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atmospheric drag, third body, and solar radiation. The controller is also developed such that it tolerates
the effects of additive and effective loss of actuator faults. A neural network is used in the controller to
estimate disturbances and faults and decrease their effects. Due to the high efficiency of electric thrusters,
they are used widely in LEO (Low Earth Orbit) missions. Therefore, in this paper Hall effect thrusters
are used as the actuator. For the maneuvering purpose, the reference orbit parameters are derived from a
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reference orbital dynamics which is the Kepler dynamics subjected to only the disturbance of gravity. To 1 qoe g o0n o e

avoid singularity, the orbital dynamics of six modified elements are used in the control design besides
. . . . . . Hall effect thrusters
the six classical elements. Then, by the desired orbital parameters from the reference orbit, the relative

motion elements are calculated to apply in control laws. By Lyapunov analysis, the updating laws of orbital maneuvering
the weights of the control and neural network are derived and also ultimately boundedness of the error ~ Neural network fault tolerant LQR
between the nominal orbital elements and the faulty orbital elements is proved. To show the effectiveness  control

of the proposed control, it is applied in the nonlinear Kepler dynamics which is affected by an accurate g pital disturbances

model of natural disturbances.

1- Introduction

Orbital maneuvers have a significant role in the success
of missions like surveillance, tracking, and data acquisition.
The classical maneuvering approach applies a two-impulse
Hohmann transfer to place the satellite in the correct orbital
position [1]. Despite the fuel efficiency of this control method,
it is inherently an open loop, and also an approximation of the
impulsive thrust is required. To overcome these limitations
and also due to the requirements of more accurate positioning
in next-generation space missions, considerable researches
are focused on the development of feedback control systems.
Specially since new continuous thrust propulsion technologies
are available to apply the continuous control commands [2,
3].

The design of feedback controllers like Lyapunov based
methods are able to control orbital maneuvering with stability
guaranteeing [4-8]. Unlike providing analytical control
laws, this method generally does not minimize a predefined
maneuver cost. Since minimizing fuel consumption along
with precise maneuvering is very significant in spacecraft
missions, optimal controls have been largely used to solve the
problem [9-14]. In [13-16], MPC is used to solve an optimal
maneuvering problem. However, this technique is usually
computationally intensive, especially when the dynamics

*Corresponding author’s email: fa_jahangiri@sbu.ac.ir

are nonlinear, as it requires to solve LMIs at each time
step. decreased the difficulties by performing linearization
in a curvilinear coordinate system. However, this approach
is limited by the assumption of a small relative radius, and
also some singularities in orbital parameters may occur [8,
18]Control, . In [18], this assumption has been relaxed by
introducing a specific orbital element-based parametrization
of the relative dynamics. [18-20] applied LQR control
in linearized orbital dynamics to minimize a predefined
maneuver cost. However, in the presence of disturbances
which is the definitive term of orbital dynamics in space
missions and possible actuator faults, the performance of the
closed loop system is decreased. Therefore, to have a precise
and reliable maneuver even with the failure of the actuators
and also to minimize fuel consumption, it is necessary to
design an optimal fault-tolerant control.

In general, there are two approaches to designing a fault-
tolerant controller; passive and active. In passive approaches,
the controller is designed such that the closed loop system is
robust to some expected faults, and the parameters and the
structure of the controller do not change during the operation
of the system [21-23]. While in active approaches, the
parameters and controller structure are reconfigured based
on the occurred fault. This approach can also be divided
into two general categories. In the first category, there is
not a unit for fault detection, isolation, and identification.
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However, this unit is required in the second category [24-26].
Although passive approaches require neither detection unit
nor controller reconfiguration, they are only reliable for a
predetermined class of faults and do not perform optimally
for all fault scenarios.

An effective active fault tolerant control is the fault
hiding method. The main idea of this method is to keep the
nominal controller and design a block that is placed between
the faulty process and the nominal controller such that the
faults remain hidden from the nominal controller. In fact,
this block is added to the faulty process so that the outputs
and inputs of the augmented system (faulty process and the
block) behave like a fault-free system. The main advantage of
this approach is that there is no need to change the nominal
controller and the block can be easily added to the existing
nominal controller [25-27].

In this paper, the LQR control is augmented by terms such
that the disturbances and actuator faults are estimated by a
neural network and eliminated from the closed-loop system.
In addition, model reference control is used to regulate the
maneuvering error dynamics. As mentioned, most of the
existing research used classical orbital parameters-based
dynamics that can result in singularities. However, in this
paper, we use modified orbital elements-based dynamics in
the control design. The control command applies in Kepler
orbital dynamics which is subject to disturbances and actuator
faults by a Hall effect thruster since analysis of maneuvers
shows that electric thrusters are suitable for satellite missions
in LEO orbits to change phase and altitude [28]. Therefore, the
contributions of this paper can be summarized as follows: 1)
Modified orbital elements-based dynamics are used to design
the controller. 2) Fault-tolerant LQR control is designed for
orbital maneuvering that uses a neural network to estimate
disturbances and actuator faults. 3) By a Hall effect thruster
the control signal is applied to Kepler dynamics which is
subjected to disturbances and actuator faults. 4) Ultimately
boundedness of the maneuvering error dynamics is proved
using Lyapunov analysis.

In section 2, Kepler’s orbital dynamics of the satellite as
well as modified orbital elements are discussed. In addition,
the Hall effect thruster model is given. Section 3 proposes
the fault-tolerant LQR which uses a neural network to
eliminate the effects of disturbances and actuator fault. In
this section, a theorem with its proof is given that guarantees
the ultimately boundedness of the closed loop system. In
section 4, simulation results are provided to demonstrate
the effectiveness of the proposed method. Finally, section 5
concludes the paper.

2- Orbital Dynamics Based on Modified Elements

The equations of Kepler’s orbit are the description of the
movement of an object like a satellite in an orbit subjected
to the gravitational force of another object. In addition,
there are disturbance forces such as solar radiation pressure,
atmospheric drag, earth gravity, third body, solar radiation,
and the earth non-sphericity that affect the satellite movement.
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In general, taking into account all disturbances, the satellite
orbital dynamics is as follows [8]:

r _Ho
?_W” Va TUgcrs Q)

where p is the gravitational parameter of the earth, »
provided the spacecraft position in Earth-Centered Inertial
(ECI) coordinate, U, is the ECI control acceleration, and
¥, denotes the environmental perturbation acceleration. The
disturbances accelerations on the moving bodies around the
earth change the orbital parameters.

The orbital motion is parameterized by the six orbital
elements; a, e, i, Q, w, and y which are the semimajor
axis, eccentricity, inclination, RAAN, argument of periapsis,
and true anomaly (Figure 1). The parameters are expressed
in ECI coordinates whose origin is located at the center of
the earth. The second coordinate system is R7N which is in
three directions; radial, tangential, and normal according to
the right-hand rule. To avoid singularities, modified orbital
elements are defined as follows [18]:

x,=Q+o+y,

_ /,U
X, = 3>
a

x, = ecos(Q+w),
x, = esin(Q+ o), 2

x, = tan(é) cos(Q),

X, = tan(é) sin(Q),

where X, is the true longitude, x, is the mean motion,
(x;, x,) are the components of the eccentricity vector,
(x5, x;) and are the components of the ascending node
vector.

For maneuvering purposes, an error vector is defined
between the modified orbital elements given by (2) and the
reference orbital elements y'; i=1,2,..-,6. The reference
orbit is an ideal orbit that satisfies the mission aims and it
is subjected to only the Earth’s gravitational field force.
Therefore, the errors are defined as [18]:

53 _ cos(x,) sin(x,) x3_x;
& | |sin(x) —cos(x) || x, — x|

. . 3)
& | |cos(x) sin(x) | x5—x;
[ e e
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Fig. 1. Coordinate frames and orbit parameters [20]

Then, the error dynamics are described by [16]:

dg

=Fé+Gu+y,,
dt d &

4)

where 4 = [”1 u, u,| is the control input and it
represents the acceleration vector in three radial, transverse,
and normal directions in the RTN coordinate device. & is the
state variables vector. During orbital transfers, only the error
variables &,, ..., & are required to be controlled. Therefore,
F and G are derived as follows:

0 0 0 0 0
1+¢)

0 0 & 0 0
-0 X

- 0 0 0
F= w'x, ,(5)
1+¢,) x
0 0 0 0 (+e)x Z)x :
—CUJC2
1 2
0 0 0 (+e)x H’:), a 0
603)(
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where w, ¢, {,, ¢ and { are defined as follows:

1-x; —x;,
cos(x,) sin(x,)
- Lin(xl) —cos(x,)
cos(x,) sin(x,)
- [sin(xl) —cos(x,)

Iz
iz
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7, € R>! is the total disturbances. The satellite is equipped
with an electric thruster, Hall effect, for maneuvering control.
The thrust provided by the Hall-effect thruster is obtained
from the commanded thrust p_, expressed in the inertial
reference frame as follows [29]:

(I+f)p.+o,
T'=%R(l;-¢,) 0 , )
0

where [ is identity matrix, R € R* 4 conversion matrix
of coordinate to ECI, €, € R*? is thrust alignment error,

is scale-factor bias and @, is actuator noise. An importar’ft
parameter that describes the characteristics of the thrust source
is the specific impulse, I, which indicates the efficiency
of converting fuel mass into thrust energy. The mass of
consumed fuel is obtained from the following equation:

= )

T
I,g

where g is the earth’s gravitational constant.

3- Neural Network-based Fault Tolerant LQR Control

In this section, the orbital maneuvering control is designed
to transfer from a primary LEO orbit to a secondary one.
Quadratic linear optimal controller is a suitable choice for
multi-input multi-output systems and has been used in many
applications. However, the orbital elements of a satellite
deviate from their desired values under the influence of
disturbance forces. Therefore, the LQR controller is improved
to overcome disturbances and faults. In control design,
modified element dynamics are used to prevent singularities.
Linearizing the nonlinear model (4) we have [8]:

s,

7 S+Bu+y,, (10)

where the matrices 4 and B are:

00 0 00 0 -3 0
00 -1 00 0 2 0

A=[0 1 0 0 0of, B=[1 0 0 (11)
00 0 0 -l 0 0 05
00 0 1 0 0 0 0

We considerthe cost function to minimize fuel consumption
and at the same time minimize orbital maneuvering error in
the following form:
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min J:O ("0 &E+u " Ru,)dt, 12)

where R >0 and Q>0 are the weight matrices of
inputs and maneuvering errors, respectively. Then, the state
feedback control law is:

u.=Ké&, K=R'B'RR, (13)

where B is a positive definite matrix obtained from the

following Riccati equation:
A'P+PA-PBR'B'R+Q, =0. (14)

Since the LQR is not able to eliminate the effects of
disturbances and actuators faults, to improve the efficiency
of the closed-loop system, we augment the LQR control with
a block based on a neural network. The laws for updating
the parameters are derived using Lyapunov analysis. The
idea is that the nominal control (e.g. LQR) is designed for
the nominal dynamics model that is free of disturbances and
faults. Then, for the error dynamics between the nominal
model and the model affected by disturbances and faults, the
controller is modified such that the disturbances and faults
are estimated using a neural network and then removed
from the dynamics. In addition, a reference model is also
designed for the desired efficiency of the error dynamics. In
the proposed method, unlike most of the similar papers, the
assumptions of knowing an upper bound for disturbances and
their derivatives are not required.

The nominal dynamics without faults and disturbances
are:

(15)

{é(t) = AE(t)+ Bu,
y(t)=CE(1) ’

where 4 (r)e R* is the nominal LQR, ye R™ is the
nominal dynamics output and C € R™ is a constant matrix.

Assumption 1: The closed loop system (15) by the
designed LQR is stable with desired performance.

The system dynamics subject to disturbances and actuator
faults are expressed by:

{é,»(t)=Aéf(t>+B,-<u‘,-+f<r)>+yp<t); £(0)=¢&, 06

y_/(t) = Céf(t)a

where = ()R> s the state of the faulty dynamics,
Rlxl A . o
Yy € is the faulty dynamics output and 5, e R* is
the faulty dynamics input. f(r)e R*' is the additive time-
varying actuator fault. The loss of effectiveness actuator fault
is formulated as the change in the input matrix [30]:
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B, =B0O, O ) diag(6,,6,,6,),

where 0;i=1,2,3 are unknown constants such that
0<6 <1. =1 means that the ith actuator is healthy. » »
which is the total disturbances, written in two parts:

7, ()= Ed (1) +d,(0).

where g eR™, d(t)e R, d,(t) e R™. Satisfying the
following assumption, unlike 4, (), the first part can be added
to the control input 4 .. Therefore, two different approaches
are considered for d, (t) and d,(t) in control design that are
discussed in following.

Assumption 2: The image space of E, Im(E), is a
subspace of the image space of B, Im(B); Im(E) < Im(B).

Since © is full rank, [m( B) =Im(B,) and there exists a
matrix 0" € R™ such that B Q =E.

Assumption 3: d (1) < d Where d is a constant vector.

The error dynamlcs between a5 and (16) are:

6, (0)=¢&,

{éA<r>:A§A<r>+Bf(uf +d,)+d,(1)~ Bu,(1); a7

yA(t) = CéA(t)7

where ¢ ()2¢(0-¢() and d =f()+Qd0). d, i
modeled by a one layer neural network with any desired
accuracy as:

d () =W g(1)+ (1), (18)

where W' eR™ is the weight matrix of the neural
network and ¢(.)e R*™ is an activation function which is
chosen as a sigmoid function. g(.) e R*" is the approximation
error vector which from the universal approximation theorem
[31], can be minimized as less as desired. We consider the
upper bound £ as follows:

le@, <z (19)
Equation (18) is approximated by:
d (6 =W §(0), (20)

where W e R** is the estimation of w". Therefore, the
approximation error is defined as:

d 0 2d,0)—d,0)=(W-W")p ) —&@). 1)

The fault-tolerant control is designed as:

u, (1) = MO)E (1) + N@©u, (0) =W (O)$0), (22)

with the following updating laws for j (), N()eR*, and
M) eR”:

M(t) =Proj, [ M(1),-B"PE (0] (1) |T,: M(0)=M,, (23)
N(t)=Proj, [ N(0).-B" P&, (! (1) |[T;: N(0)=N, ., (24)
() = Proj, [ (). B" P&, (09" |T: W(0) =17, (25)

where r,eR™, I, eR™, and r,e R“* are positive
definite matrices that determine learning rates. The operator
Proj, of two matrices X eR™ and ¥ € R™ is defined
as  Proj, (X,Y)= (Proj(coll (X),col, (Y)),...,Proj(colm (X),col, (Y)))
where col, ( ) denotes the ith column, and the operator Proj
of two vectors x e R™ and yeR™ is as follows:

Vs if @(x) <0,
Proj(x, y) 24y, if ¢(x)=0 and #'(x)y <0, (26)

%qﬁ(ﬂ if ¢(x)>0 and ¢(x)y >0,

where 2 (8 +1)x xX— xmdx 1( )A 6¢(x) X, € R
is a projection norm beug, imposed on x, and’ £ >0 isa

projection tolerance bound. It can be shown that [32]

(x—x")"(Proj(x,y)—y) <0, x" eR", ¢(x")<0. 7)

Therefore, from (27), for any X € R™™ we have:

tr[ (X = X7) (Proj, (X,1)-7) |

m 28
=>"[ col, (X = X") (Proj(col, (X), col,(¥)) —col,(¥)) | <0. @8)

i=1

The matrix PeR™ is
Lyapunov equation:

obtained from the following

AP+PA,+0=0, (29)

where Q0 eR™ is a positive matrix and 4 , eR™ is a
Hurwitz matrix which determines the desired performance of
the error dynamics.

Assumption 4: There exists matrices N e R*, and
M’ e R* such that:

BN -B=0, A+BM =4, (30)

175



E. Jahanbazi goujanit al., AUT J. Model. Simul., 55(1) (2023) 171-182, DOI: 10.22060/miscj.2023.22482.5326

Thruster

i, 6]

N t

M(7)

u),(r)=M(r)‘_'-‘é{r]+N(r}ur(:)-If’(r)¢(.') l \

MO)=pg, [ MO-BP; 050, MO=M,

& (=A%, (D)+B, (i, + (D) +7,():
&0 =4.

NO= proj,[NO-BPLOE O]y NO=N,

¥, =CE, ),

()=, [ 0),BTPZ(0GT | H(O)=T,

—H——.

u (1)

Nominal Controller

Fig. 2. Control structure to eliminate the effect of disturbances and faults

Figure 2 shows the block diagram of the closed-loop
system with the proposed controller and the updating laws.

Theorem 1: Consider the error dynamics given by
(17) with control input (22) and updating laws (23) - (25).
If Assumptions 1 to 4 are satisfied then & (¢) is ultimately
bounded with ultimate bound as: '

_ 22, (P)(|Bz +d,)
2, (Q)

€2))

Proof: The dynamics of orbital maneuvering error (17)
which is affected by disturbances and faults, and by the
proposed control law (22) is as follows:

E (1) = AE,()+ B,M(1)E, () +

B, N()u,(t)+B,(d, ()W ()e(t) +

d,(t)— Bu,(t)

= AE () +B,(M"+M(t)— M), () +
B,(N"+N(t)— N (t)+B,(d,(t) -

W ()p(1)) +d, (t) — Bu,(t)
=(A+B,M")é()+B ,MgA )+ B,NME -
B,d,(t)+(B,N" = B)u,(t)+d, (1),

(32)

where M (1) 2 M(t)-M ', Nt)2N()-N', and d (1) 2 d (t)-d (¢).
Using Assumption 4 the dynamics (32) is written as:
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E()=A,E,(0)+B,ME () +B,Nu (1) - B,d, (1) +d,()(33)

In addition, since the weights updates A1 (r), N(z),
and d(r) are calculated from Proj operator, there exist
norm bounds M_, N_, and d such that M(t)| <M

max ?

MN(I) <N__, and ¥ (t)(u " for 1> 0. The Lyapunov
unction is chosen as fol[Gws:
Vi, (), M (6), N(£), W ()
=&l (OPE () +tr{TyMT (N M (1)} o9
+tr {F;\}NT (t)N*‘IIV(t)} +n, tmce{WTN*_lW }
where W) 2W()-W . The derivative of

V(E (1), M(t), N(t),W (¢)) along the trajectory (33), and using
(23), (24), and (29) we have:

V (&0, M), N(2), T (1))
= ~& (N0, (1) + 2 (VPB, M ()&, (1)
+2£0 (1) PB, N ()u, (6) - 2&. (¢)PB, d, (1)
+20r{ M (1) Proj, | M (1).-B" P&, (0] (1) |}
+2tr{N' (t)Proj, [ N(2).~B" P&, (), (1) ||
+2d] (1)PE, (1) + 20 trace {WTN*"W(:)}.

(35)



E. Jahanbazi goujanit al., AUT J. Model. Simul., 55(1) (2023) 171-182, DOI: 10.22060/miscj.2023.22482.5326

Table 1. Orbits elements for the maneuvering scenario

Elements

Initial orbit

Final orbit

a(Km)

i(deg)
e

w(deg)

Q (deg)
0 (deg)

450
82

0
free

free
free

1000
81

0
free

free

free

Table 2. The perturbations characteristics

Earth gravitational constant

Acceleration of gravity

Effective cross-sectional of the satellite

Air density
Earth radios
Disturbance constant

Drag coefficient

1 =398600.47
g, =9.81
§=0.5625

p=7.388
R =6378.1363

J,=0.00108263

C, =25

Using the property (28), for equation (35) we have:

V <= (D0, (1) +2d; (P&, (1)~

267 ())PB, d, (1) + 21, trace {VIL/TN*"W(t)}. (36)
By equation (21), the relation (36) is written as:
V <=E(008, (1) +2d, (P&, (1)~ 2&] (VPB, W (0 (1) - -

287 (1)PB, (1) + ZU‘I'tVaCE{VIL/TNHW(t)} ,

Now substituting (25) and using the property (28), we
have:

V< =EL(DQE, (1) +2d, () PE, (1) - 2] (1)PB,&(1), (38)

where from 19 and also Assumption 3, it is written as:

V<=2 OO +2]&, O] A (P)(|B] 2 +4,). (39)

A

‘min

(Q) and 4 (P) are the minimum and maximum

eigenvalues of the matrices ¢ and P, respectively. Now, it is
obvious that the condition for the right side of (39) to become
negative is |&,()224,.(P)(|B|z +4,)/4,,(Q). Therefore,
V(.M (@), N @), (1)) <0, out of the region ||, (1)[| > 4 and
ultimately boundedness of & (¢) is proved

Remark 1. This theorem shows that by using the proposed
control in the faulty dynamics (16), this dynamics has a
behavior close to the nominal dynamics (15), and therefore,
due to Assumption 1, we can expect the desired performance
from the closed loop faulty dynamics.

4- Simulation and Results

In this part, the proposed controller is used to transfer the
satellite between two LEO orbits and compare it with LQR.
The initial and final conditions for the desired mission are
given in Table 1. As mentioned earlier, during the transfer
of the orbit, the three elements of height, eccentricity, and
inclination of the orbit change. Since the three elements (2
, @, and 0, which are of the angle type, do not affect the
transfer of the orbit, they are considered free. In addition, the
orbit transfer mission is from 450 km altitude to 1000 km
altitude by considering the radius of the earth which is 6371
km, the altitude should be transferred from 6821 km to 7371
km.

The orbit dynamics are subject to the disturbances; earth
gravity, atmospheric drag, third body and solar radiation with
the characteristics given in Table 2.
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Table 3. Thruster parameters

Earth gravitational constant

Acceleration of gravity

Effective cross-sectional of the satellite

Air density
Earth radios
Disturbance constant

Drag coefficient

1 =398600.47
g, =981

§ =0.5625
p=7.388
R =6378.1363

J, =0.00108263

C, =25

Mission
Requirements
I ;
NN based LQR
Reference Orbit Fault Tolerant
Controller

Fault
Natural
Vi p“.-.‘ M Forces
Thruster

Fig. 3. Block diagram of orbital maneuvering control

The actuator is a Hall effect thruster with a limited thrust
15 mN and the parameters are given in Table 3. The value of
the additive actuator fault is considered as follows for times
between the days 26™ and 38"

T
£(ty=[o0001sin0.0s) 0 o] .

We apply the proposed controller to the nonlinear kepler
model with deterministic model of disturbances includes
earth gravity, atmospheric drag, third body and solar radiation
from the model [33] as well as the actuator faults. The block
diagram of orbital maneuvering control using neural network
based fault tolerant LQR controller and Hall effect thruster is
shown in Figure 3.

The simulation results including altitude, eccentricity, and
orbit inclination for 50 days are shown in Figure 4. As seen,
by the proposed fault tolerant control method, in addition of
meeting the maneuvering mission specifications, the effects of
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disturbances and faults vanished. Figure 5 shows the thruster
signal which satisfies its limitation. To show the effectiveness
of the proposed method, the simulation is repeated by LQR
controller. The results for the three orbital elements altitude,
eccentricity, and inclination are shown in Figure 6. In order
to check the performance of the closed-loop system more
closely, the results are zoomed in Figure 7. It is seen that
the three elements have unfavorable fluctuations due to the
existence of disturbances and the fault. For example, the
altitude element has about 10 kilometers of fluctuation due
to the disturbances and about 70 kilometers due to the fault.
Therefore, comparing the results in Figures 6 and 7 with
Figure 4, the proposed controller has higher performance than
LQR in the presence of the disturbances and faults, since in
the proposed method, a possible part of disturbances and also
faults are estimated by the neural network which is augment
to the controller and then the effects of them are eliminated
from the closed loop dynamics.
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_ 7400 T T T T T ] I I
<
3 7200 -
°
£ 7000 - -
< 6800 | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
day
[ |
2oat —H
5
§ 0.2 .
Q
|-|.| 0 Il Il I | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
day
’g‘: 82.5 : :
g a2 =
S
'ﬁ 81.5— -
£ 81
E 80.5 | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
day

Fig. 4. Orbit elements during maneuvering by the proposed controller

L]

o &5 T0 785 20 25 30 35 40
day
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5- Conclusion

In this paper, a neural network-based fault tolerant LQR
control has been designed for the purpose of orbit maneuvering
between two LEO orbits. To avoid singularities, the orbital
dynamics based on the modified elements were used. The
dynamics were considered to be subjected to disturbances;
carth gravity, atmospheric drag, third body and solar radiation,
and also thruster faults. The reference orbit is the orbital
dynamics which is subjected to only the gravity acceleration.
Hall effect thrusters were used as the actuator due to their
high performance and are widely used in LEO satellites.
Ultimately boundedness of the maneuvering error has been
proved by Lyapunov analysis. The designed controller
was applied in nonlinear Kepler orbit dynamics which is
affected from an accurate model of natural disturbances. The
simulation results show the high performance of the closed-
loop system with the proposed controller.
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