[1] F.A. Aliev, C.C. Arcasoy, V.B. Larin, and N.A.Safarova, “Synthesis problem for periodic systems
by static output feedback,” Applied and Computational Mathematics. vol 4(2),pp. 102–113, 2005.
[2] F.A. Aliev, C.C. Arcasoy, V.B. Larin, and N.A.Safarova, “Synthesis problem for periodic systems
by static output feedback,” Applied and Computational Mathematics. vol 4(2),pp. 102–113, 2005.
[3] P. Benner, M. Castillo, and E.S Quintana-orti,“Partial stabilization of large-scale discrete-time
linear control systems,” Technical Report,University of Bremen, Germany. March 2001.
[4] J. H. Chou, “Pole assignment robustness in a specified disk,” Systems & Control Letters, vol 16, pp. 41-44, 1991.
[5] C. Farges, D. Peaucelle, and D. Arzelier,” Resilient static output feedback stabilization of linear periodic systems,” In: 5th IFAC Symposium on Robust Control Design, Toulouse 2006.
[6] C. Farges, D. Peaucelle, D. Arzelier, and J. Daafouz, “Robust performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs,” Systems & Control Letters, vol 56(2), pp. 159.166, 2007.
[7] M. M. Fateh, H. Ahsani Tehrani, and S. M. Karbassi, “Repetitive control of electrically driven robot manipulators,” International Journal of Systems Science, Published Online: 18 Oct 2011.
[8] J. L. Figueroa and J. A. Romagnoli, “An algorithm for robust pole assignment via polynomial approach,” IEEE Transactions on Automatic Control, vol 39,pp. 831-835,1994.
[9] K. Furuta and S. B. Kim, “Pole assignment in a specified disk,” IEEE Transactions on Automatic Control, vol 32, pp. 423-427, 1987.
[10] L. Grammont and A. Largillier, “Krylov method revisited with an application to the localization of eigenvalues ,” Numerical Functional Analysis and Optimization, vol 27, pp. 583-618,
[11] G. Guo, J.F. Qiao, and C.Z. Han, “Controllability of periodic systems: continuous and discrete,” in proc IEE Control Theory and Applications, vol 151, pp. 488-490, 2004.
[12] S.M. Karbassi and D.J. Bell, “Parametric time-optimal control of linear discrete-time systems by state feedback-Part 1: Regular Kronecker invariants,” International Journal of Control, vol. 57, pp. 817-830, 1993.
[13] S.M. Karbassi and D.J. Bell, “Parametric time-optimal control of linear discrete-time systems by state feedback-Part 2: Irregular Kronecker invariants,” International Journal of Control, vol 57, pp. 831-839,1993.
[14] S.M. Karbassi and H.A. Tehrani, “Parameterizations of the state feedback controllers for linear multivariable systems ,” Computers and Mathematics with Applications, vol 44, pp. 1057-1065, 2002.
[15] B.P. Lampe and E. N. Rossenwasser, “Closed formulae for the L2-norm of linear continuous-time periodic systems ,” In: Proc. PSYCO, 231-236, Japan 2004.
[16] B.P. Lampe, M. A. Obraztso, and E. N. Rosenwasser, “Statistical analysis of stable
FDLCP systems by parametric transfer matrices ,” International Journal of Control, vol 78(10), pp. 747-761, 2005.
[17] S. Longhi, and R. Zulli, “A note on robust pole assignment for periodic systems,” IEEE Transactions on Automatic Control, vol 41, pp. 1493-1497, 1996.
[18] C.E.De. Souza and A. Trono, “An LMI approach to stabilization of linear discrete-time periodic systems,” International Journal of Control, vol 73, pp. 696-703, 2000.
[19] A. Varga, “Computation of l-infinity norm of linear discrete-time periodic systems,” In: Proc. MTNS 2006.
[20] J. Zhou and T. Hagiwara, “H2 and H-infinity norm computations of linear continuous-time periodic systems via the skew analysis of frequency response operators,” Automatica, vol 38, pp. 1381-1387, 2002.