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ABSTRACT  

Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To 

obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is 

proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in 

control systems which happen frequently. The proposed approach works for nonlinear dynamic and static 

friction models and is applicable to a wide range of different mechanical systems. It is also applied to a 

simple inverted pendulum on a cart as a highly nonlinear under-actuated system. A nonlinear optimal 

controller based on the approximate solution of Hamilton-Jacobi-Bellman partial differential equation is 

designed to fulfill our control objectives and achieve preferable performance compared to those of the linear 

optimal controllers. It causes to have more accuracy in system's response and positioning in the presence of 

friction. Simulation result approve the effectiveness of both the presented technique and controller. 

KEYWORDS  
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1. INTRODUCTION  

Friction is a physical phenomenon which arises in 

mechanical systems with moving parts. It is highly 

nonlinear and has malicious effects on control systems 

performance. Wear, loss of energy, occurrence of limit 

cycles, steady state errors, and even instability are some of 

the results of friction presence [1], [2], [4]. On the other 

hand, generally, this phenomenon is not considered in 

systems mathematical modeling and controllers design 

procedure. Therefore, friction compensation is an 

inevitable process from control theory point of view to 

achieve a desired behavior. 

Many researchers have put these different aspects of 

friction into their perspective. True nature perception and 

mathematical modeling of this phenomenon, analysis of 

its impacts on control systems behavior, and proposition 

of various techniques for compensation are some of these 

aspects. 

Mathematical modeling of friction is dependent on the 

realization of its behaviors in practice. Presliding 

displacement, Stribeck effect, spring like behavior, 

friction lag, varying break-away force, and stick-slip 

motion are some of the known behaviors [2], [4]. As a 

result, different models have been presented such as 

Classic, Exponential, Karnopp, Dahl, Armstrong Seven 

Parametric, Generalized Maxwell Slip, and LuGre that 

encompass entire or a partial of the behaviors [2-6]. 

The designed controllers for systems fail to do their 

missions perfectly in the presence of friction. Hence, 

during the past decades, great efforts have been done to 

propose diverse friction compensation techniques [1], [3], 

[7]-[13]. Compensation approaches are used to counteract 

friction force which leads to achieve the closed loop 

desired behavior. 

One of the main ideas for compensation is based on 

the estimation of friction force which requires to model 

parameters identification. Since models are highly 

nonlinear, process of identification is not straightforward 

and is a challenging part of compensation techniques. 

Generally, off-line identification techniques are not as 

complex as on-line ones, but they need some special 

conditions which are not feasible in some cases [11], [12]. 

For more details see [7]. 

The main contribution of this paper is proposition of 

an online adaptive identification approach as a new 

compensation technique. It is utilized to estimate 

parameters which are not related to friction models, but 

are imperative to be known in compensation process. The 

technique can be used for high accuracy positioning in 

mechanical systems. 

The proposed method is applied to simple inverted 

pendulum on a cart (SIPC) system. To control this system, 

a nonlinear optimal controller based on Taylor series 

expansion approximate solution of Hamilton-Jacobi-

Bellman partial differential equation (HJB PDE) is 

designed. This controller leads to considerable 

improvements in system performance and elimination of 

friction effects in some special situations. 

The rest of this paper is organized as follows: In 

section II, mathematical model of the SIPC system and 

models of friction are presented. Then, a linear optimal 

controller is designed for the system and its performance 

in facing with friction is evaluated. Section III is devoted 

to design a nonlinear optimal controller for the system and 

for investigation of its performance characteristics. The 

adaptive friction compensation technique is presented in 

section IV and its ability for elimination of friction effects 

is assessed. Finally, the proposed technique is compared 

with other techniques in Section V and conclusion is 

drawn in Section VI. 

2. EFFECTS OF FRICTION ON CONTROL SYSTEMS 

To deal with friction, it is necessary to have models 

which embody known behaviors as far as possible. The 

proposed models are classified in two main groups, 

dynamic and static [2], [4]. In this section, SIPC model 

description and an overview on some significant models 

are presented. Then, the effects of friction on the closed 

loop system's response with linear optimal controller are 

analyzed. 

A. Description Of Sipc System Model 

The SIPC system is one of the best test beds for 

evaluation of the proposed control ideas and has different 

applications [14]. Fig. 1 depicts the schematic of the 

system. The cart can move horizontally and the pendulum 

is mounted by a joint on the cart and can rotate freely. 

Differential equations governing on the system are given 

by [14]: 

     

   

2

1 2 2 2

2

2 2 2

cos sin

4
sin cos 0

3

M M X M l M l u F

M l M gl M lX

   

  

    

  
 

(1) 

where u  is control signal and friction force is considered 

between cart and ground. Other parameters are described 

in Table 1. The state space equation of system is obtained 

by taking 
T

Tx X X    
 as state vector. In this 

paper, control objective is to stabilize the unstable upward 

equilibrium point to origin asymptotically. 
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Fig. 1.  Schematic of SIPC system with exerted forces on it [1]. 

TABLE 1. SIPC SYSTEM PARAMETERS DESCRIPTION 

Parameter 

Symbol Quantity 
Magnitudea,

b 

M 

m 

L 

 

g 

X 

θ 

mass of cart 

mass of pendulum 

length of pendulum from pivot 

to center of mass 

gravitational acceleration 

cart displacement 

angular position of pendulum 

0.815 kg 

0.210 kg 

0.305 m 

 

9.81 m/s2 

- m 

- rad 

Magnitude of parameters are based on [14] 

kg: kilogram, rad: radian, m: meter, s: second 

 

B. Dynamic And Statics Models Of Friction 

Different models of friction have been presented in 

papers by researchers, but in this paper we want to focus 

on three known models [1]. The first presented model is a 

classic given as [4]: 

 c vF F sign v F v 
 (2) 

where v  and F are relative velocity of rubbing objects 

and friction force between them, respectively. Description 

and value of all models parameters in our problem are 

given in Table 2. 

Exponential model given in [4] is one of the most 

comprehend static models which cover static behaviors of 

friction in practice: 

   

2

s

v

v

c s c vF F F F e sign v F v

 
  
 

 
    
  
   

(3) 

Dynamic models cover friction dynamic behaviors in 

addition to static ones. Hence, dynamic models are richer 

than static ones. LuGre is a prominent dynamic model and 

is based on bristle conception of surfaces [3], [4]. This 

model is described by the following equation: 

0 1 vF z z F v     (4) 

where is the state variable of model and given by: 

 

v
z v z

g v
 

 
(5) 

and 

   

2

0

1
s

v

v

c s cg v F F F e


 
  
 

 
   
  
   

(6) 

TABLE 2. . FRICTION MODELS PARAMETERS DESCRIPTION 

Parameter 

Symbol Quantity 
Magnitudec,

d 

Fv 

Fc 

Fs 

vs 

σ0 

σ1 

viscous friction coefficient  

coulomb friction coefficient 

static friction coefficient 

Stribeck velocity 

stiffness coefficient 

damping coefficient 

3 N-s/m 

0.431 N 

0.844 N 

0.105 m/s 

121 N/m 

70 N-s/m 

a. Magnitude of parameters are considered for simulation and are based on [14] 

b. N: Newton, S: second, m: meter 

 

The LuGre model is characterized by six parameters 

while Exponential and Classic models are characterized 

by four and two parameters, respectively. To estimate 

friction using these models, all parameters should be 

identified which with respect to their nonlinear structure is 

not an easy task. 

C. Effects Of Friction On Closed Loop System 

To achieve our control objectives a Linear Quadratic 

Regulator is designed for the SIPC system in the absence 

of friction [1]. This controller ensures the asymptotic 

stability of system's unstable equilibrium point while 

minimizing the following energy-based cost function: 

 
0

T TJ x Qx u Ru dt



 
 

(7) 

State feedback control signal is achieved using the 

solution of Riccati algebraic equation [15]. The controller 

is designed for the linearized system while friction is not 

considered in system equations, but it is exerted to the 

closed loop system (CLS) in simulations. Fig. 2 shows the 

structure of CLS in the presence of friction [1]. Responses 

of cart and pendulum to initial conditions in CLS with 

LQR controller are shown in Fig. 3 and Fig. 4. 

Fig. 3, easily shows that the LQR as a modern control 

technique stabilizes system to origin asymptotically in the 

absence of friction, but in the presence of friction between 

cart and ground it is unsuccessful and limit cycle behavior 

is emerged. Unfortunately, modifications on controller 

design arbitrary parameters cannot eliminate limit cycles 

or even decrease its frequency or amplitude substantially. 

On the other hand, applying each of friction models, 

dynamic or static, leads to occurrence of limit cycle 

behavior with different amplitudes and frequencies. 

Therefore, a nonlinear optimal controller is designed for 
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the system and its performance is evaluated in the absence 

and presence of friction. 

 

Fig. 2.  Structure of closed loop system in presence of friction [1]. 

 

Fig. 3.  Cart displacement response to initial condition 

 0 0.2325 0 0
0
T

x   in closed loop system. 

 

Fig. 4. Pendulum angular displacement response to initial condition 

 0 0.2325 0 0
0
T

x   in closed loop system. 

3. NONLINEAR OPTIMAL CONTROLLER DESIGN 

Dynamic programming problem leads to HJB PDE 

which based on its approximate solution for the system 

nonlinear optimal controller is designed. Exact solution of 

HJB PDE is not possible, therefore, various approaches 

have been presented to solve it approximately [16]-[20]. 

Using power series expansion (PSE) is one of the useful 

solution techniques which is known as Albrecht method 

[16], [17]. In this paper, Taylor series expansion (TSE) is 

used to solve HJB PDE for the SIPC system and design a 

nonlinear optimal controller. 

A. General Overview On Tse Approach 

Solution of HJB PDE based on PSE is possible for 

nice optimal control problems [17]. Objective in optimal 

control problems is minimizing the following infinite 

horizon cost function [15]: 

       
0

, , ,
ft

f f
t

J h x t t g x u d       
(8) 

Subject to a nonlinear dynamic system which is given 

by: 

 ,x f x u
 (9) 

where 0t  and ft  are fixed time points. It is supposed that 

the integrant term of (8) and dynamic system (9) could be 

written in TSE form with the following formats [17]: 

 

       3 4

1 1
,

2 2

x, x,

T T
L x u x QX u Ru

l u l u

 

  
 

(10) 

and 

       2 3
, ,x Ax Bu f x u f x u    

 (11) 

Symbol  
 

.
n

 denotes functions which are composed 

of terms with degree.  

In this paper, the problem is considered infinite 

horizon ( ft   ), hence the HJB PDEs are written and 

described by [17]: 

 
   * *

, , 0
u u u u

v x
f x u L x u

x  


 

  
(12) 

 
 

 
*

*

,
, 0

u u u u

v x L x uf
x u

x u u 

 
 

  
 

(13) 

where 
*u  is the optimal control signal which can 

minimize the cost function (8) and  ,v x t  is optimal 

cost. To solve HJB PDE using TSE, optimal cost and 

optimal control signal are supposed to be according (14) 

and (15), respectively [17]. 

         3 41

2

Tv x x Px v x v x   
 

(14) 

       2* 3u x Kx K x K x   
 

(15) 

Now, by substituting (10), (11), (14), and (15) in (12) 

and (13), separating terms with identical degree and 

putting them equal to zero, unknown terms 
   n

v x  and 

   n
K x  are obtained. 
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B. Approximate Solution Of Hjb Pde For The 

Sipc System 

In this problem, the cost function is considered 

according to (7). The optimal control problem is nice; 

hence, using TSE for solution of HJB PDE is possible. To 

find the first unknown parameter in control signal (15), 

K , TSE of functions are substituted in (12) and (13). 

Then, terms with degree two and one into (12) and (13), 

respectively, are separated and put equal to zero. This 

process leads to Riccati algebraic equation which is the 

same as the LQR controller design strategy and state 

feedback gain is obtained. 

Since the function in (11) is zero, the second unknown 

term in (15) would be equal to zero. In the next step, by 

separating terms with order three in (13), the following 

equation for is procured. 

   
       3 4

3 1
,

T
f x u v x

K x R x P B
u x


  
   
  
   

(16) 

where    4
v x  is unknown. To acquire it, terms with 

order four in (12) are isolated and put equal to zero. 

Hence, we would have: 

   
       4 4

3
, 0T

v x v x
x Pf x Kx Ax BKx

x x

 
  

   
(17) 

To solve (17), the following linear operator which is 

invertible [17], is employed: 

   
   

 
4

4 v x
v x A BK x

x




  
(18) 

Therefore, 
   4

v x  is obtained as: 

       4 3
,Tv x x Pf x Kx 

 (19) 

In this problem, the first three terms in (15) are only 

obtained. 

C. Performance Of Nonlinear Optimal Controller 

The designed nonlinear optimal controller (NOC) is 

assessed in three different aspects. At first, response 

characteristics of CLS in the absence of friction is 

evaluated, hence system is actuated by the initial condition

 0 0 0.5232 0 0Tx  . Fig. 5 and Fig. 6 show position 

of cart and pendulum and the performance of NOC based 

on error criteria. Error signal is described by difference 

between position of cart and pendulum with the origin as 

the desired point and error criteria is considered as the 

energy of error signal. In fact, the performance of NOC is 

compared with LQR as a linear optimal controller. NOC 

has faster convergence to the origin and its error signal 

energy is about four times less than that of the LQR 

controller.  

Presence of friction is another factor which challenges 

the operation of controllers. NOC in some conditions 

eliminates effects of friction without using friction 

compensation loop. Fig. 7 demonstrates that NOC can 

prevent emergence of limit cycle behavior when Classic 

and Exponential are considered as exerted friction models 

to the system, however, the LuGre dynamic model 

impacts on performance of the nonlinear controller. 

Robust analysis is the last factor which is utilized to 

assess NOC. It is supposed that there are uncertainties in 

system parameters values such as cart and pendulum 

mass. A disturbance signal is also exerted to the cart. 

Response of CLS to the initial condition 

 0 0 0.4534 0 0Tx   in the presence of friction is 

shown in Fig. 8. The disturbance signal is a pulse in time 

interval 4 to 6(s) with an amplitude equal to one. The 

uncertainties for the cart and pendulum mass are 

considered equal to 20 and 10 percent, respectively. In 

these conditions asymptotic stability of system is satisfied. 

As a result, the better performance of NOC with 

respect to that of the LQR is concluded. Elimination of 

friction effects in some cases, faster convergence, low 

energy of error signal, and robustness are some of the 

NOC advantages.  

In the next section, an adaptive compensation 

technique is used to eliminate friction effects in cases in 

which the nonlinear controller is not capable to eliminate 

destructive effects of the friction. 

4. FRICTION COMPENSATION 

Different techniques have been presented to 

compensate for friction and eliminate its effects. The 

occurrence of limit cycle behavior is one the major 

problems that emerges in closed loop systems in the 

presence of friction. A general scheme of compensation 

techniques in other papers is shown in Fig. 9. Their idea is 

based on reconstructing a force which is the estimated 

friction force, Festimated, and adding it to the system where 

friction force, F, is exerted. This procedure makes to these 

two forces counteract each other. These approaches 

require a friction model, estimation of model parameters, 

and state observer in cases where dynamic models are 

used. Hence, utilizing these methods is complex and has 

special difficulties. 

In this paper, a new friction compensation technique 

using Adaptive Noise Cancellation (ANC) idea is 

proposed. ANC approach is utilized to counteract noise 
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using a signal whose amplitude is identical with that of the 

noise, but in an opposite direction [21], [22]. We use this 

technique to eliminate friction effects. 

A. Adaptive Friction Compensation Technique 

The desired behavior of the closed loop system is to 

converge to the origin asymptotically, but friction causes 

to emerge limit cycle as an undesired behavior. The 

difference between desired and undesired response in CLS 

is considered as a noise signal which should be 

eliminated.  

 

Fig. 5. Performance of NOC on cart position in closed loop system 

in comparison with LQR. (a): cart position, (b): energy of 

error signal. 

 

Fig. 6.  Performance of NOC on pendulum angular position in 

closed loop system in comparison with LQR. (a): pendulum 

angular position, (b): energy of error signal 

 

 

 

Fig. 7. . Capability of NOC in encountering with different models of 

friction. (a): static model, (b): exponential mode, (c): LuGre 

dynamic model. System is actuated by initial conditions 

 0 0.4534 0 0
0
T

x 
. 
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Fig. 8. . Response of cart position in closed loop system in presence 

of friction with uncertainty for cart mass (20 percent) and 

pendulum mass (10 percent) and exerted disturbance signal, 

(a): static model,(b): exponential model. 

 

Fig. 9.  General procedure for friction compensation [1]. 

Based on the ANC approach, we require to construct a 

time signal which has identical amplitude with noise 

signal, but in opposite direction. We call it spurious noise 

signal (SNS). The noise signal denoted by " N " is 

considered as summation of some sine signals with 

unknown different amplitudes ( iA ), frequencies ( i ), and 

phases ( i ). 

 
1

sin
n

i i i

i

N A t 


 
 

(20) 

To create SNS, the unknown parameters 
iA , 

i , and 

i should be estimated. Fig. 10 shows an overall view for 

the proposed adaptive compensation technique. 

Using Fourier transform, spectrum frequency of the 

noise signal is obtained which dominant frequencies are 

considered as unknown frequency components in (20). To 

estimate two other groups of unknown parameters, 

Gradient Algorithm (GA) as an online estimation adaptive 

technique is used. First, (20) is rewritten as: 

1 1 2 1 3 2

4 2 5 3 6 3

sin sin sin

sin sin sin

N      

     

  

     
(21) 

where 

5 3 33 2 21 1 1

2 1 1 6 3 34 2 2

sinsinsin

sin sinsin

AAA

A AA

   

    

 
  

     
(22) 

Now, by separating known and unknown terms in 

(21), static parametric model form (SPM) is obtained as 

[21]: 

 *
T

Z  
 

(23) 

where Z and   are known, but   comprises unknown 

parameters given by: 

1 1

2 1

3 2

*

4 2

5 3

6 3

sin

cos

sin

, , cos

sin

cos

t

t

t

Z N t

t

t

 

 

 

  

 

 

   
   
   
   
   

     
   
   
   
   
     

(24) 

Another SPM model is presented as: 

    
T

Z t t 
 

(25) 

where  t and  Z t are estimates of   and Z , 

respectively. Our objective is convergence of  t  to   

such that  Z t  converge to Z . To achieve the objective, 

the following adaptive law is presented: 

    (26) 

where 0
T

    is adaptive arbitrary gain and   is the 

normalized error between real and estimated vales of Z . 

As a results, the unknown parameters, A
i

and
i

 , are 

estimated and SNS are constructed. 
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B. Simulation Results 

According to the pervious section, noise signal is 

considered as difference between undesired and desired 

behaviors and its frequency components are calculated 

using Fourier transform in Matlab Software. Fig. 11 

shows noise signal and its frequency spectrum. Four 

frequencies are selected as dominant frequencies which 

based on (20) and (21) eight unknown parameters should 

be identified to create SNS. The constructed SNS using 

adaptive law (26) for estimation of unknown parameters 

and its summation with noise signal are shown in Fig. 12. 

As it is obvious, amplitude of SNS is identical with that of 

noise signal, but in an opposite direction and their 

summation is equal to zero.  

Cart position in the presence of friction and adaptive 

friction compensation loop is shown in Fig. 13. The 

proposed technique decreases the amplitude of 

fluctuations substantially. The amplitude has decreased 

from 0.02(m) to 0.00005(m), hence, positioning is done 

with very high accuracy. 

Fig. 14 and Fig. 15 show four out of eight estimated 

parameters. Input signal to friction compensation loop, 

noise signal, is not necessarily persistently excited; hence 

parameters do not converge to their exact values, but 

without loss of generality the SNS is constructed properly 

and objective of compensation is satisfied. 

In this section, the exerted friction force is considered 

based on the LuGre dynamic model, but the proposed 

approach works for other dynamic and static models.  

 

Fig. 10. Fig. 10. Overall scheme of proposed adaptive friction 

compensator technique [1]. 

 

Fig. 11. Fig. 11. (a): Nosie signal which is difference between 

response of cart displacement in presence and absence of 

friction to initial condition  0 0.3488 0 0
0
T

x  , (b): 

Frequency spectrum of noise signal. 

 

Fig. 12. Fig. 12. Comparison between SNS and noise signal. 

 

Fig. 13. Fig. 13. (a): cart modified position response to initial 

condition  0 0.3488 0 0
0
T

x   in presence of friction 

compensation loop and nonlinear optimal controller,(b): 

energy of error signal 
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Fig. 14. Fig. 14. Estimation of unknown parameters for first sine 

signal, (a): amplitude, (b): phase. 

 

Fig. 15. Fig. 15. Estimation of unknown parameters for second sine 

signal, (a): amplitude, (b): phase. 

5. COMPARISON WITH OTHER TECHNIQUES 

Nonlinear optimal controller has preference than the 

LQR controller. In [1], when adaptive compensation 

technique is applied to the closed loop system with LQR 

controller, the amplitude of fluctuations decreases from 

0.02(m) in the absence of friction compensation loop to 

0.0001(m) while, in this paper, with nonlinear optimal 

controller, it has decreased to 0.00005(m) and positioning 

with very high accuracy is achieved. It shows 50 percent 

improvement in system performance. 

The suggested technique is a combination of online 

and offline approaches and requires just one simple 

experiment, while many other proposed approaches 

require some special conditions and experiments for 

parameter identification which are not feasible in some 

cases [7], [8], [11], [12]. Estimated parameters in this 

technique are not related to models; hence, we do not 

require utilizing complex nonlinear estimation approaches 

because of highly nonlinear models. 

Since this technique deals with friction indirectly and 

eliminates its effects, it works for different static and 

dynamic models of friction and no state observer is 

needed [3].  

 On the other hand, friction behavior is investigated in 

two phases, stiction and kinematic [4]. Based on this 

phases, some of the authors have proposed approaches to 

estimate parameters and compensate for friction in one 

special phase or ,generally, their proposed techniques 

work for one special model [8], [13]. For instance, in [8], 

LuGre model is linearized and identification is done for 

stiction regime. In identification process, one experiment 

which is applying an input with very small amplitude such 

that system remains in its linear domain is essential. 

Satisfying this condition is not an easy task. In [11], 

parameters are classified in two, static and dynamic, 

groups and estimated separately. Estimation of static 

parameters require about twenty experiments with 

conditions on system velocity and dynamic parameters 

estimation require special condition on the input, while in 

our proposed adaptive technique, parameters are estimated 

entirely without any special condition [1]. 

6. CONCLUSION 

Friction is a nonlinear physical phenomenon which is 

not considered in mathematical modeling of system, but it 

has destructive effects on its performance. Therefore, the 

friction compensation problem has been addressed in this 

paper. At first, a nonlinear optimal controller based on 

HJB PDE approximate solution was designed for the SIPC 

system.Then, an adaptive compensation technique which, 

generally, is used to cancel noise signal was designed and 

applied to the system. The effectiveness and high 

performance of the controller and the proposed 

compensation approach in positioning with very high 

accuracy and elimination of friction effects were shown 

by simulations. 
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