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ABSTRACT 

Based on the problems caused by today conventional vehicles, much attention has been put on the fuel 

cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation 

applications, because the load power profile includes transient that is not compatible with the fuel cell 

dynamic. To resolve this problem, hybridization of the fuel cell and energy storage devices such as batteries 

and ultra-capacitors are usually applied. This article has studied a hybrid electric vehicle comprising a fuel 

cell system and battery pack. Energy management strategy is one of the essential issues in hybrid electric 

vehicles designing, for power optimal distribution as well as, improving both the fuel economy and the 

performance of vehicle's components. In this paper, an optimal hierarchical strategy has been proposed based 

on the load power prediction and intelligent controlling to achieve an optimal distribution of energy between 

the vehicle's power sources; and, to ensure reasonable performance of the vehicle's components. For load 

power prediction, a new method is presented that is based on Takagi – Sugeno fuzzy model trained by an 

improved differential evolutionary algorithm with an objective function formulated by support vector 

machine. A combination of empirical mode decomposition (EMD) algorithm capabilities, fuzzy logic 

controller, supervisory switching technique and improved differential evolution algorithm is used to design 

the proposed energy management strategy. The proposed strategy is assessed in the UDDS Standard drive 

cycle. Simulation results show that the proposed control strategy can fulfill all the requirements of an optimal 

energy management. 
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1. INTRODUCTION 

In recent years, due to increasing concerns in energy 

crisis and environmental pollution, extensive researches 

have been done on fuel cell (FC) vehicles as a viable 

alternative for today conventional vehicles [1]. Despite 

significant advances in the fuel cell technology, 

technological limitations such as low efficiency at low 

power demand and slow transmission rate of power at 

transient positions are existed [2]. These cases have 

resulted that the fuel cell system should not be used alone 

in the hybrid electric vehicles in order to meet power 

demand, especially in start-up and transient times. 

Compared to the fuel cells, batteries have higher power 

density that can provide necessary load power 

immediately in transient position [3]. Also based on the 

fact that fuel cells have no energy recovery capability, 

hybridization of the fuel cell and batteries is one of the 

most important requirements of fuel cell vehicles. In 

hybrid configuration of FC and battery, FC system and 

battery pack are sized to meet the continuous and transient 

power load profile, respectively. The hybridization of fuel 

cell and battery has remarkable results including: 

reduction in fuel consumption, and downsizing of FC. 

Many published papers such as [4]-[5]-[6]-[7] proposed a 

structure consists of FC and battery (as energy storage 

system) for hybrid electric vehicle configuration. 

Designing an energy management strategy is an important 

and inevitable matter in hybrid electric vehicles, due to the 

distinct nature of FC and battery dynamics [8]. Many 

different energy management techniques have been 

proposed in the literature. In many studies on the hybrid 

electric vehicles, according to the nonlinear dynamic of 

the system, parametric sensitivity to environmental 

factors, load complexity and system uncertainty are the 

basic of energy management strategy on intelligent 

controllers. Among the intelligent control strategies, fuzzy 

logic control (FLC),has a central role in the intelligent 

strstegies due to its independence of mathematical 

modeling and training procedure [9]. In [9-16]the FLC 

was used to design energy management strategy in hybrid 

electric vehicles. Intelligent energy management strategies 

in [1-3]and[8-10] were designed based on the distinctive 

nature and dynamic of the power source. Although in 

afore mentioned papers, the FC lifetime problem and its 

optimum performance have been studied better than the 

control strategies presented in [11]-[12]-[13]-[14]-[15]-

[16]. But the problem of fuel economy and the overall 

system efficiency has not been well investigated. 

Furthermore the proper states of FC shutdown and starting 

were not well examind. Another weakness of their 

strategies is their problem of being online, although they 

have been introduced as real-time approaches.Evidence of 

this asseveration is that, in the mentioned strategies the 

used load power information requires previous data of the 

management problem. 

In real-time energy management strategies it is not 

possible to achieve an optimal solution for the problem of 

energy management in a hybrid electric vehicle due to the 

lack of driving cycle recognition. Most of the proposed 

methods carry out from the control process based on a 

background of vehicle propelling or traffic information 

that causes the vehicle's performance to be mostly 

inappropriate. Hence, gaining driving cycle information 

and its proper estimation is very important in the field of 

energy management study [17]. In this paper, a 

comprehensive and real-time energy management strategy 

is presented. In the proposed strategy, a hybrid algorithm 

is designed to predict the vehicle load power profile. Also, 

the empirical mode decomposition (EMD) algorithm is 

applied to produce fuel cell reference power signal from 

the predicted load power profile. Fuzzy logic controller 

and improved differential evolutionary (IDE) algorithm 

are employed to optimal control of power. The 

supervisory switching technique is used to determine the 

appropriate status (on / off) of the fuel cell system. The 

proposed strategy is developed in a FC/ battery hybrid 

vehicle. 

The goal of designing the proposed strategy is to 

optimally distribute power among the power sources (fuel 

cell and battery), reduce fuel consumption, increase 

overall system efficiency and improve the lifetime and 

performance of the hybrid system components. 

This paper is organized as follows. In section1, the 

configuration of the vehicle components is described. In 

section2, the proposed strategy and its applied techniques 

are described.In section 3, the simulation process and its 

results are discussed. finally section 4 concludes the paper  

2. Driving Structure Of The Hybrid Electric Vehicle 

The hybrid electric vehicles have different structures, 

but generally a hybrid vehicle is formed of a power plant, 

an energy storage system, and a power transmission 

system. Usually a parallel connection of a FC, energy 

storage system and DC-DC converters is chosen because 

it increases system capabilities [11]. 

A propulsion structure of FC/ battery is shown in Fig. 

1. In this structure, the FC system as the main power 

source acts and the battery pack is considered as the 

auxiliary power source. The advantage of this system is 

that the battery system can provide transient power and is 

capable to recover brake energy. 
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Fig. 1. Architecture of the FCHEV  

A. Modeling Of The Hev 

In this paper, the "Advisor" software is employed to 

model the hybrid vehicle’s components. This software is 

developed by the American National Renewable Energy 

Laboratory. Advisor is a set of model files, data and 

scripts to use in Matlab/Simulink environment for vehicle 

simulation [11]. This software simulates the dynamic 

performance of vehicles in a variety of different power 

train systems with varied sizes. 

The feature of this software is that all of its models and 

files are open to user to allow users to access the original 

creation and changes files and models. 

Instead, attaining the actual and accurate results of this 

software relies heavily on the skill of users in vehicle 

modeling and simulation process. The studied hybrid 

vehicle model in Advisor is shown in Fig. 2. As 

mentioned before the modeling details and relationships 

among the components are available and open to users. 

So, modeling of hybrid vehicle components is not 

described in this paper. Table 1 describes the 

characteristics of the underlying vehicle and its power 

components. 

3. THE PROPOSED ENERGY MANAGEMENT STRATEGY 

In the FC/ battery hybrid vehicles a comprehensive 

energy management strategy must be considered to 

optimize the distribution of power flow between power 

sources with consideration of distinctive dynamical 

feature 

In this section, a management strategy based on fuzzy 

logic controller, empirical mode decomposition, improved 

differential evolution algorithm and supervisory switching 

control is designed. 

The bases of the proposed strategy is established on 

the fuzzy logic. A schematic diagram of the proposed 

strategy is shown in Fig. 3. 

 

 

 

Fig. 2. Architecture of the FCHEV  
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TABLE 1. SPECIFICATIONS OF THE ELECTRICAL AND MECHANICAL COMPONENTS OF THE HEV 

Vehicle specification: 

Total mass (kg) 1380 Coefficient of rolling drag 0.009 

Frontal area (m2) 2.0 Coefficient of aerodynamic drag 0.335 

Wheel rolling radius (m)    

Motor specification: 

Maximum power (kW) 75 Maximum speed (rpm) 6283 

Rated voltage (V) 320 Average efficiency (%) 60 

Fuel cell system specification: 

Type PEMFC Maximum net power(kW) 50 

Average efficiency (%) 56 Minimum power (kW) 5 

Battery specification: 

Maximum discharging rate 5C Number 25 

Rated voltage (V) 308 Capacity (Ah) 2.5 

 

Fig. 3. Proposed energy management diagram

As can be seen in Fig. 3, a signal is provided as a 

reference power signal for the fuel cell system in the EMD 

block. This signal is low frequency part of the load power 

signal that has transient-free nature. The fuzzy block is 

included of three fuzzy controllers (FLC-No.1, FLC-N0.2 

and FLC-No.3). A dual mode fuzzy controller (DMFC) is 

existed in this block that its operating mode is determined 

by another fuzzy controller (FLC-No.3). The task of these 

fuzzy controllers is to determine the appropriate requested 

power value of the FC system. In the supervisory 

switching control block, the appropriate status of FC 

activity (turn on or shutdown) is investigated. To improve 

the performance of the proposed strategy an improved 

evolutionary algorithm is used to tune parameters of the 

membership functions of the FLC-No.3. The employed 

techniques in the proposed strategy are described,below 

A. Load Power Prediction 

Identification and estimation of the driving cycle 

patterns in the real action of a hybrid electric vehicle is 

http://eej.aut.ac.ir/
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difficult and has its own specific complexities. This matter 

usually causes the impossibility of driving pattern 

identification directly, due to plenitude of the driving 

patterns and multiplicity of affecting parameters [17]. 

So, in attention to the aim of the controlling problem 

that is related to vehicle's energy topic,in this paper the 

estimation value of the requested power from the vehicle 

at any moment is used. In recent years, the use of the 

fuzzy models for modeling, prediction and time series 

analysis has grown significantly and now these models are 

important tools for time-series prediction. The proof of the 

theory about the all-purpose approximation feature of the 

fuzzy models has been presented in recent decades [18]. 

In this paper, the Takagi-Sugeno fuzzy type is used to 

fuzzy systems model the load power prediction problem. 

This model is trained by an improved differential 

evolutionary (IDE) algorithm further an, inspiration of the 

support vector machine (SVM) is used for its fitness 

function. 

The training flowchart of the Takagi-Sugeno model 

(prediction model) is shown in Fig. 4. The inputs of the 

prediction model are  

1-  The vehicle speed. 

2-  The exerted torque on the vehicle's front wheels. 

The output of the prediction model is the required 

power of the power supplies of vehicle i.e. the load power.  

B. Takagi-Sugeno Fuzzy Model[ ] 

In this paper, the Takagi-Sugeno fuzzy model (for 

simplicity T-S model) is used to load power prediction 

due to its ability as a powerful tool for system 

identification. 

For simplicity of discussion, a multi-input and single-

output (MISO) system is considered. The general form of 

T-S model with n input variables and r rules is as follows 

[18]: 

R  : if  X  is A  and ... X  is A  then y  = n1i i1 in i

p X  + ...+ p X  + pn1i1 in i(n+1)
 (1) 

where iR  denotes the i-th rule, jX represent the j - th 

input variable, ijA  represents the fuzzy membership 

function belong to the i- th rule and j- th input variable, 

iY  represents the output of the i- th rule which is usually 

expressed as a first order polynomial and i1P , i2P , ..., 

i(n+1)P  are parameters related to the polynomial.  

A variety of membership functions in T-S model is 

existed. The function that is used here, is a Gaussian 

function. The grade of membership function of variable 

''x'' is calculated 

2

2

(X - C)
μ(X) = exp ( )

2 σ
 (2) 

where c and are the center and the standard deviations of 

the membership function ( μ(.) ). 

 

Fig. 4. The training flowchart of T-S model 

C. Support Vector Machine Formulation[ ] 

In each regression problem, training data are given. 

The goal of support vector regression (SVR) is to find the 

functional that its estimation error is less than and be flat 

as possible. Assume the used function in SVR is linear as 

it can 

y f(x) w, x b      (3) 

where represents the inner product, W is the weight vector 

or slope vector defined at space, and b is a scalar. 

Therefore, a prerequisite for training data estimation with 

error less than ε  by the function f(x)  can be written  

i i i

i i

y w, x b ε
   ,  i 1, 2, ..., m

w, x b y ε

    


    
 (4) 

The condition to have a flat Estimation is equivalent to 

have a low slope. To achieve this goal, the square norm of 

the gradient vector i.e. 
2

w must be minimized in 

the optimization process [19]. 

Owning the mentioned contents, it is required to 

solve the following optimization problem for a SVR 

model development as in [20]. 

Find w and b to minimize 
2

w  

i i i

i i

y w, x b ε
subject to    ,  i 1, 2, ..., m

w, x b y ε

    


    
 

(5) 
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If it is not possible to create a SVR model by 

using the function f(x) with approximation error less 

than ε , the optimization constraints changes  

i i i i

*
i i i

y w, x b ε ξ
   , i 1, 2, ..., m

w, x b y ε ξ

     


     
 

(6) 

where 
 i i 1, 2, ..., m
ξ

  and 
 *

i
i 1, 2, ..., m

ξ
  are positive 

parameters and to reduce these parameters, a factor of 

ensemble of these parameters in the optimization objective 

function is added. Thus the optimization problem can be 

expressed 

m2 *
i ii=1

i i i

*
i i i

*
i i

find w and b to minimize w C (ξ ξ )

y - w, x b ε ξ

subject to w, x b y ε ξ

ξ , ξ 0

 

    

     






 (7) 

Thus, the model training process can be written as 

the following optimization problem: 

   

 

i i
i 1, 2, ..., n i 1, 2, ..., n

i
i  1, 2, ..., n

m *
i ii =1

i i i

*
i i i

*
i i

find C , σ , 

P , ξ  and  ξ   to minimize 

C (ξ ξ )

y - w, x b ε ξ

subject to w, x b y ε ξ

ξ , ξ 0

 







    

     




  

(8) 

where     i i i
i 1,2 , ..., n i 1, 2, ..., n i 1, 2, ..., n

C , , P
  

 are the 

centers of the membership functions, standard deviation of 

the membership functions and parameters related to the 

output polynomial respectively in each rule of the T-S 

model. To train the fuzzy model, an improved differential 

evolution (IDE) algorithm is used. 

Observation of optimization problem constraints, a 

penalty function is defined 

* *penalty (e, ξ, ξ ) = penalty (e, ξ) + penalty (-e, ξ )

 
(9) 

The pseudo-code of the penalty (., .) function is shown 

in Fig. 5. 

In the optimization process, the algorithm tries to 

produce parameters in order to minimize the objective 

function values 

*
2Fitness (e, ξ, ξ , w)  c  penalty (e, ξ, ξ ) ... 

c (ξ(i) ξ (i))





 


(10) 

 

 

Fig. 5. Architecture of the FCHEV 

The first term of this equation is related to constraints 

observance whose value shall rise when constraints not 

observed. And, the minimization of the second term leads 

to the error band to be narrowed [21]. 

D. Improved Differential Evolution Algorithm 

The original DE algorithm keeps all its parameters 

constant in the optimization process. However, the 

necessity of the parameters change in the optimization 

process has proved[22]. The relationship between 

performance and the control parameters of evolutionary 

algorithms is very complex that is not completely 

understood [23]. 

One of the most important tools for understanding and 

analyzing complex environment is fuzzy logic. Therefore, 

the fuzzy inference system can be used to control the DE 

parameters. Since the most important controlling 

parameter in the DE algorithm is the scale factor (F), in 

the proposed algorithm the control parameters such as 

crossover constant (CR) and population size (NP) are 

considered constant and on the factor scale (F) is 

concentrated. 

In the original version of the DE algorithm, the F 

parameter is a scalar, but in the improved version this is 

considered as a vector with size D.D is dimension of the 

problem. Two points of view are intended to describe the 

state of DE's population: population diversity (PD) and 

generation percentage (GP) so far performed. PD and GP 

are the inputs of the fuzzy inference system to control the 

scale factor (F). PD in j-the dimension i.e. is given using 

the following equation: 

NP
2

i, j B jmax min
i=1j j

1
PDj (X  - X )

NP (X  - X )
   (11) 
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where max
jX  and min

jX  are the maximum and minimum 

vector of the population in the j-the dimension, 

respectively. NP and B jX  are the population size and the 

best population vector in the j-the dimension, respectively. 

GP is easily calculated from the following equation: 

max

G
GP

G
  (12) 

where G is the number of generations so far performed 

and maxG  is the maximum number of generation of the 

algorithm. Obviously, the range of PD, GP can be in the 

interval [0, 1]. 

The membership functions of the Scale factor in the 

fuzzy inference system are shown in Fig. 6. Fuzzy 

membership functions related to the PD and GP are the 

same given in Fig. 6. The output of the fuzzy inference 

system is scale factor and its range is [0, 1]. 

The rule base of the fuzzy inference system is 

manually adjusted based on the experience. The fuzzy rule 

base is shown in Table 2 [24]. 

The flowchart of IDE is shown in Fig. 7. According to 

this flowchart, the algorithm returns a certain number of 

iterations (parameter c) into the fuzzy inference section 

that allows users to reduce the calculations if necessary. 

It is noteworthy that fuzzy inference system is fired as 

the problem dimension each time getting into the fuzzy 

TABLE 2. THE RULE BASE OF THE FUZZY INFERENCE 
SYSTEM IN THE IDE 

Output 

 

Input 1 

VL L M H 

Input 2     

VL VH ----- M H 

L VH H ----- M 

M H H M ----- 

H H M L ----- 

VH M M VL ----- 

 

Fig. 6. The membership functions of the Scale factor in the fuzzy 

inference system  

Inference section. Therefore, the calculation content 

may rise if the problem's dimension is high. 

 To reduce the calculation content, the scale factor can 

be considered as a scalar (as stated in the original version) 

and population diversity can be computed  

NP

j

j=1

PD

PD
NP




 

(13) 

where jPD  is calculated according to (11) and NP is 

population number. The fuzzy inference system is then 

fired only once in each time entering into fuzzy section. 

E. Empirical Mode Decomposition 

A nonlinear wave can be composed of various 

frequency components. One simple technique to separate 

single-frequency component from the original waveform 

Each Single-frequency component obtained of EMD is 

called intrinsic mode function [20]. The steps to obtain 

intrinsic mode functions from a waveform as low-

frequency components are separated in each step and this 

process continues until the highest frequency component 

remain. A waveform that can only be regarded as an 

intrinsic mode function must have the following 

conditions simultaneously [26]. 

 Extreme points are equal to the number of zero 

crossing points. 

 At any point, the average value of the top and 

bottom envelope of the curve must be zero. 

Fig. 8 shows the EMD algorithm. Further details of the 

algorithm are given in [26]. In this paper, the EMD 

algorithm is used to decompose load signal into different 

frequency components. Both low and high frequency 

signals are aggregated. Finally, two signals with low and 

high frequencies are produced. Due to slow dynamic 

nature of the fuel cell, the low frequencies signal can be 

considered as a reference signal to FC power following 

[1]. The FC reference power signal obtained by the EMD 

algorithm has a restricted gradient that this feature causes 

to improve FC lifetime, due to avoid of rapid power 

changes in this power supply [9]. 

On the other hand, battery system can afford to 

provide transient power demand due to its ability to 

response very quickly. 

Therefore, an optimal power management algorithm is 

resulted. The reason of EMD algorithm usage is to 

consider the lifetime problem of FC in the proposed 
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strategy. Rapid load demand changes in actual driving 

cycles insert a significant negative impact on the fuel cell 

 

 

Fig. 7. The flowchart of the IDE algorithm 

 

Fig. 8. The flowchart of the EMD algorithm  
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Fig. 9. Fuzzy membership functions of the FLC-No.1 

Membrane. Since the FC lifetime is an essential factor 

for the HEV's economy, this technique could provide a 

potential solution to the FC's lifetime problem. 

F. Fuzzy Logic Control Block 

Since the performance of a system can be improved by 

dual mode controlling technique [27], a dual-mode fuzzy 

controller is designed in this section to determine the 

requested power from the FC system. The control inputs 

of the dual-mode fuzzy controller are 

1) The FC reference power signal produced by the 

EMD algorithm, 

2) The state of charge (SOC) of the battery pack. 

Charge sustaining of the battery in an optimal range is 

one of the important indices of a hybrid vehicle 

performance [1]. The fulfillment of this performance 

index can guarantee both brake energy recovery and 

system response to transient load changes. 

The desired range of SOC is defined  

min maxSOC SOC SOC   (14) 

where and are the lower and upper limits of the battery 

SOC, respectively, in this paper, they are considered 0.4 

and 0.8. 

This dual mode fuzzy controller acts in mode A as 

long as the performance index (PI) signal is larger than the 

switching limit of the controller. Otherwise ,it operates in 

mode B. 

The only difference between these two fuzzy 

controllers in the dual mode controller is their fuzzy 

membership functions in output variable. The membership 

functions of the FLC-No.1 are shown in Fig. 6. The input 

membership functions of the FLC-No.2 are the same as 

the FLC-No.1  

The output variable membership functions of the FLC-

No.2 are shown in Fig. 7. The fuzzy rule base of both 

FLC-No.1 and FLC-No.2 are given in Table 2. 

The control objectives in the dual mode control 

process are: to maintain battery's SOC, reduce fuel 

starvation in FC, extract optimal power for FC and 

improve generally the overall performance of the system. 

Determination the operating mode of the DMFLC is 

done by a fuzzy decision-making system. The output of 

this fuzzy system is the performance index (PI) signal 

,which is a function: 

 1) difference between the produced FC power and the 

load demand mean.  

2) difference between the battery SOC and a desired 

reference value (0.7). 

According to the selected input variables of the FLC-

No.3, the PI signal is produced to meet the following 
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1
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TABLE 3. THE RULE BASE OF THE FLC-NO.1 AND THE FLC-

NO.2 

Output 

 

Input 1 

L M H 

Input 2  

A 2 1 1 

B 3 2 1 

C 4 3 2 

D 5 4 3 

E 6 5 4 

F 7 6 5 

G 8 7 6 

H 8 8 7 

Objectives: 

 The FC power variations will be slow and include 

the load power demand mean in order to improve 

the FC performance and its lifetime. 

 The SOC of the battery pack remains in a desired 

range. 

Membership functions of the input and output 

variables are considered equal in the FLC-No.3. Their 

only difference is the domain of these variables. 

Membership functions of the FLC-N0.3 are shown in Fig. 

8. 

 

Fig. 10. Membership functions of the FLC- No.2 output 

The values of the parameters of a, b and c for fuzzy 

variables in the FLC-No.3 are presented in Table 3. The 

rule base of the FLC-No.3 is listed in Table 4. 

TABLE 4. THE VALUES OF THE MEMBERSHIP FUNCTIONS OF 

THE FLC-NO.3 

 A 

Input 1 -20000 0 20000 

Input 2 -0.5 0 0.5 

Output  0 0.5 1 

G. Supervisory Switching Control 

In the proposed strategy, the role of the supervisory 

switching control is determining the FC activity status 

;i.e., at what situations the FC system should operate to 

generate electric power and/ or should be shut down. The 

purpose of this control step is reducing the working hour 

of the FC system since the conventional FC's lifetime for 

transport applications are less than 2000 hours [14]. So, 

respecting to the high cost of FC system, it is essentially 

necessary to control the FC activity time. Several 

conditions are existed for moving between the two states 

(turn on/ shut down) of the FC. 

TABLE 5. THE RULE BASE OF THE FLC-NO.3 

Output  

 

Input 1 

Mf1 Mf2 Mf3 

Input 2  

Mf1 Mf1 Mf1 Mf1 

Mf2 Mf1 Mf2 Mf3 

Mf3 Mf2 Mf2 Mf3 

Mf4 Mf3 Mf3 Mf4 

As default, the FC system has been shut down. 

Necessary conditions to state changing of FC are 

described in Table 5. 

TABLE 6.  TABLE6 SHIFT CONDITIONS IN THE STATE 

MACHINE 

Load power should be positive and the battery's 

SOC should be less than the minimum desired value. 

Load power should be positive and the requested 

power of FC be more than the minimum FC power 

and the time of being inactive also should be more 

than 3 minutes. 

Load power should be more than the maximum 

battery power. 

SOC should be less than SOCmin and also the 

minimum FC power value be less than the difference 

between the load power and the maximum charging 

power of battery.  

 the 

conditions 

to start up 

FC 

Load power should be negative and the minimum FC 

power be more than the difference between the load 

power and the maximum charging power of battery. 

Load power should be less than the maximum 

battery power and the requested power of FC be 

lower than the its minimum value and the battery 

SOC be more than the SOCmax  

 

the 

conditions 

to 

Shut 

down FC 

H. Optimization Problem Ormulation 

The fuzzy controller was used in [9-16] to design 

HEV’s energy management strategy. However, one of the 

disadvantages that fuzzy theory face to, is that 

membership functions parameters such as width and 

standard deviation are independent of the designed fuzzy 

rules [16]. Therefore, there is no guarantee for excellent 

performance of the developed fuzzy system, particularly 

to control HEV that has lots of uncertainties. So the search 

for an optimal method of fuzzy variables can be crucial in 

improving the control performance. Many papers such as 

[15] - [28] - [29] - [30] used evolutionary algorithm to 

optimize the variables of fuzzy controller in HEVs. 
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In this paper, the improved differential evolution 

algorithm is used to search the optimal coefficients of 

membership functions parameters of the FLC-No.3 

variables. Since in this controller the membership 

functions of the input and output variables are selected 

Gaussian type, the optimization parameters with respect to 

(2) are the centers (c) and widths ( σ ). Optimization 

parameters and their lower and upper limits are given in 

Table 7. The objective function of the optimization 

problem consists of two performance criteria stated by 

two weighting factors 

com 1 2 comf ( SOC,Fuel ) (w SOC) (w Fuel )    

 
(15) 

where is the SOC fluctuation that can be represented as: 

final initialSOC = SOC  - SOC  (16) 

where and are SOC value of the final and initial time in 

driving cycle, respectively. Represents consumed fuel per 

gallon (4 liters). Weighting coefficients of w1 and w2 are 

intended to be 1000 and 1, respectively. These weighting 

coefficients are to value the effects of optimization terms. 

Here is negligible with respect to the amount of consumed 

fuel, so the weighting coefficient of it is 1000. Optimal 

values of optimization variables are presented in Table 7. 

4. VALIDATION PROCESS 

In this section, the validation process of the proposed 

strategy is performed. The proposed strategy has been 

implemented on a FC/ battery hybrid vehicle in order to 

verify the improvement of the performance and 

economical indices. To compare and demonstrate the 

effectiveness of the proposed strategy, three pre-designed 

strategies are used. The three strategies include default 

control strategy existed in Advisor software, and the fuzzy 

logic control based strategy presented in [11]. 

These relevant simulations have been implemented in 

Advisor software. 

A. Simulation Parameters 

Standard driving cycles can be used to evaluate the 

dynamic response of a designed control strategy [8]. 

In this paper, the Urban Dynamometer Driving 

Schedule (UDDS), used commonly in the literature, is 

employed. The UDDS cycle parameters are shown in 

Table 8. 

The Advisor default values have been utilized to set 

the sizes of vehicle Parameters. Therefore, the degree of 

hybridization (DOH) is 51.6%. The DOH is defined as 

[31]: 

ESS-rated

total

P
DOH

P
  (17) 

where electric power is can be delivered by ESS and is the 

total power that can be delivered by ESS and FC.  

TABLE 7. TABLE8 SPECIFICATIONS OF THE UDDS DRIVING 
CYCLE 

Time [S] 1369 

Distance [miles] 7.45 

Max. speed [mph] 56.7 

Avg. speed [mph] 19.58 

Max. accel [ft.(s
2
)

-1
] 4.84 

Max. decal [ft.(s
2
)

-1
] -4.84 

Avg. accel [ft.(s
2
)

-1
] 1.66 

Avg. decal [ft.(s
2
)

-1
] -1.9 

Idle time [S] 259 

B. Simulation Results 

The simulation results related to the load power 

prediction are shown in Fig. 11. As shown in this figure, 

the load power is predicted as good as expected. The 

reference power signal of the FC system obtained by the 

EMD algorithm is shown in Fig. 12. As can be seen from 

Fig. 12, this signal is empty of any suddenly changes in 

power values. So considering this signal as a tracking 

reference, the FC power profile can be a useful step to 

enhance the performance and extend its lifetime. Fig. 13 

shows variations of the FC Power in the driving cycle 

duration. As can be seen in this figure,variations of FC 

power are slow and transient-free by the proposed EMS as 

expected. As the FC power rises, it is expected that the FC 

current increases in order to provide requested power.  

FC current is proportional to the fuel consumption i.e. 

sudden increase of the current leads to fuel starvation and 

also having a negative impact on FC membrane. Therfore, 

the fuel cell lifetime can be increased by the proposed 

strategy. 

Consumed fuel (hydrogen) flow rate of FC system is 

shown in Fig. 14. The amounts of the consumed fuel per 

gallon (4 liters) are shown in Fig. 15. The power variation 

of the battery is shown in Fig. 16. One of the goals of the 

proposed strategy is to allocate load power transients to 

the battery. The fulfillment of this goal can be seen with 

respect to Fig. 16. Fig. 17 shows the SOC variations of the 

battery pack with respect to the load changes. As Fig. 17 

shows, the SOC variations will remain in a desired range. 

Variations of the vehicle speed during the driving cycle 

are shown in 
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TABLE 8. TABLE7 OPTIMAL VALUES OF THE FLC-NO.3 PARAMETERS 

The first input of the FLC-No.3 The second input of the FLC-No.3 The output of the FLC-No.3 

Param

eter 

Lower 

limit 

Upper 

limit 

Optima

l 

Value 

Param

eter 

Lower 

limit 

Upper 

Limit 

Optima

l 

Value 

param

eter 

Lower 

limit 

Upper 

limit 

Optimal 

Value 

1,1σ
 

380 4710 391.84 
2,1σ

 
0.007 0.11 0.022 

3,1σ
 

0.007 0.122 0.045 

1,2σ
 

380 2470 2320.6 
2,2σ

 
0.007 0.0683 0.012 

3,2σ
 

0.007 0.061 0.021 

1,3σ
 

380 2680 2033.28 
2,3σ

 
0.007 0.07 0.021 

3,3σ
 

0.007 0.068 0.043 

1,4σ
 

380 4560 2424.06 
2,4σ

 
0.007 0.13 0.079 

3,4σ
 

0.007 0.118 0.073 

 

 

Fig. 11. Load power prediction result 

 

Fig. 12. Reference power signal for the FC system 
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Fig. 13. The output power of the FC 

 

 

Fig. 14. The rate of the consumed fuel in the FC 

 

Fig. 15. The cumulative function of the consumed fuel 

 

Fig. 16. The output power of the battery pack 
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Fig. 17. Soc variation 

 

Fig. 18. The variation of the vehicle speed 

TABLE 9.  

TABLE 10. COMPARISON OF PERFORMANCE INDICES IN DIFFERENT CONTROL STRATEGIES 

Performance Index Default Control Fuzzy Control Proposed Control 

Fuel Economy (mpg) 3.1 3.2 4 

Gasoline Equivalent 46.1 46.7 59. 4 

Overall System Efficiency 

SOC Fluctuation 

0.149 

0.0904 

0.149 

0.0837 

0.163 

0.0113- 

TABLE 11. THE REPORT OF ENERGY USAGE IN DIFFERENT CONTROL STRATEGIES 

Energy Usage Default Control Fuzzy Control Proposed Control 

Aerodynamic loss (W) 1056 1056 1056 

Rolling loss (W) 1461 1461 1461 

Power of Fuel In (W) 

Energy stored (W) 

19507 

2590 

19288 

2397 

15139 

-309 

 

Fig. 18. It is clear from Fig. 18 that vehicle is able to 

track the required speed of the UDDS driving cycle. 

In Table 9 some performance Criteria are listed that 

are studied in the HEV's energy management strategy 

discussion. In this table the performance inds of the 

proposed strategy are compared with three other strategies 

that are mentioned previously. 

Table 9 confirms that the proposed control strategy is 

indeed effective in fuel economy under three driving 

patterns. By comparing the results of SOC deviations, it is 

clear that, the SOC deviation of the proposed strategy is 

less than other strategies. One of the evaluation criteria for 

energy management strategies is their capability to 

maintain the SOC of energy storage devices. In other 

words, the desired strategy is the one that have the same 

SOC at the beginning and the end of the cycle. 

When a vehicle moves, the driving force provided by 

its power system is employed to overcome rolling 
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resistance, grade resistance, aerodynamic resistance and 

accelerating resistance. In this paper, losses power of 

grade and acceleration resistances are neglected. 

Therefore, the overall system efficiency is calculated as: 

 Loss - aero Loss - roll

Fuel - in ESS - stored

Overall System Efficiency
P  P

 = 
P P




 (18) 

where Loss - aeroP  and Loss - rollP  are both power losses, 

originated from the aerodynamic resistant and rolling 

resistant, respectively. is the net power obtained by the 

engine consumed fuel. is the stored power in energy 

storage systems at the drive cycle completion. During the 

vehicle moving, if the produced energy of the power 

sources becomes more than the required propelling 

energy, the surplus energy would stored in energy storage 

system. All the types of energy usage in the studied 

vehicle under different drive cycles are listed in Table 10.  

From these results, it is clear that the proposed energy 

management strategy reduces the fuel consumption and 

also improves the system performance. 

5. CONCLUSION 

This paper presented an optimized hierarchical 

strategy based on several control techniques. The strategy 

was designed to distribute power between the power 

generation units of FC/ Battery hybrid electric vehicle 

power in order to meet its performance requirements. The 

main advantage of the proposed strategy was to meet a 

perfectly real time method. This proposed strategy could 

improve the vehicle components lifetime and ensure the 

reduction of fuel consumption cost. As observed in the 

simulation results, the proposed strategy could answer the 

controlling obligations such as charge sustaining of the 

battery, the overall system efficiency, fuel economy and 

etc. Therefore, the proposed strategy can be viewed as a 

new approach in advanced energy management system of 

the hybrid electric vehicles 
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