sets to
assess quality of Java program,” in 2014 International
Conference on Issues and Challenges in Intelligent
Computing Techniques (ICICT), 2014, pp. 520–533.

[63] D. Boshnakoska and A. Mišev, “Correlation between
object-oriented metrics and refactoring,” in International
Conference on ICT Innovations, 2010, pp. 226–235.

[64] W. Li and S. Henry, “Object-oriented metrics that
predict maintainability,” J. Syst. Softw., vol. 23, no. 2,
pp. 111–122, 1993.

[65] M. Harman, Y. Jia, and Y. Zhang, “Achievements,
open problems and challenges for search based software
testing,” in 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST),
2015, pp. 1–12.

[66] G. Antoniol, M. Di Penta, and M. Harman, “Search-
based techniques applied to optimization of project
planning for a massive maintenance project,” in 21st
IEEE International Conference on Software Maintenance
(ICSM’05), 2005, pp. 240–249.

[67] A. Ouni, M. Kessentini, H. Sahraoui, and M.
Boukadoum, “Maintainability defects detection and
correction: a multi-objective approach,” Autom. Softw.
Eng., vol. 20, no. 1, pp. 47–79, 2013.

[68] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui,
“Prioritizing code-smells correction tasks using chemical
reaction optimization,” Softw. Qual. J., vol. 23, no. 2, pp.
323–361, 2015.

[69] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G.
Antoniol, “Earmo: an energy-aware refactoring approach
for mobile apps,” IEEE Trans. Softw. Eng., vol. 44, no.
12, pp. 1176–1206, 2017.

M. R. Keyvanpour et al., AUT J. Model. Simul., 55(2) (2023) 227-242, DOI: 10.22060/miscj.2024.22381.5324

242

HOW TO CITE THIS ARTICLE
M. R. Keyvanpour, Z. Karimi Zandian, Z. Razani, RMMOC: Refactoring Method based on Mul-
ti-Objective Algorithms and New Criteria, AUT J. Model. Simul., 55(2) (2023) 227-242.

DOI: 10.22060/miscj.2024.22381.5324

https://dx.doi.org/10.22060/miscj.2024.22381.5324

