[1] J. H. He, “Non-perturbative Methods for Strongly Nonlinear Problems,” dissertation.de-Verlag im Internet GmbH, Berlin, 2006.
[2] J. H. He, “Some asymptotic methods for strongly nonlinear equations,” Int. J. Mod. Phys., vol. B 20, no. 10, pp. 1141-1199, 2006.
[3] J. H. He, “Homotopy perturbation method for solving boundary value problems,” Phys. Lett., vol. A 350, no. 1–2, pp. 87-88, 2006.
[4] J. H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos Solitons Fractals, vol. 26, no. 3, pp. 695-700, 2005.
[5] J. H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Comput. Math. Appl. Mech. Eng., vol. 167, pp. 57-68, 1998.
[6] J. H. He, “Approximate solution of nonlinear differential equations with convolution product nonlinearities,” Comput. Math. Appl. Mech. Eng., vol. 167, pp. 69-73, 1998.
[7] J. H. He, “Variational iteration method – a kind of non-linear analytical technique: some examples,” Int. J. Non-Linear Mech., vol. 34, pp. 699-708, 1999.
[8] J. H. He, “Homotopy perturbation technique,” J. Comput. Math. Appl. Mech. Eng., vol. 178, pp. 257-262, 1999.
[9] J. H. He, “A coupling method of a homotopy technique and a perturbation technique for non-
linear problems,” Int. J. Non-Linear Mech., vol. 35, pp. 37-43, 2000.
[10] J. H. He, X.H. Wu, “Construction of solitary solution and compacton-like solution by variational iteration method,” Chaos Solitons Fractals, vol. 29, no. 1, pp. 108-113, 2006.
[11] J. H. He, “Periodic solutions and bifurcations of delay-differential equations,” Phys. Lett., vol. A 347, no. 4–6, pp. 228-230, 2005.
[12] J. H. He, “Limit cycle and bifurcation of nonlinear problems, Chaos Solitons Fractals,” vol. 26, no. 3, pp. 827-833, 2005.
[13] J. H. He, “Homotopy perturbation method for bifurcation of nonlinear problemsint,” J. Nonlinear Sci. Numer. Simul., vol. 6, no. 2, pp. 207-208, 2005.
[14] B. Jang, “Two-point boundary value problems by extended Adomian decomposition method,” J. of Comput. and Appl. Math. vol. 219, pp. 253–262, 2008.
[15] M. Madani, M. Fathizadeh, Y. Khan and A. Yildirim, “On the coupling of the homotopy perturbation method and Laplace transformation,” J. Mathematical and Computer Modelling, vol. 53 no. 9-10, pp. 1937-1945, 2011.
[16] S. Q. Wang, J. H. He, “Nonlinear oscillator with discontinuity by parameter-expansion methodChaos Solitons Fractals,” vol. 35, no. 4, pp. 688-691, 2008.
[17] M. Fathizadeh, F. Rashidi, “Boundary layer convective heat transfer with pressure gradient using Homotopy Perturbation Method (HPM) over a flat
plate, Chaos Solitons Fractals,” I. S. J. of Thermal Scince, vol. 42, no. 4, pp. 2413-2419, 2009.
[18] M. Omidvar, A. Barari, M. Momeni, D.D. Ganji, Geomech. Geoeng. New class of solutions for water infiltration problems in unsaturated soils,” Int. J. Geo-mech. and Geoeng., vol. 5, no. 2, pp. 127-135, 2010.
[19] Magdy A. El-Tawil, Noha A. Al-Mulla, “Using Homotopy WHEP technique for solving a stochastic nonlinear diffusion equation,” Math. Comput. Modelling, vol. 51, no. 9-10, pp. 1277-1284, 2010.
[20] H. E. Qarnia, Application of homotopy perturbation method to non-homogeneous parabolic
[21] partial and non linear differential equations, World J. Modelling Simul., vol. 5, no. 3, pp. 225-231, 2009.
[22] Md. S. H. Chowdhury, I.Hasim, “Solution of time-dependent emden-fowler type equation by homotopy perturbation method,” Phy. Lett. Vol. 365, no. 3, pp. 305-313, 2007.
[23] S. Kumar, O. P. Singh, S. Dixit, “Generalized Abel inversion using Homotopy perturbation method,” Applied Mathematics, vol. 2, no. 2, pp. 254-257, 2011.
[24] Y. Liu, Z. Li, Y. Zhang, “Homotopy perturbation method to fractional biological population equation,” Fractional Differential Equation, vol. 1, no. 1, pp. 117–124, 2011.
[25] Md. S.H. Chowdhury, “A comparison between the modified homotopy perturbation method and Adomian decomposition method for solving nonlinear heat transfer equations,” J.applied Sci., vol. 11, no. 8, pp. 1416-1420, 2011.
[26] M. Akbarzade, J. Langari, “Application of homotopy-perturbation method and variational iteration method to three dimensional diffusion problem,” Int. Journal of Math. Analysis, vol. 5, no. 18, pp. 871 – 880, 2011.
[27] B. Ganjavi, H. Mohammadi, D. D. Ganji and , A. Barari Am., “Homotopy perturbation method and variational iteration method for solving Zakharov-Kuznetsov equation,” J. Applied Sci., vol. 5, no. 7, pp. 811-817, 2008.
[28] S. Z. Rida, A. A. M. Arafa, “Exact solutions of fractional-order biological population model,” Commun. Theor. Phys., vol. 52, pp. 992–996, 2009.
[29] E. Shakeri, M. Dehghan, “Numerical solutions of a biological population model using He’s variational iteration method,” Comput. and Maths, with Appl., vol. 54, pp. 1197-1207, 2007.
[30] P. Y. Tsai, C. K. Chen, “Free vibration of the nonlinear pendulum using hybrid Laplace Adomian
decomposition method,” Int. J. Numer. Meth. Biomed. Engng., vol. 27, no. 2, pp. 262-272, 2011.
[31] M. Y. Ongun, “The Laplace Adomian Decomposition Method for solving a model for HIV infection of CD4+T cells,” Mathematical and Computer Modeling, vol. 53, no. 5-6, pp. 597-603, 2011.
[32] A. M. Wazwaz, M. S. Mehanna, “The Combined Laplace-Adomian method for handling singular integral equation of heat transfer,” International Journal of Nonlinear Science, vol. 10, no. 2, pp. 248-252, 2010.
[33] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2009.
[34] S. Nourazar, A. Nazari-Golshan, A. Yildrim and M. Nourazar, “On the hybrid of Fourier transform and Adomian decomposition method for the solution of nonlinear Cauchy problems of the reaction-diffusion equation,” Z. Naturforsch, vol. 67a, pp. 355-362, 2012.