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Autonomous track before detection of a radio target by an unmanned aerial vehicle 
using radio signal strength measurement 
A. Firouzabadi1, S. M. Esmailifar1*, and A. Jafargholi 2

1 Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
2 Electromagnetic and Antenna lab, Department of Physics, Amirkabir University of Technology, Tehran, Iran

ABSTRACT: This paper presents a Track-Before-Detect (TBD) approach to search and localize a radio-
emitted target in a wide marine environment using just the received signal strength (RSS) measurements. 
In this problem, the lost target transmits radio signals, and the unmanned aerial vehicle (UAV), guided on 
a search path, receives the target transmitted signal strength by its mounted antenna. The guidance law 
directs the UAV to the best detection points where the probability of target detection is maximum. At the 
same time, the estimation module evolves the posterior distribution of the radio target states, including 
the target position, heading, and transmitter power. The best detection points are calculated based on this 
evolved target’s states’ posterior. The superiority of the proposed method is due to the consideration of 
the antenna radiation pattern, which is accurately modeled in this paper and ensures the strength of the 
filter against the uncertainties of the measurement model and the target model. The simulation results 
validate the performance of the proposed method in the autonomous localization of a lost moving target.
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1- Introduction
In recent years, the prominent empowerment of 

unmanned aerial vehicles made them an efficient platform 
for realizing complicated military and civil missions. 
Autonomous search, detection, and tracking of a ground 
target is still a challenging mission in which UAVs can play 
an important role. In this regard, The UAV task is extracting 
target states from all information measured by the UAV’s 
onboard sensors. Depending on the capabilities of the 
sensor, this information can be visual [1], thermal [2], radio 
[3], or acoustic [4]wherein the sources are simultaneously 
emitting identical acoustic signals. Distributed coordinated 
localization algorithms based on multiple range and direction 
measurements are presented and performances are evaluated 
in different practically significant mission scenarios. Non-
deterministic polynomial (NP. There are several applications, 
such as traffic monitoring [5], environmental monitoring [6], 
wildlife tracking [7], [8], border patrol, and combat scenarios 
[9], which can be classified as target search and localization. 
Marine applications such as a damaged ship or lost lifeboats 
search and rescue, enemy threat recognition and ward off, or 
even stop illegal sea-border crossings are missions in which 
target detection and localization time play a vital role in life-
saving, especially in adverse sea and weather conditions.  

Localization of radio frequency (RF) sources can be 
implemented by different measured characteristics of the 
radio signal, so-called metrics, such as time-of-arrival (ToA) 
[10], time-difference-of-arrival (TDoA) [11], roundtrip time 
(RTT) [12], angle-of-arrival (AoA) [13] and received signal 
strength (RSS) [14], [15]. RSS-based methods are more 
popular among these, mainly due to low complexity and 
hardware requirements. 

There are many localization techniques to extract the 
target states based on noisy RSS metrics by static or dynamic 
approaches. Trilateration [16], least square methods [17], and 
maximum likelihood (ML) [18] are some static methodologies 
that do not take into account the target dynamics and 
observation history. This leads to limitations on localizing 
and tracking a moving target, especially in the presence of 
un-modeled multipath interference. [19] investigated five 
linear least square (LLS) based localization algorithms 
for RF signal source search and localization (SSSL) as the 
UAV navigates autonomously along a path with predefined 
waypoints. They assumed a simplified propagation channel 
model for The UAV network that does not include the realistic 
antenna characteristics and propagation conditions.

Dynamic approaches aim to locate the target by integrating 
all information from incoming periodic observations and 
predictions of the target movement, which makes them more 
effective in similar scenarios. RSS-based linear estimator 
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like Extended Kalman Filter (EKF) is utilized for target 
localization [20]. In [21], the Hidden Markov Model (HMM) 
and EKF are combined to mitigate line-of-sight blockage 
errors. In [22], EKF is used to update the estimation of an 
aerial target location. They also have developed a predictive 
path planning strategy based on the Fisher information matrix 
(FIM) to find the trajectory that maximizes the received 
information. In [3], a grid-based filter is presented to localize 
radio-tagged wildlife using a small UAV. They assumed that 
the radio tag was observable from the beginning of the search, 
which is not a realistic assumption. In [23], a gradient-based 
waypoint optimization for two UAVs equipped with TOA 
sensors has been developed for the passive localization of 
a stationary radio source with omnidirectional propagation. 
The control strategy is based on the position error covariance 
estimated by the EKF.24]  ] proposed an unscented Kalman 
filter (UKF) algorithm combined with radio frequency 
identification (RFID) for target positioning and tracking by a 
UAV equipped with an RFID reader based on received signal 
strength indication (RSSI) measurements. 

Traditional radar tracking algorithms correlate a set of 
point measurements recorded by sensors in each scan over 
time and estimate positional/kinematic characteristics (such 
as Doppler-azimuth range). A poor signal-to-noise ratio 
(SNR) of the measured signal reduces the target detection 
performance. A common approach for tracking in low SNR 
environments is to set the detection threshold very low and let 
the tracking algorithm deal with the high rate of clutter and 
false alarm detection. In this paper, it is assumed that there 
is no information about the target’s dynamics and location, 
and the tracking is performed using only low-cost passive 
RSSI sensors. Therefore, the difficulty of the estimation is 
due to the sensors’ inabilities and low SNR measurements 
that cause not detecting the target with a few measurements. 
A potentially more powerful approach, referred to as Track-
Before-Detect (TBD), tracks the possible presence of the 
targets (target’s posterior) until the detection occurs. The 
TBD approach improves tracking performance and allows 
the tracking filter to effectively deal with poorly observed 
targets, i.e. targets with low SNR. 

The main difficulty in the TBD approach is that the 
measurement, a highly nonlinear function of the target state. 
Dynamic Localization by using particle filters is capable of 
dealing with nonlinear dynamics and measurement models 
and non-Gaussian noises [25]. This filter has been used by a 
number of authors for the TBD approach. In [26], a particle 
filter solution is proposed for localizing a known radio source 
using only RSS. They assumed an ideal empirical radio model 
for signal propagation. In [27], the localization of VHF radio-
tagged animals by a UAV is demonstrated. They utilized a 
particle filter for localizing and a partially observable Markov 
decision process (POMDP) for dynamic path planning. This 
approach guides the UAV toward maximum information gain 
to detect multiple mobile animals and reduce detection time. 
A cooperative localization algorithm of marine targets by 
multiple UAVs has been developed in [28], [29]. A modified 

Monte-Carlo filter, considered a Track-Before-Detect (TBD) 
filter, has been used to estimate the posterior of the target 
by fusing the UAVs’ observations. They also presented a 
heuristic searching guidance law to direct the UAVs to the 
guidance points where the best observations are available for 
an optimum search.

Saghafi and Esmailifar [30] employed a UAV equipped 
with an RSS-based omnidirectional antenna for searching 
and localizing a lost target utilizing Bootstrap filtering and 
searching guidance law together with a BTT acceleration 
autopilot. They assumed that the transmitter and receiver 
antenna gain patterns are spherical, which is not an accurate 
assumption. Here, we develop a TBD approach for target 
search and localization, capable of handling realistic antenna 
patterns. In this regard, receiver and transmitter antennas 
are designed, and their signal radiation patterns are modeled 
accurately. So, the contributions of this work are itemized as 
follows:

• Development of a TBD approach to localize an 
unknown radio target in the presence of noises and 
uncertainties, especially in a low SNR environment.

• Both the transmitter and receiver antennas are 
designed and customized with an accurate radiation 
pattern model for a search and rescue scenario in a 
large-scale environment. This design provides an 
accurate measurement model for application in the 
TBD approach as well as for more accurate evaluation 
of the tracking algorithm using approximate radiation 
patterns in software-in-the-loop (SIL) simulation.

• Applying a search approach utilizes a heuristic 
searching guidance law and guidance points.

These modifications make the measurement model of the 
search and localization filter more accurate and increase the 
target states’ observability, leading to faster localization. The 
search approach applies more appropriate maneuvers to the 
UAV to capture more efficient signals and also guides it to the 
best detection point where the measured signal maximizes the 
probability of detection, resulting in less localization error in 
low SNR environments.

In this regard, the paper is organized as follows: After the 
introduction (section 1), the search and localization algorithm 
is described based on the Bayesian estimation procedure 
and its implementation by sequential Monte Carlo (SMC) 
in section 2. Since one of this paper’s contributions is the 
utilization of a more accurate RSS measurement model in 
the Bayesian filter, in section 3, the antenna simulation of 
its far-field propagation model will be explained. After the 
development of the target search and localization algorithm 
in previous sections, it is the turn of the UAV dynamic 
and guidance simulation for statistical evaluation of the 
developed algorithm. Therefore, in section 4, the guidance 
law for directing the UAV on the search path is introduced, 
and the translational and rotational dynamics of the UAV are 
explained in section 5. Simulation results are provided in 
section 6, and finally, a conclusion is made in section 7.
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2- Target localization
Localizing in a broad environment where the prior 

probability distribution of the target is indistinct and non-
Gaussian complicates the estimation problem. Contrary to 
the Kalman filter, the SMC filter can handle this complicated 
condition with much more computational effort [31].

The framework of the radio target tracking problem is 
illustrated in Fig. 1, which it shows the contribution between 
estimation, guidance, and control modules. In the following, 
each module will be explained in detail.

2- 1- Target state estimation
As previously mentioned, the search and localization 

scenario is defined as follows:
The lost target, which might be a damaged ship, lost 

lifeboat, threatening battleship, or other marine vehicles, 
located within a marine environment, is denoted by “t”. This 
target transmits a radio signal received and measured by 
a UAV’s onboard sensor denoted by “s”. Since there is no 
information about target motion, its dynamics are modeled as 
a random walk motion:
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where t
kx  is the state vector of the target and kw  is the 

dynamic noise vector due to the unknown target behavior; 
both are considered at the time step k. The target state vector 
has four components: target location 

Tt t
k kx y   , target 

heading t
kψ , and transmitter antenna power tP . The UAV 

onboard sensors can measure the received signal strength, 
which is the function of the UAV location, s

kx , the target 
location, t

kx ,  and measurement noise, kv , as:
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In the above equation, the navigation system obtains 
the UAV location, and the target location will be estimated 
from the sensor’s measurements by the SMC filter. The 
measurement model is presented in section 3.

The Bayesian approach estimates the system states ( t
kx ) 

by constructing the posterior probability density function (pdf 
or density) of the states based on all available information, 
including the sequence of received measurements ( 1:kz ). On 
the other hand, estimation proceeds by calculating marginal 
posterior distribution 1:( | )t

k kp x z  sequentially through 
prediction (3) and update (4) steps:
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Fig. 1 – Framework of the cooperative multi-target tracking.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Framework of the cooperative multi-target tracking. 
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where, 1( | )t t
k kp −x x , is determined based on the 

probabilistic Markov model of the target (1). Also, 
1 1: 1( | )t

k kp − −x z  is the prior distribution calculated in the 
update stage of the last time step k-1. The update step is as 
follows:
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where ( | )t
k kp z x , the likelihood function is determined 

by the measurement model (2).

2- 2- SMC implementation of the Bayesian filter
In the case of a nonlinear system or non-Gaussian noises 

and prior, there is no general closed-form solution for the 
Bayesian recursion and 1:( | )t

k kp x z . Therefore, the SMC 
filter, introduced by Gordon [32], will be implemented as an 
approximate solution for Bayesian filtering. The SMC filter 
represents the posterior distribution by N samples and their 
corresponding weights:
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where ( )xδ  is the Dirac delta function.
It is impossible to Draw a set of random samples from 

any distributions such as 1:( | )t
k kp x z except for some well-

known ones (uniform, normal and beta etc. distributions); 
then, in an alternate approach, an importance density function 

1( | , )i i
k k kq −x x z  is introduced, which can generate new 

samples based on Monte-Carlo integration by knowing the 
last time step samples and their corresponding weights [33]. 
The weights are updated in such a way to compensate using 
importance density instead of posterior:
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in which all the weights should be normalized such that 
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Drawing the samples from importance density and 

updating the corresponding weights are the steps of the 
sequential importance sampling (SIS) algorithm. In this 
method, the minimum mean-square error (MMSE) is 
converted to
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And the estimation covariance is
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In the SIS algorithm, degeneracy, which means that 
the variance of importance weights increases over time, is 
inevitable. The degeneracy of samples can be measured by 
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where Neff is inversely related to the degeneracy problem. 
Therefore, the degeneracy shows up when Neff becomes 
less than a threshold value NT. In the present research, 
the resampling technique is utilized to reduce the sample 
degeneracy in which the samples with small weights are 
replaced by those with larger weights. Resampling and other 
techniques, like the injection method, are discussed in [34] 
in detail. 

3- Measurement model
In this section, the accurate model of radio signal 

propagation is used for the measurement model. Therefore, 
after introducing the Friis propagation model, appropriate 
transmitter and receiver antennas are designed, and then their 
far-field propagation patterns are modeled. It is worthwhile to 
mention that this model is used for 

the measurement model required in the Bayesian filter 
process (Eq. (2)) and also for

the measurement model utilized for simulations.
These two models might not be the same because, in 

the real world, we have mismatched modeling between the 
filtering measurement model and real-world electromagnetic 
propagation. In the following sections, we discuss more about 
this modeling mismatch.

3- 1- Friis free space propagation model
The Friis propagation model describes the attenuation 

of radio energy between two antennas. In this model, it is 
assumed that the space between the transmitter and receiver 
antennas, R, is free of any object that can absorb or reflect 
the energy of the radio frequency waves. This model is as 
follows: 

1 1 1( , ) ,t t t
k k k k k k− − −= = +x f x w x w                              (1) 

 

,s t
k k k k kz = h (x x , v )    (2) 

1: 1 1 1 1: 1 1( | ) ( | ) ( | ) ,t t t t t
k k k k k k kp p p d− − − − −= x z x x x z x   (3) 

1: 1
1:

1: 1

( | ) ( | )
( | ) ,

( | ) ( | )

t t
k k k kt

k k t t t
k k k k k

p p
p

p p d
−

−

=


z x x z
x z

z x x z x
   (4) 

1:
1

( | ) ( ),
N

t i t i
k k k k k

i
p w 

=

 −x z x x    (5) 

1
1

1

( | ) ( | ) ,
( | , )

i i i
i i k k k k
k k i i

k k k

p pw w
q

−
−

−

=
z x x x

x x z
                                               (6) 

1

ˆ
N

MMSE i i
k k k

i
x w

=

= x                                                                                                (7) 

( )( )
1

ˆ ˆ
N Ti i MMSE i MMSE

k k k k k k
i

w x x
=

= − −P x x                                                            (8) 

( )2

1

1
eff N

i
k

i

N
w

=

=


                                                                                               (9) 

2

( , ) ( , ) ,
4

t t s s
s t s tP G G P

R
   


  =      
   (10) 

2

2 2 2
( , ) ( , ) ,

4 ( ) ( ) ( ) k

t t s s
k t k k s k k t kt s t s s

k k k k k

z G G P
x x y y z

    


  
  = +
  − + − +  

 (11) 

 (10)

where Ps is the received power, Pt is the transmitted power, 
( , )s s

sG ϕ θ  is the receiver antenna gain, ( , )t t
tG ϕ θ  is the 

transmitter antenna gain, and λ  is the signal wavelength 
[35].
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Using the Friis equation, the measurement Eq. (2), would 
be expressed as:
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where kν  is the measurement noise, which represents 
the fading or shadowing effects. In the case of fast fading, 
the Gaussian distribution does not properly model the noise, 
so kν  should be replaced by either a Rayleigh or Ricean 
distributions [36].

In the following sections, first, the transmitter and receiver 
antennas are designed, and then for obtaining the antennas’ 
gains ( , )t t

tG ϕ θ  and ( , )s s
sG ϕ θ , their propagation patterns 

are modeled.

3- 2- Antenna design
Blade antennas are suitable for airborne applications 

due to their compact size, lightweight, and aerodynamic 
shape, resulting in minimal weight and drag penalties. 
Helical antennas can receive and transmit high gain, wide 
bandwidth, and circular polarization radiation, which are 
highly demanded for airborne tracking. Therefore, a blade 

antenna is assumed to be mounted under the UAV to receive 
the radio signals transmitted by the marine lost target utilizing 
a helix antenna. To analyze the proposed antennas, the CST 
Microwave simulator is used. Both antennas are customized 
based on the 2.4 GHz frequency band, which is almost legal 
to operate without a license worldwide. The schematic of the 
blade antenna is depicted in Fig. 2 and the parameters are 
labeled in the figure captions.

The normalized simulated far-field radiation of the 
blade antenna is depicted in Fig. 3 at f = 2.4 GHz. It is clear 
that a dipole-like behavior is observed. The antenna had a 
cross-polarization discrimination of >20 dB, at the main 
lobe direction. The finite ground plane and the antenna’s 
asymmetrical structure lead to having asymmetrical radiation 
pattern. It should be noted that due to the asymmetry of the 
radiator, it is expected to have an asymmetrical radiation 
pattern.

The schematic of the helix antenna is depicted in Fig. 
4. The antenna design parameters are labeled in the figure 
caption. The normalized simulated far-field radiation of the 
helix antenna is depicted in Fig. 5. According to this figure, 
since, the position and orientation of UAV antenna will change 
during the search, the comparable co- and cross-polarization 
components are accordingly suitable.

 

 

 

(a) 

 

(b) 

Fig. 2 - The schematic of the blade antenna and its design parameters: (a) Top view, (b) Side view.                                                                                                                                           

Wg = 60 mm, Wn=32 mm, Ln = 3 mm, Dg = 13 mm, Wp = 1 mm,  Web = 17 mm, Wtb = 7 mm, Sps = 2 mm, Wet = 15 mm, He 

= 22.65 mm, Phi = 55 degree, Theta = 30 degree. 
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Fig. 2.The schematic of the blade antenna and its design parameters: (a) Top view, (b) Side view.                                                                                                                                           
Wg = 60 mm, Wn=32 mm, Ln = 3 mm, Dg = 13 mm, Wp = 1 mm,  Web = 17 mm, Wtb = 7 mm, Sps = 2 mm, 

Wet = 15 mm, He = 22.65 mm, Phi = 55 degree, Theta = 30 degree.
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                                                     (a)                                                             (b) 

Fig. 3 - The normalized radiation pattern of the blade antenna for (a) E-plane, (b) H-plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                      

 

Fig. 3. The normalized radiation pattern of the blade antenna for (a) E-plane, (b) H-plane.

 

 

 

 

 

 

 

Fig. 4 - The schematic of the helix antenna and its design parameters. (a) Side view, (b) Top view.                                                                                                                            

Dg = 25 cm, Dc = 10 cm, Dw = 1 cm, Dh = 3 cm, Hc = 29 cm, Hb = 7 cm, Hg = 3 cm, S = 5 cm, Phi = 13 degree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig. 4. The schematic of the helix antenna and its design parameters. (a) Side view, (b) Top view. 

Dg = 25 cm, Dc = 10 cm, Dw = 1 cm, Dh = 3 cm, Hc = 29 cm, Hb = 7 cm, Hg = 3 cm, S = 5 cm, 
Phi = 13 degree. 
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3- 3- Mounted antennas on the UAV and the lost target
In order to have a more accurate model, in this part, the 

radiation patterns of the antennas are simulated when they 
are mounted on the UAV and the lost target (for example, a 
ship on the sea). Fig. 6 depicts the far-field radiation pattern 
of the blade and helix antennas that are installed under the 
UAV and on a ship, respectively. The gain of the receiver 

( , )s s
sG ϕ θ , and the transmitter, ( , )t t

tG ϕ θ , are both shown in dB. 
According to this figure, the antennas’ radiation patterns do 
have not isotropic behavior, which consequently leads to 
different performance to receive/transmit the radio signals in 
different directions. 

Since it supposed that the target has unknown features for 

the search and localization algorithm (the algorithm doesn’t 
know that the carrier of the transmitter antenna is a ship or 
a little boat or other sea vehicles.), the measurement model 
which is used for simulating the real world and the one which 
is used by the Bayesian filter to estimate the target states are not 
the same. The first one is a precise model in which the antenna 
gain, ( , )t t

tG ϕ θ , is as shown in Fig. 6(b) (in the real world, it is 
assumed that the transmitter has a helix antenna mounted on 
a ship depicted in Fig. 6(b)). However, in the second one, the 
antenna gain is approximated by an Omnidirectional antenna. 
The difference between the approximated omnidirectional 
antenna and the real one is considered as the measurement 
model uncertainty (measurement mismatch modeling).

 

 

 

 

 

 

 

                         

(a)                                                               (b) 

Fig. 5 - The normalized radiation pattern of the blade antenna for: (a) E-plane, (b) H-plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Fig. 5. The normalized radiation pattern of the blade antenna for: (a) E-plane, (b) H-plane. 

 

 

 

 

 

 

 

 

(a)                                                                  (b) 

Fig. 6 - Tridimensional far-field radiation pattern of the (a) blade, and (b) helix antennas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Tridimensional far-field radiation pattern of the (a) blade, and (b) helix antennas.



A. Firouzabadi et al., AUT J. Model. Simul., 55(1) (2023) 155-170, DOI: 10.22060/miscj.2023.22314.5320

162

4- Autonomous search and path planning
The performance of the search and localization algorithm 

can be enhanced by exploiting appropriate maneuvers or path 
planning for catching signals that have more information 
about the target.

4- 1- Autonomous search
The autonomous search approach guides the UAV toward 

the best detection point (BDP) to catch more efficient signals.

4- 1- 1- Best detection point
The best detection point is a guidance point where the 

measured signal maximizes the probability of detection. If 
the event of detection at time step k is denoted by Dk, the 
probability of detection, given the measurements up to time 
step k-1, can be computed as

1 1 1( | , ) ( | , ) ( | , )s t s t s t
k k k k k k k k k kP D P D p d− − −= z x x x x z x x   (12) 

1argmax ( | , )
s
k

GP s
k k k kx P D −=

x
z x    (13) 

2

2

1 100

( | , ) 100 100

t s

t s
k k k t s

t s

m

P D
m

 − 
=  − 

−

x x

x x
x x

x x

      (14) 

  ( )
damping part enforcing part

B G GB BGs GP s
g k k kx       = − + −       a η v KR T x   (15) 

  ,
Gs

BGB s
d

dt
    =  
x

T v                                                                                  (16) 

    ,
Bs

B B B BG GBG s
A p

d
m m m

dt
        + = + +     
v

Ω v f f T g                       (17) 

1 sin( ) tan( ) cos( ) tan( )
0 cos( ) sin( )
0 sin( ) cos( ) cos( ) cos( )

BBG

    
  
    

   
     = −     
      

ω                                   (18) 

 
BBG

B B B B Bs BG s BG
A

d
dt

         + =       
ω

I Ω I ω m                                      (19) 

 

 

 

 

 

 

 (12)
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Using the measurement model described in (11), the 
detection occurs when the SNR reaches more than a threshold 
value which is defined as the strength of the received signal 
when the sensor is located 100 meters far from the target. 
Therefore, the detection likelihood would be
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By Monte-Carlo representation of the target posterior, the 
best detection point can be approximated by Eq. (7). 

4- 2- Flying vehicle guidance
To direct the UAV towards the search path, a heuristic 

guidance law is developed in [30] as follows:
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This guidance law is comprised of two types of acceleration 
commands (damping and enforcing parts), which cooperate 
as a mass-spring-damper system. In Eq. (15), 

Bs
k  v  is the 

velocity vector of the UAV, which is expressed in the body 
coordinate system, 

Gs
k  x  and GGP

kx    are the position 
vectors of the UAV and the guidance point, respectively. 
The guidance point in autonomous search is what is exactly 
described in Eq. (13), which is expressed in the geographic 

coordinate system. Also, [ ]BGT  is the transformation matrix 
from the geographic to the body coordinate system. ç , K, 
and R are the damping, conservation, and stochastic matrices, 
respectively.

The output of this guidance law is, , guidance acceleration 
command expressed in the UAV body coordinate system, 
which is applied to the UAV.  Ref. [26], developed an 
acceleration autopilot to translate the guidance acceleration 
commands to control surfaces of the UAV.

5- Dynamic modeling of UAV
For dynamic modeling of the UAV, the Newton–Euler 

method is used to derive 6-DOF equations of motion. The 
translational motion is stated as follows:
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where m is mass, sx  and sv  are position and velocity 
vectors of UAV, respectively, BGÙ  is the skew-symmetric 
matrix of the angular velocity [ ]TBG p q rω = , and Af
, Pf , and g are the aerodynamic and thrust forces and the 
gravity acceleration, respectively. 

The rotational motion is derived as:
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where ϕ , θ , and ψ  are roll, pitch, and yaw angles. sI  
is the UAV moment of inertia, and mA is the aerodynamic 
moment that has been exerted on the UAV [37].

6- Simulation results
In this section, several computer simulations have been 

done to evaluate the performance of the proposed method. 

6- 1- Simulation outline
In the simulation outline, an “Aerosonde” unmanned 

fixed-wing aircraft attempts to search for a lost target within 
40 km by 40 km marine area. The UAV starts from its home 
position [-35, 35, -0.2]T km and moves with constant speed 
and at height h=200 m. The coordinate system is local NED 
(North-East-Down) in which the z-direction is toward the 
earth down, and its origin is a point on the earth’s surface. 
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The search and localizing algorithm will be terminated 
when the standard deviation of the posterior reaches less 
than a specified value. This moment is called the detection 
time, and the actual distance between the target and the 
estimated positions is the estimation error. The transmitter 
antenna power is set to 10 watts to provide strong received 
signal strength (>−80 dBm) to ensure reliable connection and 
suppress ambient RF interference [38]. Since it is assumed 
that there is no accurate information about the target, the 
uncertainty of the receiver antenna power is modeled by a 
Gaussian distribution with a mean of 0.5 watts. Simulation 
parameters are reported in Table 1. 

6- 2- Monte-Carlo simulations
To statistically evaluate the performance of the proposed 

localization algorithm, 100 simulations are performed. In 
every run, the target is uniformly located over the search area 
with different heading directions (because the target heading 
affects the received signal strength by the UAV). 

Fig. 7 represents the trend of position error as well as the 
posterior standard deviation of position for one sample of the 
simulations. The descending trend of both quantities indicates 
that if the standard deviation becomes below a threshold, the 
target position has been estimated sufficiently close to the 
actual target location (since the UAV doesn’t know the actual 

Table 1. Simulation parameters.
Table 1 – Simulation parameters. 

Parameter Value 

UAV velocity 30 m/s 

Target velocity 5 m/s 

Transmitter antenna power 10 Watt 

SNR [10 - 20] dB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 – Comparison of two, with and without measurement model mismatch scenarios. 

  Detection time (min)  

 

Fig. 7 - The trend of position error and posterior standard deviation in one of the simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The trend of position error and posterior standard deviation in one of the simulations. 
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estimation error, it should employ the standard deviation of 
the target posterior for terminating the localization algorithm).

Accordingly, a search is terminated when the posterior 
standard deviation of the target position becomes below 
200 meters. Then a search mission is called successful if 
the position error between the real target position and the 
estimated one reaches below 1 kilometer within 30 minutes.

6- 3- Results
As previously mentioned, it is desired that the developed 

algorithm be robust against the measurement model 
mismatches. Therefore, in Table 2, the performances of three 
scenarios with three different assumptions for the type of 
transmitter antenna are compared. 

• Scenario 1 (Helix): Complete information on the 
transmitter antenna is available. So, there are no 
mismatches between the real world (simulations) and 
the measurement model used by the Bayesian filter. 
In other words, the helix antenna gain shown in Fig. 
5(b) that is considered for real-world simulations is 
also as transmitter antenna gain in Eq. (10) (Bayesian 
filter measurement model).

• Scenario 2 (Omni-Directional): It is assumed that 
there is no information about the type of transmitter 
antenna. Therefore, same as scenario 1, the helix 
antenna gain shown in Fig. 5(b) is used for the 
real world but it is assumed that the transmitter 
antenna gain pattern (employed by the Bayesian 
filter (Eq. (10))) is omnidirectional. So, there is 
mismatch between the real world (simulations) and 

the measurement model. The radiation pattern for 
an omnidirectional antenna is uniform in horizontal 
directions and varies in different elevation angles.

• Scenario 3 (Spherical): Ref. [30] assumed that the 
radiation pattern of receiver and transmitter antennas 
are isotropic in all directions. In this scenario, there 
is a further mismatch between the simulation and the 
measurement model.

For a more intuitive understanding of the evaluation criteria 
mentioned in Table 2, the results are also represented in Fig. 
8. The search approach, utilizes the searching guidance law 
(Eq. 15) to perform more appropriate maneuvers to capture 
more efficient signals, which results in high success rate in 
low SNR environments. The small difference between the 
results of scenarios 1 (Helix assumption, perfect measurement 
model) and 2 (Omni-Directional assumption) indicates that 
the developed algorithm is robust to the uncertainties of the 
measurement model. The high localization error of scenario 
3 indicates that the spherical assumption of the antenna 
radiation pattern is not correct. Therefore, the best assumption 
for modeling the mismatch between the actual transmitter 
antenna and the approximated one is omnidirectional. 

Fig. 9-11 depicts the trend of target state estimates in 
three samples of Monte-Carlo simulations. The UAV motion 
increases the observability of the target position and its 
estimate converges to real one. In these figures, black, blue, 
and red empty circles represent the initial target position, 
initial estimate of target position, and initial UAV position, 
respectively. Black, blue, and red solid squares are also the 
final position of the target, the final estimate of the target 

Table 2.Comparison of two, with and without measurement model mismatch scenarios.2 
 

Localization error (m) 

Assumption 
Success 

(%)     Mean 

 

RMSE1 

Accurate model 97 9.51 742 

Uncertain model 88 8.93 838 

Model Ref. [30] -- 5.97 4065 

1Root Mean Square Error   
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position, and the final position of the UAV, respectively. Black 
and red solid lines are the trajectory of the target and the UAV, 
respectively. In addition, the blue dots are the trend of target 
position estimates. In all of these samples, it is shown that the 
algorithm can track the moving target before target detection.

To understand more about the statistical trend of SMC 
samples and their corresponding weight distribution, which 
is explained in section 2, six-time snapshots of simulation 
depicted in Fig. 9 are illustrated in Fig. 12. The weight 
assigned to each particle has been specified by the rainbow 
scale. Since the chance of target presence is equal for any 
part of the search area, the initial probability distribution 
of the target position is modeled by a uniform distribution. 
Hence, according to the nonlinear localizing problem, 
the non-Gaussian prior leads to a non-Gaussian posterior, 
sequentially. Contrary to the Kalman filter, the SMC filter 
can estimate the non-Gaussian posterior distribution of target 
position states as well as shown by the snapshots.

7- Conclusion
The present research proposed a Track-Before-Detect 

approach to search and localize a lost target in a wide marine 
environment using only RSS measurement by an antenna 
mounted on a UAV. Both the transmitter and receiver 
antennas were designed and customized with an accurate 
radiation pattern model for a search and rescue scenario in a 
wide marine environment. 

The SMC implementation of the Bayesian filter provides 
a suitable framework for dealing with problem challenges, 
including nonlinear models, non-Gaussian prior and noises, 
target unknown dynamics, and uncertainty of target properties. 

The proposed search approach applies more appropriate 
maneuvers to the UAV to capture more efficient signals, 
utilizing a heuristic searching guidance law and guidance 
points, which result in less localization error in low SNR 
environments. 

To evaluate the performance of the proposed method, 
three scenarios have been performed with three different 
assumptions for the type of transmitter antenna. The radiation 
pattern of the transmitter antenna, in the scenario that there 
is measurement model uncertainty, was approximated by an 
omnidirectional antenna. Comparative evaluation of scenarios 
1 (Helix assumption, perfect measurement model) and 2 
(Omni-Directional assumption) indicates the robustness of 
the filter against the target uncertainties. Meanwhile, scenario 
3 (spherical assumption of the antenna radiation pattern) leads 
to high localization error. Therefore, the best assumption 
for modeling the mismatch between the actual transmitter 
antenna and the approximated one is omnidirectional.

Data availability
Some or all data, models, or codes that support the 

findings of this study are available from the corresponding 
author upon reasonable request.

 

Fig. 8 – Box plot comparison of three scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 .Box plot comparison of three scenarios. 
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Fig. 9 - Monte-Carlo simulations: sample 1. start/end position has shown by    /   .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 . Monte-Carlo simulations: sample 1. start/end position has shown b 
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Fig. 10 - Monte-Carlo simulations: sample 2. start/end position has shown by    /   .  
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Fig. 10 - Monte-Carlo simulations: sample 2. start/end position has shown by    /   .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Monte-Carlo simulations: sample 2. start/end position has shown by 
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Fig. 11 - Monte-Carlo simulations: sample 3. start/end position has shown by    /   .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Monte-Carlo simulations: sample 3. start/end position has shown by 
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Fig. 9 - Monte-Carlo simulations: sample 1. start/end position has shown by    /   .  

 

Fig. 10 - Monte-Carlo simulations: sample 2. start/end position has shown by    /   .  
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Fig. 12 - Six time snapshots of the second simulation. (a) Time=0 min. (b) Time=2 min. (c) Time=4 min. (d) 

Time=6 min. (e) Time=8 min. (f) Time=11 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Six time snapshots of the second simulation. (a) Time=0 min. (b) Time=2 min. (c) Time=4 min. (d) Time=6 min. 
(e) Time=8 min. (f) Time=11 min.
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3 
 
Nomenclature 

tx  = state vector of target 

tx  = target position (x-axis) 

kw  = dynamic noise vector  

1:kz  = measurement history 

sP  = received antenna power 

tP  = transmitter antenna power 

  = signal wavelength 

  = angular velocity 

sx  = state vector of seeker  

ty  = target position (y-axis) 

kv  = measurement noise vector 

t  = target heading  

sG  = receiver antenna gain  

tG  = transmitter antenna gain 

 a     = acceleration command 

 

Superscripts 

t = target  

B = body coordinate system 

S             = seeker  

G = geographic coordinate system 

Subscripts 

k = time step  

A = aerodynamic 

g = guidance 
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