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ABSTRACT: One of the main issues in inertial navigation systems is attitude determination, which 
means estimating the level angles (i.e., roll and pitch). This paper investigates the attitude estimation 
problem for an accelerated rigid body using three gyros and three accelerometers. The most critical 
challenges in attitude determination systems are external accelerations and gyroscope drift errors. Thus, 
a novel method based on the adaptive filter-Kalman algorithm is proposed to estimate and compensate 
for these errors. Linearization was performed around a general work point, and the covariance matrix’s 
adaptive values were obtained so that leveling angles were accurately determined despite external 
accelerations. The simulation results, along with the car test, which was performed in different dynamic 
conditions with external accelerations, showed that the introduced algorithm has a high capability in 
accurately estimating leveling angles. This approach can be used for GPS-less navigation Algorithms. 
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1- Introduction
An inertial navigation system typically uses three 

orthogonal accelerometers and three orthogonal gyroscopes 
that form an Inertial Measurement Unit (IMU) assembly. 
By integrating the output of an IMU, it is possible to derive 
all the navigation parameters, such as position, speed, and 
attitude of a moving vehicle. Determining the attitude of a 
vehicle is equal to determining the Euler angles (i.e., roll, 
pitch, and yaw). In this study, the purpose is to determine the 
level angles, which are the roll and pitch angles of a vehicle.

Estimation of attitude includes two phases: 1) estimation 
of attitude from measurements and sensors and 2) filtering of 
measurement noises. The second phase can be completed by 
combining measurements and models, where the modeling is 
done with different methods. For instance, consider a model 
with a three-axis rate gyroscope whose value is affected by 
noise; It is required to take new states into account in addition 
to the system states to determine the gyro’s drift. In this 
situation, a technique known as the ‘complementing method’ 
(such as Madgwick and Mahony methods) is applied [1-3]. 
In this method, the gyroscope’s output is used to filter the 
noise from the measurement, and the measurement is applied 
to determine the deviation of the gyroscope. Due to their 

simplicity and light computational loads, complimentary 
filters are typically employed in devices like mobile phones 
and smartwatches. Sometimes, an adaptive approach is 
utilized to improve the accuracy of complementary filters; 
For example, by detecting the location of a mobile phone 
and modifying the gain of an accelerometer in each axis, it 
is feasible to obtain a better calculation of level angles [4].

One of the most useful filters for attitude determination 
is the Extended Kalman filter (EKF) [5-11]. In some state 
determination applications, an advanced form of EKF 
called Multiplicative EKF (MEKF) is used [9, 11]. The 
linearization process that occurs in EKF, causes a reduction 
in the performance of this filter. Numerous studies have 
been performed to develop these filters; These studies have 
used the basic structure of EKF, including incremental EKF 
method [12-17], recursive EKF [18], quasi-deterministic 
EKF [19-21], and a two-stage optimal EKF [22]. 

One of the essentials for designing filters and observers 
in determining the attitude is using adaptive methods. 
Filters developed in this way are generally divided into two 
groups: The first group is filters that adjust the values of 
dynamic covariance, measurement covariance, or both, in the 
Kalman filters adaptively [23, 24]. Also, some filters have 
been designed to work with colored and white noises in an 
adaptive manner [25]. Additionally, in [26, 27] an adaptive 
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filter is introduced to deal with the uncertainty in dynamic 
noise modeling. The second group is filters that adaptively 
estimate the uncertain parameters of the system, such as the 
inertia matrix, or other constant parameters such as biases 
[28-30]. In [31], the perturbations related to the angular rate 
were considered as functions of biases and estimated using 
an adaptive filter.

Several mechanizations for attitude determination have 
been proposed and reviewed in .[32-34] There isn’t a single 
mechanization that can be generally favored above the others 
[35]. Among all the filters, the Discrete Kalman Filter (EKF) 
is the most widely used type in real-time state determination 
problems. Although new challenges such as singularity 
and non-continuity appeared in EKF, this filter found an 
outstanding performance in most applications of attitude 
determination [36, 37].

Reference [38] proposes an enhanced attitude and heading 
reference system (AHRS) algorithm specifically designed for 
unmanned aerial vehicles (UAVs). The algorithm utilizes 
a particle filter, a probabilistic estimation technique, to 
enhance the accuracy of attitude estimation. By incorporating 
measurements from accelerometers, gyroscopes, and 
magnetometers, the algorithm effectively combines sensor 
data to estimate the UAV’s attitude with improved accuracy. 
The proposed algorithm addresses the challenges of UAV 
dynamics and sensor measurement errors, making it suitable 
for applications requiring precise attitude estimation for UAV 
control and navigation.

Reference [39] presents a novel inertial navigation system 
that utilizes a low-cost MEMS (Micro-Electro-Mechanical 
Systems) AHRS. The system combines accelerometer and 
gyroscope data from the MEMS AHRS with an inertial 
navigation algorithm to estimate position, velocity, and 
attitude. The proposed system offers a cost-effective solution 
for navigation applications that require accurate position and 
orientation estimation.

Reference [40] introduces an adaptive unscented Kalman 
filter (AUKF) to enhance the attitude estimation accuracy of 
MEMS-based AHRS. By adaptively adjusting the process 
and measurement noise covariance matrices, the AUKF 
algorithm can effectively mitigate the impact of sensor errors 
and environmental disturbances. The proposed approach 
improves the robustness and accuracy of attitude estimation 
for AHRS applications.

Reference [41] presents a novel adaptive unscented 
Kalman filter (AUKF) with fading memory for robust 
attitude estimation in AHRS. The proposed filter dynamically 
adjusts its fading memory parameter based on the current 
sensor measurement noise level, enabling adaptive 
estimation and improved performance in varying conditions. 
The experimental results demonstrate the effectiveness of 
the proposed approach in enhancing AHRS accuracy and 
robustness.

Reference [42] presents an attitude estimation method 
for AHRS based on the Mahony filter and adaptive notch 
filter. The Mahony filter is employed to fuse sensor data and 

estimate attitude, while the adaptive notch filter is utilized 
to remove noise and interference caused by vibrations. The 
proposed approach improves the accuracy of AHRS attitude 
estimation, particularly in environments with high-frequency 
vibrations.

Reference [43] addresses the optimization problem of the 
attitude and heading reference system (AHRS). It formulates 
the AHRS problem as a nonlinear optimization task and 
explores various optimization techniques to obtain the best 
estimates of attitude and heading. The study investigates 
the performance of different optimization algorithms and 
provides insights into improving AHRS estimation accuracy.

Reference [44] proposes an AHRS correction algorithm 
based on a radial basis function (RBF) neural network for 
underwater autonomous underwater vehicles (AUVs). 
The algorithm aims to compensate for the dynamic errors 
caused by sensor biases and disturbances in underwater 
environments. By utilizing the RBF neural network, the 
proposed algorithm achieves accurate attitude estimation and 
improves the navigation performance of AUVs.

Reference [45] presents a quaternion-based adaptive 
unscented Kalman filter (AUKF) for AHRS with biased rate 
gyroscopes. The proposed filter combines quaternions, which 
represent attitude, with an adaptive estimation approach 
to handle the bias errors in rate gyro measurements. The 
algorithm adapts the filter gain and covariance matrices to 
improve attitude estimation accuracy and mitigate the effects 
of biased sensors.

Reference [46] presents a robust AHRS attitude 
complementary filter algorithm based on a nonlinear 
parameter fading extended Kalman filter (EKF). The 
algorithm combines the strengths of a complementary filter 
and an EKF to estimate attitude, while the nonlinear parameter 
fading technique adapts the filter to changing conditions. 
The proposed algorithm enhances AHRS robustness against 
measurement noise and external disturbances.

Reference [47] proposes an adaptive unscented Kalman 
filter (AUKF) algorithm for the attitude and heading 
reference system. The algorithm adaptively adjusts the filter 
parameters based on the measurement noise covariance and 
updates the filter gain matrix to improve estimation accuracy. 
The experimental results demonstrate the effectiveness of 
the proposed algorithm in enhancing the performance of the 
AHRS in terms of attitude and heading estimation.

One of the approaches that are used in attitude 
determination algorithms is to adjust the covariance matrix 
of the measurement error based on the acceleration limits 
(zero, low, and high acceleration) in different maneuvers [48, 
49]. This method has some problems in rotating maneuvers. 
Since one of the challenges in determining the attitude is the 
existence of external acceleration, several researchers have 
attempted to counteract this effect by estimating the amount 
of external acceleration [50]; However, this method leads to a 
significant error in estimating level angles in fast maneuvers.

By studying and examining the results of numerous 
experimental tests carried out in static and dynamic conditions, 
it was concluded that two factors are very important in 
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adapting the attitude determination algorithm: the first factor 
is the rapid detection of the maneuver change from static 
to dynamic condition. The second factor is determining the 
value of the error covariance matrix according to the dynamic 
conditions of the vehicle. In most references, such as [51-
55], one of these two cases is considered; In this paper, both 
factors are considered together and a new method based on 
the adaptive estimator is introduced which improves the 
accuracy of attitude determination.

The organization of this paper is as follows: In section 
2, mathematical modeling of the attitude determination 
algorithm is presented. In section 3, by linearizing the 
rotational kinematics of a rigid body, the discrete equations 
of the problem is obtained to be applied in a Kalman filter. 
In section 4, numerical simulation is carried out in MATLAB 
software. In section 5, a car test is performed to validate the 
algorithm and the results are presented.

2- Kinematic modeling
In this section, fundamental relations that determine the 

level angles are presented. According to Newton’s second 
law we have:

(1 ) mBDI𝐯𝐯BI = 𝐟𝐟a + 𝐟𝐟p + mB𝐠𝐠 

 

(2 ) mBDI𝐯𝐯BI = 𝐟𝐟ext + mB𝐠𝐠 → DI𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 

 

(3 ) 
DB𝐯𝐯BI + 𝛀𝛀BI𝐯𝐯BI =

𝐟𝐟ext
mB + 𝐠𝐠 → 

DB𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 − 𝛀𝛀BI𝐯𝐯BI  

 

(4 ) [DB𝐯𝐯BI ]
B =

[𝐟𝐟ext]B
mB + [T]BG[𝐠𝐠]𝐆𝐆 − [𝛀𝛀BI]B[𝐯𝐯BI ]

B
 

 

 

(5 ) 

[T]BG

= [
cos𝜓𝜓 cos 𝜃𝜃 sin𝜓𝜓 cos 𝜃𝜃 − sin 𝜃𝜃

cos𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 − sin𝜓𝜓 cos𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 + cos𝜓𝜓 cos𝜙𝜙 cos 𝜃𝜃 sin𝜙𝜙
cos𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 + sin𝜓𝜓 sin𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 cos 𝜃𝜃 cos𝜙𝜙

] 

[DB𝐯𝐯BI ]
B = [�̇�𝑢 �̇�𝑣 �̇�𝑤]T 

[𝐠𝐠]L = [0 0 −g]𝑇𝑇 

[𝛀𝛀BI]B = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 

 

(6 ) 

�̇�𝑢 = 𝑎𝑎x + g sin 𝜃𝜃 − (𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣)
�̇�𝑣 = 𝑎𝑎y − g cos 𝜃𝜃 sin𝜙𝜙 − (𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤)
�̇�𝑤 = 𝑎𝑎z − g cos 𝜃𝜃 cos𝜙𝜙 − (𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) 

 

(7 ) 
𝜃𝜃 = sin−1 (�̇�𝑢 − 𝑎𝑎𝑥𝑥 + 𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣

𝑔𝑔 ) ≈ sin−1 (−𝑎𝑎𝑥𝑥𝑔𝑔 )

𝜙𝜙 = tan−1 (
�̇�𝑣 − 𝑎𝑎𝑦𝑦 + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤
�̇�𝑤 − 𝑎𝑎𝑧𝑧 + 𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) ≈ tan−1 (

𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
) 

 

 (1)

Where I is the inertial frame, Bm  is the mass of the 
vehicle,  ID  is the rotational time derivative relative to the 
inertial frame, I

Bv  is the velocity of the body frame with 
respect to the inertial frame, af  and pf  are the aerodynamic 
and propulsive force vector and g is the gravitational 
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written as ext a p= +f f f , equation (1) can be written as:

(1 ) mBDI𝐯𝐯BI = 𝐟𝐟a + 𝐟𝐟p + mB𝐠𝐠 

 

(2 ) mBDI𝐯𝐯BI = 𝐟𝐟ext + mB𝐠𝐠 → DI𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 

 

(3 ) 
DB𝐯𝐯BI + 𝛀𝛀BI𝐯𝐯BI =

𝐟𝐟ext
mB + 𝐠𝐠 → 

DB𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 − 𝛀𝛀BI𝐯𝐯BI  

 

(4 ) [DB𝐯𝐯BI ]
B =

[𝐟𝐟ext]B
mB + [T]BG[𝐠𝐠]𝐆𝐆 − [𝛀𝛀BI]B[𝐯𝐯BI ]

B
 

 

 

(5 ) 

[T]BG

= [
cos𝜓𝜓 cos 𝜃𝜃 sin𝜓𝜓 cos 𝜃𝜃 − sin 𝜃𝜃

cos𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 − sin𝜓𝜓 cos𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 + cos𝜓𝜓 cos𝜙𝜙 cos 𝜃𝜃 sin𝜙𝜙
cos𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 + sin𝜓𝜓 sin𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 cos 𝜃𝜃 cos𝜙𝜙

] 

[DB𝐯𝐯BI ]
B = [�̇�𝑢 �̇�𝑣 �̇�𝑤]T 

[𝐠𝐠]L = [0 0 −g]𝑇𝑇 

[𝛀𝛀BI]B = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 

 

(6 ) 

�̇�𝑢 = 𝑎𝑎x + g sin 𝜃𝜃 − (𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣)
�̇�𝑣 = 𝑎𝑎y − g cos 𝜃𝜃 sin𝜙𝜙 − (𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤)
�̇�𝑤 = 𝑎𝑎z − g cos 𝜃𝜃 cos𝜙𝜙 − (𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) 

 

(7 ) 
𝜃𝜃 = sin−1 (�̇�𝑢 − 𝑎𝑎𝑥𝑥 + 𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣

𝑔𝑔 ) ≈ sin−1 (−𝑎𝑎𝑥𝑥𝑔𝑔 )

𝜙𝜙 = tan−1 (
�̇�𝑣 − 𝑎𝑎𝑦𝑦 + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤
�̇�𝑤 − 𝑎𝑎𝑧𝑧 + 𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) ≈ tan−1 (

𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
) 

 

 (2)

In equation (2), the ID  the operator can be shifted to the 
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 (3)

where BD  is the rotational time derivative relative to the 
body frame. Expressing equation (3) in the body frame results 
in:
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] 

 

(6 ) 

�̇�𝑢 = 𝑎𝑎x + g sin 𝜃𝜃 − (𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣)
�̇�𝑣 = 𝑎𝑎y − g cos 𝜃𝜃 sin𝜙𝜙 − (𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤)
�̇�𝑤 = 𝑎𝑎z − g cos 𝜃𝜃 cos𝜙𝜙 − (𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) 

 

(7 ) 
𝜃𝜃 = sin−1 (�̇�𝑢 − 𝑎𝑎𝑥𝑥 + 𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣

𝑔𝑔 ) ≈ sin−1 (−𝑎𝑎𝑥𝑥𝑔𝑔 )

𝜙𝜙 = tan−1 (
�̇�𝑣 − 𝑎𝑎𝑦𝑦 + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤
�̇�𝑤 − 𝑎𝑎𝑧𝑧 + 𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) ≈ tan−1 (

𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
) 

 

 (4)

where

(1 ) mBDI𝐯𝐯BI = 𝐟𝐟a + 𝐟𝐟p + mB𝐠𝐠 

 

(2 ) mBDI𝐯𝐯BI = 𝐟𝐟ext + mB𝐠𝐠 → DI𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 

 

(3 ) 
DB𝐯𝐯BI + 𝛀𝛀BI𝐯𝐯BI =

𝐟𝐟ext
mB + 𝐠𝐠 → 

DB𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 − 𝛀𝛀BI𝐯𝐯BI  

 

(4 ) [DB𝐯𝐯BI ]
B =

[𝐟𝐟ext]B
mB + [T]BG[𝐠𝐠]𝐆𝐆 − [𝛀𝛀BI]B[𝐯𝐯BI ]

B
 

 

 

(5 ) 

[T]BG

= [
cos𝜓𝜓 cos 𝜃𝜃 sin𝜓𝜓 cos 𝜃𝜃 − sin 𝜃𝜃

cos𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 − sin𝜓𝜓 cos𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 + cos𝜓𝜓 cos𝜙𝜙 cos 𝜃𝜃 sin𝜙𝜙
cos𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 + sin𝜓𝜓 sin𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 cos 𝜃𝜃 cos𝜙𝜙

] 

[DB𝐯𝐯BI ]
B = [�̇�𝑢 �̇�𝑣 �̇�𝑤]T 

[𝐠𝐠]L = [0 0 −g]𝑇𝑇 

[𝛀𝛀BI]B = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 

 

(6 ) 

�̇�𝑢 = 𝑎𝑎x + g sin 𝜃𝜃 − (𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣)
�̇�𝑣 = 𝑎𝑎y − g cos 𝜃𝜃 sin𝜙𝜙 − (𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤)
�̇�𝑤 = 𝑎𝑎z − g cos 𝜃𝜃 cos𝜙𝜙 − (𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) 

 

(7 ) 
𝜃𝜃 = sin−1 (�̇�𝑢 − 𝑎𝑎𝑥𝑥 + 𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣

𝑔𝑔 ) ≈ sin−1 (−𝑎𝑎𝑥𝑥𝑔𝑔 )

𝜙𝜙 = tan−1 (
�̇�𝑣 − 𝑎𝑎𝑦𝑦 + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤
�̇�𝑤 − 𝑎𝑎𝑧𝑧 + 𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) ≈ tan−1 (

𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
) 

 

 (5)

In equation (5), φ  and  θ  are roll and pitch angles, 
respectively; ψ  is the heading angle; u, v, and w are the 
components of linear velocity in the body frame; and p, q, and 
r are the components of angular velocity in the body frame. 
Inserting equation (5) into equation (4), the final form of the 
translational equation will be obtained:

(1 ) mBDI𝐯𝐯BI = 𝐟𝐟a + 𝐟𝐟p + mB𝐠𝐠 

 

(2 ) mBDI𝐯𝐯BI = 𝐟𝐟ext + mB𝐠𝐠 → DI𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 

 

(3 ) 
DB𝐯𝐯BI + 𝛀𝛀BI𝐯𝐯BI =

𝐟𝐟ext
mB + 𝐠𝐠 → 

DB𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 − 𝛀𝛀BI𝐯𝐯BI  

 

(4 ) [DB𝐯𝐯BI ]
B =

[𝐟𝐟ext]B
mB + [T]BG[𝐠𝐠]𝐆𝐆 − [𝛀𝛀BI]B[𝐯𝐯BI ]

B
 

 

 

(5 ) 

[T]BG

= [
cos𝜓𝜓 cos 𝜃𝜃 sin𝜓𝜓 cos 𝜃𝜃 − sin 𝜃𝜃

cos𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 − sin𝜓𝜓 cos𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 + cos𝜓𝜓 cos𝜙𝜙 cos 𝜃𝜃 sin𝜙𝜙
cos𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 + sin𝜓𝜓 sin𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 cos 𝜃𝜃 cos𝜙𝜙

] 

[DB𝐯𝐯BI ]
B = [�̇�𝑢 �̇�𝑣 �̇�𝑤]T 

[𝐠𝐠]L = [0 0 −g]𝑇𝑇 

[𝛀𝛀BI]B = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 

 

(6 ) 

�̇�𝑢 = 𝑎𝑎x + g sin 𝜃𝜃 − (𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣)
�̇�𝑣 = 𝑎𝑎y − g cos 𝜃𝜃 sin𝜙𝜙 − (𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤)
�̇�𝑤 = 𝑎𝑎z − g cos 𝜃𝜃 cos𝜙𝜙 − (𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) 

 

(7 ) 
𝜃𝜃 = sin−1 (�̇�𝑢 − 𝑎𝑎𝑥𝑥 + 𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣

𝑔𝑔 ) ≈ sin−1 (−𝑎𝑎𝑥𝑥𝑔𝑔 )

𝜙𝜙 = tan−1 (
�̇�𝑣 − 𝑎𝑎𝑦𝑦 + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤
�̇�𝑤 − 𝑎𝑎𝑧𝑧 + 𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) ≈ tan−1 (

𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
) 

 

 (6)

According to equation (6), the level angles are obtained 
as follows:

(1 ) mBDI𝐯𝐯BI = 𝐟𝐟a + 𝐟𝐟p + mB𝐠𝐠 

 

(2 ) mBDI𝐯𝐯BI = 𝐟𝐟ext + mB𝐠𝐠 → DI𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 

 

(3 ) 
DB𝐯𝐯BI + 𝛀𝛀BI𝐯𝐯BI =

𝐟𝐟ext
mB + 𝐠𝐠 → 

DB𝐯𝐯BI =
𝐟𝐟ext
mB + 𝐠𝐠 − 𝛀𝛀BI𝐯𝐯BI  

 

(4 ) [DB𝐯𝐯BI ]
B =

[𝐟𝐟ext]B
mB + [T]BG[𝐠𝐠]𝐆𝐆 − [𝛀𝛀BI]B[𝐯𝐯BI ]

B
 

 

 

(5 ) 

[T]BG

= [
cos𝜓𝜓 cos 𝜃𝜃 sin𝜓𝜓 cos 𝜃𝜃 − sin 𝜃𝜃

cos𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 − sin𝜓𝜓 cos𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 sin𝜙𝜙 + cos𝜓𝜓 cos𝜙𝜙 cos 𝜃𝜃 sin𝜙𝜙
cos𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 + sin𝜓𝜓 sin𝜙𝜙 sin𝜓𝜓 sin 𝜃𝜃 cos𝜙𝜙 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 cos 𝜃𝜃 cos𝜙𝜙

] 

[DB𝐯𝐯BI ]
B = [�̇�𝑢 �̇�𝑣 �̇�𝑤]T 

[𝐠𝐠]L = [0 0 −g]𝑇𝑇 

[𝛀𝛀BI]B = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 

 

(6 ) 

�̇�𝑢 = 𝑎𝑎x + g sin 𝜃𝜃 − (𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣)
�̇�𝑣 = 𝑎𝑎y − g cos 𝜃𝜃 sin𝜙𝜙 − (𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤)
�̇�𝑤 = 𝑎𝑎z − g cos 𝜃𝜃 cos𝜙𝜙 − (𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) 

 

(7 ) 
𝜃𝜃 = sin−1 (�̇�𝑢 − 𝑎𝑎𝑥𝑥 + 𝑞𝑞𝑤𝑤 − 𝑟𝑟𝑣𝑣

𝑔𝑔 ) ≈ sin−1 (−𝑎𝑎𝑥𝑥𝑔𝑔 )

𝜙𝜙 = tan−1 (
�̇�𝑣 − 𝑎𝑎𝑦𝑦 + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑤𝑤
�̇�𝑤 − 𝑎𝑎𝑧𝑧 + 𝑝𝑝𝑣𝑣 − 𝑞𝑞𝑢𝑢) ≈ tan−1 (

𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
) 

 

 (7)

In Equation (7), when the GPS signal is available, the 
term equal is used and when the GPS signal is not available, 
the term approximately equal is used. It should be mentioned 
that the accuracy of attitude measurements is reduced in 
accelerated movement. This act accrues because the tilt 
measurements are accurate in cruise conditions; Thus, as the 
carrier deviates from this condition, the accuracy of the tilt 
measurements reduces.

3- Estimation Algorithm
The Discrete Kalman Filter (DKF) is one of the most 

widely used estimators in the field of navigation. In this 
research, DKF is used to determine the level angles. In the 
proposed algorithm, attitude propagation is based on the 
Euler method. The Eeuler approach is used due to the physical 
understanding of the level angles and the ease of tuning the 
corresponding coefficients of the DKF.

To start the algorithm, the initial value of the state vector and 
the error covariance matrix of the DKF should be determined. 
The flowchart of the DKF is shown in Figure 1; It has two main 
parts: the time update part and the measurement update part.
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The different parts of the above flowchart in the attitude 
determination problem are explained in the following.

A- Initial conditions
The initial value of the level angles is determined as:

(8 ) 

𝜃𝜃0 = sin−1 (�̇�𝑢 − 𝑎𝑎x + 𝑞𝑞𝑞𝑞 − 𝑟𝑟𝑟𝑟
𝑔𝑔 )|

𝑡𝑡=0
≈ sin−1 (−𝑎𝑎x𝑔𝑔 )|

𝑡𝑡=0

𝜙𝜙0 = tan−1 (
�̇�𝑟 − 𝑎𝑎y + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑞𝑞
�̇�𝑞 − 𝑎𝑎z + 𝑝𝑝𝑟𝑟 − 𝑞𝑞𝑢𝑢)|𝑡𝑡=0

≈ tan−1 (
𝑎𝑎y
𝑎𝑎z
)|

𝑡𝑡=0
 

 

(9 ) 𝐱𝐱 = [𝜃𝜃 𝜙𝜙]T 

 

(10 ) 
�̇�𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑞𝑞 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑟𝑟
�̇�𝜙 = 𝑝𝑝 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑞𝑞 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑟𝑟 

 

(11 ) δ𝐱𝐱 = [δ𝜃𝜃 δ𝜙𝜙]𝑇𝑇 

(12 ) δ�̇�𝐱 = 𝐅𝐅cδ𝐱𝐱 + 𝐋𝐋c𝐰𝐰 

(13 ) 𝐅𝐅c = [ 0 −(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙)
sec2𝜃𝜃(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙) tan𝜃𝜃(𝑞𝑞cos𝜙𝜙 − 𝑟𝑟sin𝜙𝜙)] 

(14 ) 
𝐰𝐰 = [δ𝑝𝑝 δ𝑞𝑞 δ𝑟𝑟]𝑇𝑇 → {

δ𝑝𝑝 = �̃�𝑝 − 𝑝𝑝
δ𝑞𝑞 = �̃�𝑞 − q
δ𝑟𝑟 = �̃�𝑟 − 𝑟𝑟

 

(15 ) 𝐋𝐋c = [0 cos𝜙𝜙 −sin𝜙𝜙
1 sin𝜙𝜙tan𝜃𝜃 cos𝜙𝜙tan𝜃𝜃] 

 

(16 ) 𝐐𝐐c = E{𝐰𝐰𝐰𝐰T} = [
𝜎𝜎p2 0 0
0 𝜎𝜎q2 0
0 0 𝜎𝜎r2

] 

(17 ) 𝐏𝐏𝑘𝑘− = 𝐅𝐅D𝑘𝑘−1𝐏𝐏𝑘𝑘−1+ 𝐅𝐅D𝑘𝑘−1
T + 𝐐𝐐𝑘𝑘−1 

 

(18 ) 𝐐𝐐𝑘𝑘 = 𝐐𝐐cΔt𝑘𝑘 

 

 

 

 (8)

B- Time update
For determining the level angles, the following state 

vector is chosen in DKF:

(8 ) 

𝜃𝜃0 = sin−1 (�̇�𝑢 − 𝑎𝑎x + 𝑞𝑞𝑞𝑞 − 𝑟𝑟𝑟𝑟
𝑔𝑔 )|

𝑡𝑡=0
≈ sin−1 (−𝑎𝑎x𝑔𝑔 )|

𝑡𝑡=0

𝜙𝜙0 = tan−1 (
�̇�𝑟 − 𝑎𝑎y + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑞𝑞
�̇�𝑞 − 𝑎𝑎z + 𝑝𝑝𝑟𝑟 − 𝑞𝑞𝑢𝑢)|𝑡𝑡=0

≈ tan−1 (
𝑎𝑎y
𝑎𝑎z
)|

𝑡𝑡=0
 

 

(9 ) 𝐱𝐱 = [𝜃𝜃 𝜙𝜙]T 

 

(10 ) 
�̇�𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑞𝑞 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑟𝑟
�̇�𝜙 = 𝑝𝑝 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑞𝑞 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑟𝑟 

 

(11 ) δ𝐱𝐱 = [δ𝜃𝜃 δ𝜙𝜙]𝑇𝑇 

(12 ) δ�̇�𝐱 = 𝐅𝐅cδ𝐱𝐱 + 𝐋𝐋c𝐰𝐰 

(13 ) 𝐅𝐅c = [ 0 −(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙)
sec2𝜃𝜃(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙) tan𝜃𝜃(𝑞𝑞cos𝜙𝜙 − 𝑟𝑟sin𝜙𝜙)] 

(14 ) 
𝐰𝐰 = [δ𝑝𝑝 δ𝑞𝑞 δ𝑟𝑟]𝑇𝑇 → {

δ𝑝𝑝 = �̃�𝑝 − 𝑝𝑝
δ𝑞𝑞 = �̃�𝑞 − q
δ𝑟𝑟 = �̃�𝑟 − 𝑟𝑟

 

(15 ) 𝐋𝐋c = [0 cos𝜙𝜙 −sin𝜙𝜙
1 sin𝜙𝜙tan𝜃𝜃 cos𝜙𝜙tan𝜃𝜃] 

 

(16 ) 𝐐𝐐c = E{𝐰𝐰𝐰𝐰T} = [
𝜎𝜎p2 0 0
0 𝜎𝜎q2 0
0 0 𝜎𝜎r2

] 

(17 ) 𝐏𝐏𝑘𝑘− = 𝐅𝐅D𝑘𝑘−1𝐏𝐏𝑘𝑘−1+ 𝐅𝐅D𝑘𝑘−1
T + 𝐐𝐐𝑘𝑘−1 

 

(18 ) 𝐐𝐐𝑘𝑘 = 𝐐𝐐cΔt𝑘𝑘 

 

 

 

 (9)

The time update of the states is done by the Euler 
propagation method:

(8 ) 
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Also, the process noise, cQ , is considered as follows:

 

Fig. 1. Discrete Kalman filter flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial conditions: 𝐏𝐏0 and 𝐱𝐱ො0 

 

Measurement Update 

Calculating the Kalman Gain: 

𝐊𝐊𝑘𝑘 = 𝐏𝐏𝑘𝑘−𝐇𝐇𝑘𝑘
T(𝐇𝐇𝑘𝑘

T𝐏𝐏𝑘𝑘−𝐇𝐇𝑘𝑘 + 𝐑𝐑𝑣𝑣)−1 

Updating the State: 

𝐱𝐱𝑘𝑘+ = 𝐱𝐱𝑘𝑘− + 𝐊𝐊𝑘𝑘(𝐲𝐲𝑘𝑘 − 𝐇𝐇𝑘𝑘𝐱𝐱𝑘𝑘−) 
Updating the Covariance: 

𝐏𝐏𝑘𝑘+ = (𝐈𝐈 − 𝐊𝐊𝑘𝑘𝐇𝐇𝑘𝑘)𝐏𝐏𝑘𝑘− 

Time Update 

Updating the time State: 

𝐱𝐱ො𝑘𝑘 = 𝐟𝐟(𝐱𝐱𝑘𝑘−1, 𝐮𝐮𝑘𝑘) 
Updating the Covariance: 

𝐏𝐏𝑘𝑘− = 𝐅𝐅D𝑘𝑘−1𝐏𝐏𝑘𝑘−1+ 𝐅𝐅D𝑘𝑘−1T + 𝐐𝐐𝑘𝑘−1 

Fig. 1. Discrete Kalman filter flowchart
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(8 ) 

𝜃𝜃0 = sin−1 (�̇�𝑢 − 𝑎𝑎x + 𝑞𝑞𝑞𝑞 − 𝑟𝑟𝑟𝑟
𝑔𝑔 )|

𝑡𝑡=0
≈ sin−1 (−𝑎𝑎x𝑔𝑔 )|

𝑡𝑡=0

𝜙𝜙0 = tan−1 (
�̇�𝑟 − 𝑎𝑎y + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑞𝑞
�̇�𝑞 − 𝑎𝑎z + 𝑝𝑝𝑟𝑟 − 𝑞𝑞𝑢𝑢)|𝑡𝑡=0

≈ tan−1 (
𝑎𝑎y
𝑎𝑎z
)|

𝑡𝑡=0
 

 

(9 ) 𝐱𝐱 = [𝜃𝜃 𝜙𝜙]T 

 

(10 ) 
�̇�𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑞𝑞 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑟𝑟
�̇�𝜙 = 𝑝𝑝 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑞𝑞 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑟𝑟 

 

(11 ) δ𝐱𝐱 = [δ𝜃𝜃 δ𝜙𝜙]𝑇𝑇 

(12 ) δ�̇�𝐱 = 𝐅𝐅cδ𝐱𝐱 + 𝐋𝐋c𝐰𝐰 

(13 ) 𝐅𝐅c = [ 0 −(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙)
sec2𝜃𝜃(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙) tan𝜃𝜃(𝑞𝑞cos𝜙𝜙 − 𝑟𝑟sin𝜙𝜙)] 

(14 ) 
𝐰𝐰 = [δ𝑝𝑝 δ𝑞𝑞 δ𝑟𝑟]𝑇𝑇 → {

δ𝑝𝑝 = �̃�𝑝 − 𝑝𝑝
δ𝑞𝑞 = �̃�𝑞 − q
δ𝑟𝑟 = �̃�𝑟 − 𝑟𝑟

 

(15 ) 𝐋𝐋c = [0 cos𝜙𝜙 −sin𝜙𝜙
1 sin𝜙𝜙tan𝜃𝜃 cos𝜙𝜙tan𝜃𝜃] 

 

(16 ) 𝐐𝐐c = E{𝐰𝐰𝐰𝐰T} = [
𝜎𝜎p2 0 0
0 𝜎𝜎q2 0
0 0 𝜎𝜎r2

] 

(17 ) 𝐏𝐏𝑘𝑘− = 𝐅𝐅D𝑘𝑘−1𝐏𝐏𝑘𝑘−1+ 𝐅𝐅D𝑘𝑘−1
T + 𝐐𝐐𝑘𝑘−1 

 

(18 ) 𝐐𝐐𝑘𝑘 = 𝐐𝐐cΔt𝑘𝑘 

 

 

 

 (16)

In equation (16), the elements on the main diagonal of 
the matrix are the variance of the measurement error of the 
gyroscopes and depend on the quality of the sensors. Also, 
The estimation error covariance is propagated as follows:

(8 ) 

𝜃𝜃0 = sin−1 (�̇�𝑢 − 𝑎𝑎x + 𝑞𝑞𝑞𝑞 − 𝑟𝑟𝑟𝑟
𝑔𝑔 )|

𝑡𝑡=0
≈ sin−1 (−𝑎𝑎x𝑔𝑔 )|

𝑡𝑡=0

𝜙𝜙0 = tan−1 (
�̇�𝑟 − 𝑎𝑎y + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑞𝑞
�̇�𝑞 − 𝑎𝑎z + 𝑝𝑝𝑟𝑟 − 𝑞𝑞𝑢𝑢)|𝑡𝑡=0

≈ tan−1 (
𝑎𝑎y
𝑎𝑎z
)|

𝑡𝑡=0
 

 

(9 ) 𝐱𝐱 = [𝜃𝜃 𝜙𝜙]T 

 

(10 ) 
�̇�𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑞𝑞 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑟𝑟
�̇�𝜙 = 𝑝𝑝 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑞𝑞 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑟𝑟 

 

(11 ) δ𝐱𝐱 = [δ𝜃𝜃 δ𝜙𝜙]𝑇𝑇 

(12 ) δ�̇�𝐱 = 𝐅𝐅cδ𝐱𝐱 + 𝐋𝐋c𝐰𝐰 

(13 ) 𝐅𝐅c = [ 0 −(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙)
sec2𝜃𝜃(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙) tan𝜃𝜃(𝑞𝑞cos𝜙𝜙 − 𝑟𝑟sin𝜙𝜙)] 

(14 ) 
𝐰𝐰 = [δ𝑝𝑝 δ𝑞𝑞 δ𝑟𝑟]𝑇𝑇 → {

δ𝑝𝑝 = �̃�𝑝 − 𝑝𝑝
δ𝑞𝑞 = �̃�𝑞 − q
δ𝑟𝑟 = �̃�𝑟 − 𝑟𝑟

 

(15 ) 𝐋𝐋c = [0 cos𝜙𝜙 −sin𝜙𝜙
1 sin𝜙𝜙tan𝜃𝜃 cos𝜙𝜙tan𝜃𝜃] 

 

(16 ) 𝐐𝐐c = E{𝐰𝐰𝐰𝐰T} = [
𝜎𝜎p2 0 0
0 𝜎𝜎q2 0
0 0 𝜎𝜎r2

] 

(17 ) 𝐏𝐏𝑘𝑘− = 𝐅𝐅D𝑘𝑘−1𝐏𝐏𝑘𝑘−1+ 𝐅𝐅D𝑘𝑘−1
T + 𝐐𝐐𝑘𝑘−1 

 

(18 ) 𝐐𝐐𝑘𝑘 = 𝐐𝐐cΔt𝑘𝑘 

 

 

 

 (17)

where k
−P  is the time-updated error covariance matrix 

at time step k; 1k
+
−P  is the measurement-updated error 

covariance matrix at time step k-1. Also, kQ  is the discretized 
equivalent of the continuous process noise, cQ .

(8 ) 

𝜃𝜃0 = sin−1 (�̇�𝑢 − 𝑎𝑎x + 𝑞𝑞𝑞𝑞 − 𝑟𝑟𝑟𝑟
𝑔𝑔 )|

𝑡𝑡=0
≈ sin−1 (−𝑎𝑎x𝑔𝑔 )|

𝑡𝑡=0

𝜙𝜙0 = tan−1 (
�̇�𝑟 − 𝑎𝑎y + 𝑟𝑟𝑢𝑢 − 𝑝𝑝𝑞𝑞
�̇�𝑞 − 𝑎𝑎z + 𝑝𝑝𝑟𝑟 − 𝑞𝑞𝑢𝑢)|𝑡𝑡=0

≈ tan−1 (
𝑎𝑎y
𝑎𝑎z
)|

𝑡𝑡=0
 

 

(9 ) 𝐱𝐱 = [𝜃𝜃 𝜙𝜙]T 

 

(10 ) 
�̇�𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑞𝑞 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑟𝑟
�̇�𝜙 = 𝑝𝑝 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑞𝑞 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑡𝑡𝑎𝑎𝑠𝑠 𝜃𝜃 𝑟𝑟 

 

(11 ) δ𝐱𝐱 = [δ𝜃𝜃 δ𝜙𝜙]𝑇𝑇 

(12 ) δ�̇�𝐱 = 𝐅𝐅cδ𝐱𝐱 + 𝐋𝐋c𝐰𝐰 

(13 ) 𝐅𝐅c = [ 0 −(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙)
sec2𝜃𝜃(𝑞𝑞sin𝜙𝜙 + 𝑟𝑟cos𝜙𝜙) tan𝜃𝜃(𝑞𝑞cos𝜙𝜙 − 𝑟𝑟sin𝜙𝜙)] 

(14 ) 
𝐰𝐰 = [δ𝑝𝑝 δ𝑞𝑞 δ𝑟𝑟]𝑇𝑇 → {

δ𝑝𝑝 = �̃�𝑝 − 𝑝𝑝
δ𝑞𝑞 = �̃�𝑞 − q
δ𝑟𝑟 = �̃�𝑟 − 𝑟𝑟

 

(15 ) 𝐋𝐋c = [0 cos𝜙𝜙 −sin𝜙𝜙
1 sin𝜙𝜙tan𝜃𝜃 cos𝜙𝜙tan𝜃𝜃] 

 

(16 ) 𝐐𝐐c = E{𝐰𝐰𝐰𝐰T} = [
𝜎𝜎p2 0 0
0 𝜎𝜎q2 0
0 0 𝜎𝜎r2

] 

(17 ) 𝐏𝐏𝑘𝑘− = 𝐅𝐅D𝑘𝑘−1𝐏𝐏𝑘𝑘−1+ 𝐅𝐅D𝑘𝑘−1
T + 𝐐𝐐𝑘𝑘−1 

 

(18 ) 𝐐𝐐𝑘𝑘 = 𝐐𝐐cΔt𝑘𝑘 

 

 

 

 (18)

Similarly, the matrix Dk
F  is the discretized equivalent 

of the continuous system matrix, cF , and is calculated as 
follows [47]:

(19 ) 
𝐅𝐅D𝑘𝑘 = exp( 𝐅𝐅cΔt𝑘𝑘) = 𝐈𝐈 + 𝐅𝐅cΔt𝑘𝑘 + 

1
2! (𝐅𝐅cΔt𝑘𝑘)

2 + 1
3! (𝐅𝐅cΔt𝑘𝑘)

3 + ⋯ 

 

(20 ) 
𝐲𝐲𝑘𝑘 = �̃�𝐲𝑘𝑘 = [�̃�𝜃 �̃�𝜙]𝑇𝑇 = 𝐇𝐇𝑘𝑘𝐱𝐱𝑘𝑘 + 𝐯𝐯  

 𝐇𝐇𝑘𝑘 = 𝐇𝐇 = [1 0
0 1] 

 

(21 ) 𝐯𝐯 ∼ N(𝟎𝟎, 𝐑𝐑v) 
 

(22 ) 𝐊𝐊𝑘𝑘 = 𝐏𝐏𝑘𝑘−𝐇𝐇𝑘𝑘T(𝐇𝐇𝑘𝑘T𝐏𝐏k−𝐇𝐇𝑘𝑘 + 𝐑𝐑v)−1 

 

(23 ) 𝐏𝐏𝑘𝑘+ = (𝐈𝐈2×2 − 𝐊𝐊𝑘𝑘𝐇𝐇𝑘𝑘)𝐏𝐏𝑘𝑘− 

(24 ) 
δ𝐱𝐱𝑘𝑘+ = 𝐊𝐊𝑘𝑘(�̃�𝐲𝑘𝑘 − 𝐇𝐇x𝑘𝑘−) = 𝐊𝐊𝑘𝑘(�̃�𝐲𝑘𝑘 − �̂�𝐲𝑘𝑘) 

𝐱𝐱𝑘𝑘+ = 𝐱𝐱𝑘𝑘− + δ𝐱𝐱𝑘𝑘+ 

 

(25 ) mBDIDI𝐬𝐬BI = 𝐟𝐟 
 

(26 ) 
mBDBDB𝐬𝐬BI + mB(DB𝛀𝛀BI)𝐬𝐬BI + 

2mB𝛀𝛀BI(DB𝐬𝐬BI)+mB𝛀𝛀BI𝛀𝛀BI𝐬𝐬BI = 𝐟𝐟ng + mB𝐠𝐠 

 

(27 ) 

�̃�𝐚 =
𝐟𝐟ng
mB = −𝐠𝐠 

+

{ 
 
  
+2𝛀𝛀BI(DB𝐬𝐬BI) coriolis acceleration
+𝛀𝛀BI𝛀𝛀BI𝐬𝐬BI centrifugal acceleration
+(DB𝛀𝛀BI)𝐬𝐬BI
+DBDB𝐬𝐬BI

angular acceleration
linear acceleration } 

 
  

 

+𝐯𝐯 = −𝐠𝐠 + 𝛆𝛆 
 

(28 ) 𝛆𝛆 = 2𝛀𝛀BI(DB𝐬𝐬BI)+𝛀𝛀BI𝛀𝛀BI𝐬𝐬BI + (DB𝛀𝛀BI)𝐬𝐬BI + DBDB𝐬𝐬BI + 𝐯𝐯 
 

 (19)

C- Measurement Update
The measurement model is considered as follows:

(19 ) 
𝐅𝐅D𝑘𝑘 = exp( 𝐅𝐅cΔt𝑘𝑘) = 𝐈𝐈 + 𝐅𝐅cΔt𝑘𝑘 + 

1
2! (𝐅𝐅cΔt𝑘𝑘)

2 + 1
3! (𝐅𝐅cΔt𝑘𝑘)

3 + ⋯ 

 

(20 ) 
𝐲𝐲𝑘𝑘 = �̃�𝐲𝑘𝑘 = [�̃�𝜃 �̃�𝜙]𝑇𝑇 = 𝐇𝐇𝑘𝑘𝐱𝐱𝑘𝑘 + 𝐯𝐯  

 𝐇𝐇𝑘𝑘 = 𝐇𝐇 = [1 0
0 1] 

 

(21 ) 𝐯𝐯 ∼ N(𝟎𝟎, 𝐑𝐑v) 
 

(22 ) 𝐊𝐊𝑘𝑘 = 𝐏𝐏𝑘𝑘−𝐇𝐇𝑘𝑘T(𝐇𝐇𝑘𝑘T𝐏𝐏k−𝐇𝐇𝑘𝑘 + 𝐑𝐑v)−1 

 

(23 ) 𝐏𝐏𝑘𝑘+ = (𝐈𝐈2×2 − 𝐊𝐊𝑘𝑘𝐇𝐇𝑘𝑘)𝐏𝐏𝑘𝑘− 

(24 ) 
δ𝐱𝐱𝑘𝑘+ = 𝐊𝐊𝑘𝑘(�̃�𝐲𝑘𝑘 − 𝐇𝐇x𝑘𝑘−) = 𝐊𝐊𝑘𝑘(�̃�𝐲𝑘𝑘 − �̂�𝐲𝑘𝑘) 

𝐱𝐱𝑘𝑘+ = 𝐱𝐱𝑘𝑘− + δ𝐱𝐱𝑘𝑘+ 

 

(25 ) mBDIDI𝐬𝐬BI = 𝐟𝐟 
 

(26 ) 
mBDBDB𝐬𝐬BI + mB(DB𝛀𝛀BI)𝐬𝐬BI + 

2mB𝛀𝛀BI(DB𝐬𝐬BI)+mB𝛀𝛀BI𝛀𝛀BI𝐬𝐬BI = 𝐟𝐟ng + mB𝐠𝐠 

 

(27 ) 

�̃�𝐚 =
𝐟𝐟ng
mB = −𝐠𝐠 

+

{ 
 
  
+2𝛀𝛀BI(DB𝐬𝐬BI) coriolis acceleration
+𝛀𝛀BI𝛀𝛀BI𝐬𝐬BI centrifugal acceleration
+(DB𝛀𝛀BI)𝐬𝐬BI
+DBDB𝐬𝐬BI

angular acceleration
linear acceleration } 

 
  

 

+𝐯𝐯 = −𝐠𝐠 + 𝛆𝛆 
 

(28 ) 𝛆𝛆 = 2𝛀𝛀BI(DB𝐬𝐬BI)+𝛀𝛀BI𝛀𝛀BI𝐬𝐬BI + (DB𝛀𝛀BI)𝐬𝐬BI + DBDB𝐬𝐬BI + 𝐯𝐯 
 

 (20)

where ky  is the measurement vector and H  is the 
measurement matrix; kx  is the state vector, and í  is the 
measurement noise covariance:

(19 ) 
𝐅𝐅D𝑘𝑘 = exp( 𝐅𝐅cΔt𝑘𝑘) = 𝐈𝐈 + 𝐅𝐅cΔt𝑘𝑘 + 

1
2! (𝐅𝐅cΔt𝑘𝑘)

2 + 1
3! (𝐅𝐅cΔt𝑘𝑘)

3 + ⋯ 

 

(20 ) 
𝐲𝐲𝑘𝑘 = �̃�𝐲𝑘𝑘 = [�̃�𝜃 �̃�𝜙]𝑇𝑇 = 𝐇𝐇𝑘𝑘𝐱𝐱𝑘𝑘 + 𝐯𝐯  

 𝐇𝐇𝑘𝑘 = 𝐇𝐇 = [1 0
0 1] 

 

(21 ) 𝐯𝐯 ∼ N(𝟎𝟎, 𝐑𝐑v) 
 

(22 ) 𝐊𝐊𝑘𝑘 = 𝐏𝐏𝑘𝑘−𝐇𝐇𝑘𝑘T(𝐇𝐇𝑘𝑘T𝐏𝐏k−𝐇𝐇𝑘𝑘 + 𝐑𝐑v)−1 

 

(23 ) 𝐏𝐏𝑘𝑘+ = (𝐈𝐈2×2 − 𝐊𝐊𝑘𝑘𝐇𝐇𝑘𝑘)𝐏𝐏𝑘𝑘− 

(24 ) 
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(25 ) mBDIDI𝐬𝐬BI = 𝐟𝐟 
 

(26 ) 
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(27 ) 
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𝐟𝐟ng
mB = −𝐠𝐠 
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+(DB𝛀𝛀BI)𝐬𝐬BI
+DBDB𝐬𝐬BI
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+𝐯𝐯 = −𝐠𝐠 + 𝛆𝛆 
 

(28 ) 𝛆𝛆 = 2𝛀𝛀BI(DB𝐬𝐬BI)+𝛀𝛀BI𝛀𝛀BI𝐬𝐬BI + (DB𝛀𝛀BI)𝐬𝐬BI + DBDB𝐬𝐬BI + 𝐯𝐯 
 

 (21)

The Kalman gain matrix, kK , is calculated as57] ]:

(19 ) 
𝐅𝐅D𝑘𝑘 = exp( 𝐅𝐅cΔt𝑘𝑘) = 𝐈𝐈 + 𝐅𝐅cΔt𝑘𝑘 + 

1
2! (𝐅𝐅cΔt𝑘𝑘)

2 + 1
3! (𝐅𝐅cΔt𝑘𝑘)

3 + ⋯ 
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 (22)
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matrix and the state vector are updated as follows:
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 (23)

(19 ) 
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2! (𝐅𝐅cΔt𝑘𝑘)

2 + 1
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(26 ) 
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 (24)

4- The adaptive law of attitude determination system 
The attitude determination system must be able to estimate 

the Euler angles in different scenarios There are different 
motion phases for a moving vehicle where it experiences 
different angular and linear accelerations. In this study, an 
adaptive approach is used to adjust the measurement error 
covariance matrix by the change of vehicle motion behavior.

When the vehicle is in the non-accelerating phase, the 
measurements presented in equation (7) lead to a proper 
estimation of the alignment angles; However, if the device 
is under dynamic accelerations, the estimate of level angles 
is not accurate enough. The adaptation algorithm, utilizes the 
output of accelerometers and gyros to correct the covariance 
matrix of the measurement error automatically. This 
problem is achieved by separating the effects of acceleration 
components applied to the device. The analysis of these 
effects can be done based on Newton’s second law; Which 
has the following form in the inertial frame:

(19 ) 
𝐅𝐅D𝑘𝑘 = exp( 𝐅𝐅cΔt𝑘𝑘) = 𝐈𝐈 + 𝐅𝐅cΔt𝑘𝑘 + 

1
2! (𝐅𝐅cΔt𝑘𝑘)

2 + 1
3! (𝐅𝐅cΔt𝑘𝑘)

3 + ⋯ 
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(25 ) mBDIDI𝐬𝐬BI = 𝐟𝐟 
 

(26 ) 
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 (25)

Expressing equation (25) with respect to the body frame, 
we would have:
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 (26)

where ngf  is the resultant non-gravitational forces, 
which can be measured by the accelerometers, and BIs  is 
the position vector of the body frame concerning the inertial 
frame. Equation (26) could be rewritten as follows:
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As seen from equation (27), the value measured by 
the accelerometers is equal to the gravity vector plus the 
term indicated by 
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The attitude determination system must be able to estimate the Euler angles in different scenarios There are 
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separating the effects of acceleration components applied to the device. The analysis of these effects can be 

done based on Newton's second law; Which has the following form in the inertial frame : 
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Expressing equation (25) with respect to the body frame, we would have: 
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the position vector of the body frame concerning the inertial frame. Equation (26) could be rewritten as 

follows: 
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0 σsϕ2
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In equations (31), 

(31 ) 𝐑𝐑v = [
σsθ2 0
0 σsϕ2

] 

(32 ) 𝐑𝐑l = α[|�̃�𝐚| − |𝐠𝐠|]2 

(33 ) 𝐑𝐑c = β|𝛚𝛚BI|4 

     In equations (31), σsθ2  and  σsϕ2  are the variance of measurement error in pitch and roll angles in static 

conditions and are proportional to the error of the accelerometers. It is also assumed that the noise of the 

sensors is white with Gaussian distribution and independent from each other. 

     The covariance matrix of the measurement error caused by acceleration and rotation is also considered as 

diagonal matrices. In equation (32), the α coefficient is used for adjusting the linear acceleration error effects. 

Similarly, in equation (33), the β coefficient is utilized to adjust the effects of angular acceleration terms. 

 

5- Practical test 

To perform a test, three inertial navigation systems were used: 1- FINSIII gyrocompass navigation system, 

which, uses fiber optic gyroscopes and quartz accelerometers and can measure the alignment angles with an 

accuracy of hundredths of a degree; Thus, it is used as the reference. 2- The VN200 navigation system (a 

product of VectorNav company) is one of the most accurate attitude determination systems and is used as a 

comparison system. 3- The navigation system with the proposed algorithm (adaptive estimator) in which 

ADIS16488 is used as the inertial measurement unit. Figure 2 shows the placement of the mentioned systems 

in a car test. To equalize the test conditions for the three systems, a reference aluminum plate was used. The 

direction of the longitudinal axis of these systems was installed towards the front of the car. Figures 3 and 4 

show the car test bed and the path taken during the test. 
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test. To equalize the test conditions for the three systems, 
a reference aluminum plate was used. The direction of the 
longitudinal axis of these systems was installed towards the 
front of the car. Figures 3 and 4 show the car test bed and the 
path taken during the test.

In the first scenario, the car moved at a constant speed 
(60 km/h). The output of accelerometers and gyros in the first 
scenario are shown in Figures 5 and 6 respectively. Since the 
car has started to move from a stationary state, it has created 
primary accelerations which are well seen in ax accelerometer 

 

Fig. 3. Vehicle test bed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Vehicle test bed

 

Fig. 4. Performing a spiral maneuver with the car 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Performing a spiral maneuver with the car
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data (figure 5). The presence of these accelerations in the 
longitudinal direction of the car, according to equation (7) 
leads to an increase in the error of the pitch angle. As it is 
clear from Figure 7, the proposed algorithm was able to 
detect the accelerated movement adjust the error covariance 
matrix according to the maneuvering conditions, and prevent 
the error from increasing. In this scenario, the roll angle 

error variance is 0.1511 (deg2), and the mean squared error 
is 0.1916 (deg2). For the VN200 product, these numbers are 
0.4691 and 0.5067, respectively. Also, in the pitch channel, 
the error variance for the proposed algorithm is 0.4941, 
and the mean square error is 0.5432. At the same time, for 
the VN200 product, these numbers are equal to 1.0528 and 
1.1619, respectively.

 
Fig. 5. Accelerometer data of ADIS16488 in constant speed movement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Accelerometer data of ADIS16488 in constant speed movement

 
Fig. 6. ADIS16488 gyroscope data in constant speed movement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. ADIS16488 gyroscope data in constant speed movement
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In the second scenario, the goal was to examine the 
algorithm’s performance in decreasing and increasing 
accelerations; Therefore, by applying the gas and brake 
pedals successively to the car, the desired accelerations were 
produced. The output of accelerometers and gyros in the 

second scenario are shown in Figures 8 and 9 respectively. As 
seen in Figure 8, after pressing the gas pedal, the value of ax 
has reached about +4m/s2 and when the brake pedal is pressed, 
this value decreases to -4m/s2. The presence of changes in 
longitudinal acceleration leads to an error in estimating the 

 
Fig. 7. Changes of alignment angles in constant speed movement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Changes of alignment angles in constant speed movement

 
Fig. 8. Accelerometer data of ADIS16488 in accelerated motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Accelerometer data of ADIS16488 in accelerated motion
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pitch angle so that within 100 seconds, three degrees of error 
have been created. According to Figure 10, the proposed 
algorithm has been able to adjust the error covariance matrix 
according to the existing dynamic condition and prevent the 
error from growing. The results in this scenario show that in 
the roll channel, the error variance of the proposed algorithm 

is 0.0431 (deg2), and the mean square error is 0.2864 (deg2). 
For the VN200 product, these numbers are 0.2502 and 0.4398, 
respectively. Also in the pitch channel, the variance of error 
for the proposed algorithm is 0.9213, and the mean square 
error is 1.3127; while for the VN200 product, these numbers 
are 1.4209 and 1.8577, respectively.

 
Fig. 9. ADIS16488 gyroscope data in accelerated motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. ADIS16488 gyroscope data in accelerated motion

 
Fig. 10. Changes of alignment angles in accelerated motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Changes of alignment angles in accelerated motion
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In the third scenario, to observe the effect of lateral 
acceleration on the performance of the algorithm, the car 
moved in a spiral manner. The output of accelerometers 
and gyros in the third scenario are shown in Figures 11 
and 12 respectively. According to Figure 11, the sinusoidal 
changes of the acceleration in the Y axis are about 5m/s2. 

The results show that although the lateral accelerations can 
give the car a roll angle of four to five degrees, the proposed 
algorithm has an acceptable accuracy in the presence of 
lateral accelerations. In the roll channel, the error variance 
of the proposed algorithm is 0.0168 (deg2), and the mean 
square error is 0.2065 (deg2). For the VN200 product, these 

 
Fig. 12. ADIS16488 gyroscope data in a spiral motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. ADIS16488 gyroscope data in a spiral motion

 
Fig. 11. Accelerometer data of ADIS16488 in spiral motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Accelerometer data of ADIS16488 in spiral motion
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numbers are 0.2948 and 0.4644, respectively. Also, in the 
pitch channel, the error variance of the proposed algorithm 
is 0.0657, and the mean squared error is 0.3762; While, for 
the VN200 product, these numbers were 0.4025 and 0.5760, 
respectively.

In the fourth scenario, the car’s movement was done 
randomly so that all the maneuvering conditions were put 
together. The output of accelerometers and gyros in the fourth 

scenario are shown in Figures 14 and 15 respectively. The 
fourth scenario started with the car turning at the beginning 
of the route. Then the movement continued in an accelerated 
manner. After that, sudden acceleration was applied to 
the system after passing an obstacle. The accuracy of the 
algorithm in the roll channel is better than the pitch one. 
The performance of the proposed algorithm was acceptable 
when crossing the obstacle. The results of this scenario show 

 
Fig. 13. Changes of alignment angles in a spiral movement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Changes of alignment angles in a spiral movement

 
Fig. 14. ADIS16488 accelerometer data in random motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. ADIS16488 accelerometer data in random motion
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that in the roll channel, the error variance is 0.1337 (deg2), 
and the mean square error is 0.4024 (deg2). For the VN200 
product, these numbers are 0.4116 and 0.4923, respectively. 
Also, in the pitch channel, the error variance of the proposed 
algorithm is 0.8562, and the mean square error is 1.0063; 

while for the VN200 product, these numbers are 1.3223 and 
1.4827, respectively. Tables 1-2 show the performance of the 
proposed Adaptive Estimator Algorithm (AEA) compared to 
the VN200 product.

 
Fig. 15. ADIS16488 gyroscope data in random motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. ADIS16488 gyroscope data in random motion

 
Fig. 16. Changes of alignment angles in random motion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Changes of alignment angles in random motion
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6-  Conclusion
In this paper, a new analytical-comparative method 

was proposed to determine the attitude using a three-axis 
accelerometer and gyroscope sensors. The proposed algorithm 
does not use the navigation aiding data to estimate the attitude. 
For this purpose, by expanding the analytical equations in 
rotational kinematics of a rigid body, the comparative values 
of the measurement covariance matrix were extracted in 
such a way that despite the external accelerations applied to 
the body, an accurate estimate of level angles was obtained. 
The simulation results, along with the vehicle tests that were 
performed in different dynamic conditions, showed that the 
proposed algorithm has a high ability to estimate the level 
angles accurately.
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