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ABSTRACT: In this article, we manage the energy consumption of numerous intelligent homes and 
charging stations including several electric vehicles in real-time using a computationally efficient 
predictive controller. The studied scenario is made up of a couple of primary layers. At the low level of 
the hierarchical framework, users are clustered into different groups based on their vehicles’ departure 
times. Meanwhile, the energy consumption of subordinate users is controlled by multiple aggregators, 
interaction among which is modeled as an aggregative game. The high-level interactive and distributed 
control problem can be solved by a predictive controller, wherein the terminal constraints related to the 
reference energy of each cluster’s storage capacity are transferred to the end of the prediction horizon. 
Additionally, each aggregator can only exchange local data with some neighboring aggregators through an 
untrustable communication network. As a result of denial of service attacks on the aggregators’ network, 
the strong connectivity of the communication graph may be directly destroyed, leading to performance 
degradation. To address such an issue, each aggregator reconstructs the attacked information of its 
neighbors using a linear combination of received data in the last two iterations. Furthermore, a time-of-
use pricing tariff whose value is small for faithful households is investigated so that convergence time 
remains unaltered. Practical examples are simulated to assess the usefulness of the proposed iterative 
algorithm.
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1- Introduction
Renewable Energy Resources (RESs), for instance, Wind 

Turbine (WT) along with photovoltaic (PV) systems, are 
utilized by microgrids to provide power for controllable and 
uncontrollable electric loads [1]. To consume RESs in time, 
Electric Vehicles (EVs) are reported as good alternatives to 
auxiliary power supply equipment capable of storing produced 
energy for later use [1]. The Demand Side Management (DSM) 
describes a change in Residential Households’ (RHs)’ energy 
consumption, including the aforementioned devices, from 
their desirable demand profiles to the micro-grid’s optimal 
profile. The primary goal of the DSM is to decline the costs 
of electricity and boost grid reliability and safety [2]. Surging 
the number of RHs, resulting in charging innumerable EVs, 
has a detrimental impact on the electrical grid. Many studies 
have been conducted on obtaining coordinated policies for 
the charging and discharging of energy storage devices [e.g., 
3, 4]. However, in scenarios wherein many EVs access the 
power grid, considering an explicit single EV model in 
optimization may lead to a high computational burden and 
information transmission [5].

The micro-grid control strategies constitute distributed, 
decentralized, and centralized strategies. In centralized 

approaches, a central manager’s responsibility is to optimize 
a centralized objective function by collecting information 
from all subordinate RHs. In such a structure, significant 
computation load, system failure when the central controller 
is unable to work, and privacy violations are reported as 
disadvantages [3]. To cope with these drawbacks in energy 
management programs, decentralized and distributed 
schemes have been investigated, in which game theory as an 
analytical tool has been employed to model the interaction 
among self-interested decision-makers in micro-grids [3]. In 
aggregative games, as one of the well-known game theoretic 
methods, the objective function of each competitor is 
influenced by the aggregative impacts of all other competitors 
in the population. The noncooperative games in this class are 
claimed to have the decisive advantages of being independent 
of the number of selfish decision-makers as well as requiring 
less computational effort [6].

What each RH does in decentralized methods is to 
determine the optimal energy profile by finding a solution 
to the optimization problem. In such approaches, RHs 
do not directly communicate with each other yet try to 
learn the aggregated term by only relying on a central 
coordinator gathering the local decisions of subordinate RHs 
and broadcasting the updated value [7]. The idea has been 
extended to the multi-population hierarchical scenario in [4], *Corresponding author’s email: haeri@sharif.ir
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where a group of populations exists, each of which is managed 
by its relevant local coordinator. At the bottom level of the 
hierarchical structure, the individual selfish policy-makers do 
not establish communication with one another yet only with 
their local coordinator to learn local aggregate information. 
At the higher level, each coordinator directly exchanges the 
local aggregate information with its neighboring coordinators 
through a communication network to cooperatively estimate 
and learn the overall aggregative term. The motivation for 
proposing distributed methods is that reaching all RHs with 
the updated value broadcasted by a central coordinator may 
not be possible, especially in large-scale and geographically 
distributed systems [4]. In [6], a distributed Nash Equilibrium 
(NE)-seeking algorithm under an incomplete information 
setting has been studied where each self-interested policy-
maker, reliant only on the received data from some neighbors, 
estimates all the other players’ policies.

Although the utilization of EVs in a micro-grid can lead 
to cutting the peak and filling the valley in the desired load 
demand of the RHs, their optimal charging/discharging power 
is highly related to the arbitrarily driving tendencies of EV 
owners, which may have unforeseen impacts on the system 
[8]. In [8], a robust, multi-objective optimization problem 
comprising such EVs and considering the uncertainty of RES 
devices’ output power has been investigated for minimizing 
operation cost and carbon emissions. The variation range of 
uncertain parameters is described by a polyhedral uncertainty 
set. To deal with uncertainties stemming from RESs, a 
distributionally robust chance-constrained optimization 
combining distributionally robust optimization and chance-
constrained programming is investigated in [9] for managing 
the energy consumption of islanded microgrids. In such 
approaches, a low possibility of constraint violation along 
with the robustness of the micro-grid operation can be 
guaranteed.

As another alternative, the Model Predictive Control 
(MPC)’s receding horizon property has been employed in 
[10] to solve the optimization based on the most up-to-date 
accessible data at the starting point of each time slot. In 
MPC literature [e.g., 10, 11], an MPC method was proposed 
to provide a feedback mechanism, making the microgrid 
anti-fragile against volatility. In [12], an MPC strategy 
has been adopted to re-optimize the objectives based on 
real-time estimation of the system’s states and/or sensors’ 
measurements to dispel the effects of uncertainties such as 
RES power output. Also, a distributed MPC algorithm has 
been designed in [13] to compensate for uncertainty and 
handle constraints. The latter study considered a prediction 
horizon smaller than the length of the planning horizon. The 
investigated controller has been computationally efficient 
since the predictive model has not been required to predict the 
microgrid’s behavior until the end of the planning horizon. 
However, in some cases, ignoring the terminal constraints 
may lead to performance degradation. In the present study, 
an MPC framework is used to tackle the high stochasticity 
of EVs’ behavior, wherein in each time slot the optimization 
problem is successively optimized with the accessible 

knowledge of new entrances. Also, the terminal constraints 
are transferred to the end of the prediction horizon.

Additionally, the present work assumes the price of 
electricity is calculated according to the time and amount of 
energy consumption [14]. When energy consumers decide to 
be in a management program more than analogous consumers 
and as a result have a longer time of departure, then the policy-
maker can impose smaller values of the Time-of-Use (ToU) 
pricing tariff for these groups. By doing so, the number of 
iterations will be depicted to remain constant. The shorter the 
length of time energy purchasers engage in DSM, the higher 
fee they must pay. In other words, purchasers participating 
less in DSM should be penalized more. A similar penalizing 
policy has also been done in [15] by altering the generation 
cost coefficient. However, by doing so, the number of 
iterations goes up [14].

Strongly relying on telecommunication networks to 
pursue a goal of monitoring and control, multi-agent systems 
are extremely vulnerable to deliberate as well as adversarial 
cyber-attacks [16]. Denial-of-Services (DoS) attacks among 
other types of cyber-attacks like man-in-the-middle, false data 
injection, etc., [17], can disrupt information flow and prevent 
communication over networks [18]. It is even possible that 
multi-agent systems cannot reach NE when DoS attacks 
occur, as self-interested policy-makers cannot exchange 
information between themselves. In terms of wireless 
communication, as a common means of communicating and 
exchanging information in many emerging applications, such 
attacks can be easily found. Nevertheless, it is mostly healthy 
communication which is the base of existing work, and 
has fruitful results on distributed NE-seeking algorithms in 
aggregative games (e.g., [6]). When distributed NE-seeking 
algorithms are adversely influenced by DoS attacks, they 
become less useful, and their work may even fail.

In [19], authors have developed a resilient, adaptive 
algorithm to cope with multiple cyber-attacks where the 
weights of the communication graph’s edges automatically 
decline whenever adversarial attackers manipulate 
communicated information through this link. A signal-to-
interference-plus-noise ratio-based dynamic along with a 
proactive event-triggered communication scheme has been 
investigated in [20] to avoid occupying communication 
resources and reduce the detrimental impact of DoS attacks 
on decentralized secondary energy management of storage 
devices. In [21], a unified notion of Persistency-of-Data-Flow 
is proposed to assess the destructive effect of DoS attacks 
which are multi-layer. Then, as opposed to existing literature 
reliant on synchronous communication, a local controller 
with the capability of collecting and processing data in 
asynchronous settings for each microgrid is designed which 
can ensure reaching consensus in networked microgrids.

The present study addresses the problem of distributed 
MPC-based NE-seeking algorithms over communication 
channels interrupted by DoS attacks. The major contributions 
of the present study are outlined as follows.

Energy consumers taking part in DSM less than their 
counterparts are penalized by making them pay a higher cost. 
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This is done by adding a ToU price tariff to the price function, 
which has the advantage of unchanged convergence time. We 
have proven that the iterations required for the convergence 
of the proposed algorithm do not depend on the ToU price 
tariff.

The MPC’s receding horizon concept is employed as RHs 
can go into or depart the DSM program all the time, wherein 
the optimization is resolved at each time slot based on the 
latest available information. In the paper, different from 
existing work, a computationally efficient MPC is designed 
wherein terminal constraints are transferred to the end of the 
prediction horizon.

Communication links are assumed to be affected by DoS 
attackers being able to block the communication channel 
and destroy the validity of the data. To cope with this 
issue, a linear combination of received data in the last two 
iterations is considered instead of absent information. In real-
world applications, a secure network environment is hardly 
guaranteed because of the network’s openness, which may be 
filled with various network attacks. It is observed that despite 
the simplicity of this method, the reconstructed information 
can act satisfactorily in the absence of blocked transmitted 
data.

Following is the remainder of the paper’s organizations. 
The mathematical model of the problem and design of the 
computationally efficient controller is studied in Section 
2. Then, Section 3 investigates distributed algorithms over 
unreliable networks. To demonstrate the efficiency of the 
proposed method, Section 4 presents simulation results. As a 
final conclusion, Section 5 provides a summary of the paper.

2- Problem Formulation
The energy management problem for { }1,2, , P= …  

aggregators and { }1, 2, , N= …  RHs and charging stations 
is investigated (Fig. 1). The studied scenario is comprised 
of a couple of levels. In the higher level, by designing an 
MPC-based distributed method, we manage the energy 
consumption among multiple aggregators in real-time, and 
in the bottom layer, a kind of reallocating of power from 
each Electric Vehicle Cluster (EVC) to its subordinate EVs 
is performed by a priority-based reallocation algorithm [5]. 
It is worth noting that some aggregators constitute RHs and 
others are made up of charging stations including only EVs. 
At time slot t, it is the set ,

t
i n  which includes that section of 

the prediction horizon in which the 
,i nEV  is connected to the 

charging station and is defined as

𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 = {𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎, 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 + 1,… , 𝑘𝑘𝑖𝑖,𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑}. (1) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡) 

+𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑑𝑑ℎ
𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)), ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 , (2) 

 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ , 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ,  (3) 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = 0, ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 . 

 

𝑇𝑇𝑖𝑖,𝑛𝑛lim = 𝑇𝑇𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 +
𝐸𝐸𝑖𝑖,𝑛𝑛
𝑟𝑟𝑟𝑟𝑟𝑟−𝐸𝐸𝑖𝑖,𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑ℎ𝑢𝑢𝑖𝑖,𝑛𝑛
𝑑𝑑ℎ  (4) 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 − (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛

𝑑𝑑𝑑𝑑𝑑𝑑)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  (5) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≥ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1) = 

max (𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛min, 𝐸𝐸𝑖𝑖,𝑛𝑛

MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1)), (6) 

 

 (1)

If user n  connects the ,i nEV  to supply equipment prior 
to the current time slot t , then , 1arr

i nk =  and if this EV is 
connected until the end of the prediction horizon or even 
beyond, then ,

dep
i n Pk N= .

2- 1- Electric vehicle’s dynamic
Mathematically, the ,i nEV  can be modeled as a 

discrete-time first-order system with different charging and 
discharging efficiencies and a couple of decision variables for 

A large-scale residential energy grid New arrivals

Control signal
Measurements

Multi-aggregator coordination layer
 Billing cost minimization by 

MPC-based distributed algorithm
 Output: Actual load demand

Charging/discharging 
power of EVCs

Individual clustering layer
 Classification of energy consumers 
 Allocation of charging/discharging 

power to EVs

Top layer

Bottom layer

𝑘𝑘 

Aggregative 
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Fig. 1. Hierarchical structure of real-time energy management. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Hierarchical structure of real-time energy management.
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charging and discharging power as,

𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 = {𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎, 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 + 1,… , 𝑘𝑘𝑖𝑖,𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑}. (1) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡) 

+𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑑𝑑ℎ
𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)), ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 , (2) 

 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ , 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ,  (3) 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = 0, ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 . 

 

𝑇𝑇𝑖𝑖,𝑛𝑛lim = 𝑇𝑇𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 +
𝐸𝐸𝑖𝑖,𝑛𝑛
𝑟𝑟𝑟𝑟𝑟𝑟−𝐸𝐸𝑖𝑖,𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑ℎ𝑢𝑢𝑖𝑖,𝑛𝑛
𝑑𝑑ℎ  (4) 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 − (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛

𝑑𝑑𝑑𝑑𝑑𝑑)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  (5) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≥ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1) = 

max (𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛min, 𝐸𝐸𝑖𝑖,𝑛𝑛

MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1)), (6) 

 

 (2)

where ( ),
ch
i nu t  and ( ),

dch
i nu t  satisfy the following 

constraints.

𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 = {𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎, 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 + 1,… , 𝑘𝑘𝑖𝑖,𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑}. (1) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡) 

+𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑑𝑑ℎ
𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)), ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 , (2) 

 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ , 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ,  (3) 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = 0, ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 . 

 

𝑇𝑇𝑖𝑖,𝑛𝑛lim = 𝑇𝑇𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 +
𝐸𝐸𝑖𝑖,𝑛𝑛
𝑟𝑟𝑟𝑟𝑟𝑟−𝐸𝐸𝑖𝑖,𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑ℎ𝑢𝑢𝑖𝑖,𝑛𝑛
𝑑𝑑ℎ  (4) 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 − (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛

𝑑𝑑𝑑𝑑𝑑𝑑)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  (5) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≥ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1) = 

max (𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛min, 𝐸𝐸𝑖𝑖,𝑛𝑛

MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1)), (6) 

 

 (3)

According to [22], we can indicate the ,i nEV ’ flexibility 
by defining boundaries for its cumulative energy. As we have 
illustrated in Fig. 2, the upper bound, overall, max

,i nE , happens 
when EV charging provider instantly charges the ,i nEV  at 
maximum charging power as long as ( ),i nE t  has cumulative 
charged power ref

,i nE  at lim
,i nT . Based on the maximum charging 

power, we can define the boundary time as,

𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 = {𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎, 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 + 1,… , 𝑘𝑘𝑖𝑖,𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑}. (1) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡) 

+𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑑𝑑ℎ
𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)), ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 , (2) 

 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ , 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ,  (3) 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = 0, ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 . 

 

𝑇𝑇𝑖𝑖,𝑛𝑛lim = 𝑇𝑇𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 +
𝐸𝐸𝑖𝑖,𝑛𝑛
𝑟𝑟𝑟𝑟𝑟𝑟−𝐸𝐸𝑖𝑖,𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑ℎ𝑢𝑢𝑖𝑖,𝑛𝑛
𝑑𝑑ℎ  (4) 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 − (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛

𝑑𝑑𝑑𝑑𝑑𝑑)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  (5) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≥ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1) = 

max (𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛min, 𝐸𝐸𝑖𝑖,𝑛𝑛

MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1)), (6) 

 

 (4)

Note that if the ,i nEV  the owner decides to depart the 
charging station before lim

,i nT , it cannot be scheduled. On the 
other hand, overall,min

,i nE  as the lower bound of stored energy is 
obtained when ,i nEV  owner discharges the vehicle’s battery 
until min

,i nE , where ( ),i nE t  remains unchanged. This trend 
is set to continue as long as ,i nEV  owner get obligated to 
charge the vehicle’s battery to reach ,

ref
i nE  at ,

dep
i nT . There is 

also a distinction between an ideal and a more realistic setting 
in (2). These dynamics can therefore be used to define the 
stored energy envelope for MPC. For the top of the envelope, 
starting at 0

,i nE , the energy flexibility grows towards max
,i nE  

with ( )MPC,max,slope
, 1i nE t +  until it reaches MPC,

,
ref

i nE . It then 
leveled off until ,

dep
i nk .  At the bottom of the envelope, 

( )MPC,min,slope
, 1i nE t +  starts at 0

,i nE  and decreases until min
,i nE  

is reached. In the bottom right, ( )MPC, ,slope
, 1ref

i nE t +  denotes 
the slope by which the stored energy needs to rise, so that 

MPC,
,

ref
i nE  is met at ,

dep
i nk . Based on the current value of 

0
,i nE , MPC,min

,i nE , MPC,
,

ref
i nE , and MPC,max

,i nE  are formulated 
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𝐸𝐸𝑖𝑖 𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟  

𝐸𝐸𝑖𝑖 𝑛𝑛  

𝑇𝑇𝑖𝑖 𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟  𝑇𝑇𝑖𝑖 𝑛𝑛  𝑇𝑇𝑖𝑖 𝑛𝑛
𝑑𝑑𝑒𝑒𝑝𝑝  

𝐸𝐸𝑖𝑖 𝑛𝑛  

𝐸𝐸𝑖𝑖 𝑛𝑛  

 

Fig. 2. Cumulative energy boundaries modelling of 𝐸𝐸𝐸𝐸𝑖𝑖,𝑛𝑛. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Cumulative energy boundaries modelling of EV(i,n).
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143

as

𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 = {𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎, 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 + 1,… , 𝑘𝑘𝑖𝑖,𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑}. (1) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡) 

+𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑑𝑑ℎ
𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)), ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 , (2) 

 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ , 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ,  (3) 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = 0, ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 . 

 

𝑇𝑇𝑖𝑖,𝑛𝑛lim = 𝑇𝑇𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 +
𝐸𝐸𝑖𝑖,𝑛𝑛
𝑟𝑟𝑟𝑟𝑟𝑟−𝐸𝐸𝑖𝑖,𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑ℎ𝑢𝑢𝑖𝑖,𝑛𝑛
𝑑𝑑ℎ  (4) 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 − (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛

𝑑𝑑𝑑𝑑𝑑𝑑)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  (5) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≥ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1) = 

max (𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛min, 𝐸𝐸𝑖𝑖,𝑛𝑛

MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1)), (6) 

 

 (5)

These slopes can be used to mathematically define the 
upper and lower bounds of ,i nEV ’s energy flexibility within 
the horizon is as follows,

𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 = {𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎, 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 + 1,… , 𝑘𝑘𝑖𝑖,𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑}. (1) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡) 

+𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑑𝑑ℎ
𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)), ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 , (2) 

 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ , 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ,  (3) 

𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = 0, ∀𝑡𝑡 ∈ 𝒯𝒯𝑖𝑖,𝑛𝑛𝑡𝑡 . 

 

𝑇𝑇𝑖𝑖,𝑛𝑛lim = 𝑇𝑇𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 +
𝐸𝐸𝑖𝑖,𝑛𝑛
𝑟𝑟𝑟𝑟𝑟𝑟−𝐸𝐸𝑖𝑖,𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑ℎ𝑢𝑢𝑖𝑖,𝑛𝑛
𝑑𝑑ℎ  (4) 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 − (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
1

𝜂𝜂𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ
 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,𝑎𝑎𝑑𝑑𝑟𝑟 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛

𝑑𝑑𝑑𝑑𝑑𝑑)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  

𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1) = 

𝐸𝐸𝑖𝑖,𝑛𝑛0 + (𝑡𝑡 + 1 − 𝑘𝑘𝑖𝑖,𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎)𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ𝜂𝜂𝑖𝑖,𝑛𝑛𝑐𝑐ℎ  (5) 

 

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≥ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1) = 

max (𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,min,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛min, 𝐸𝐸𝑖𝑖,𝑛𝑛

MPC,𝑎𝑎𝑑𝑑𝑟𝑟,slope(𝑡𝑡 + 1)), (6) 

 

 (6)

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1) = 

min(𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛max). (7) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ
𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡))

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)
𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1 , 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)

𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1)

, (8) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑇𝑇𝑖𝑖,𝑙𝑙
dep) = 𝐸𝐸𝑖𝑖,𝑙𝑙ref. (9) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(0) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1
 

− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1 ) = 𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟. (10) 

 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
) = 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑖𝑖,𝑙𝑙(0) − 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 − 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 ), (11) 

 (7)

2- 2- Electric vehicle cluster equivalent model
To deal with the “curse of dimensionality” which is the 

result of a large number of users, each of them has an EV, 
the equivalent model of the thl  EVC belonging to the thi  
aggregator, ,i lEVC , is described as

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1) = 

min(𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛max). (7) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ
𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡))

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)
𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1 , 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)

𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1)

, (8) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑇𝑇𝑖𝑖,𝑙𝑙
dep) = 𝐸𝐸𝑖𝑖,𝑙𝑙ref. (9) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(0) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1
 

− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1 ) = 𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟. (10) 

 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
) = 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑖𝑖,𝑙𝑙(0) − 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 − 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 ), (11) 

 (8)

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1) = 

min(𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛max). (7) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ
𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡))

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)
𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1 , 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)

𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1)

, (8) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑇𝑇𝑖𝑖,𝑙𝑙
dep) = 𝐸𝐸𝑖𝑖,𝑙𝑙ref. (9) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(0) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1
 

− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1 ) = 𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟. (10) 

 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
) = 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑖𝑖,𝑙𝑙(0) − 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 − 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 ), (11) 

 (9)

Remark 1: As EVCs are believed to equivalently model 
the behavior of numerous EVs if EVCs’ charging/discharging 
powers satisfy (8) and (9), a distinct policy for charging/
discharging power which can satisfy (3), (6), and (7) always 
exists (See [5] and references therein for proof).

2- 3- Model Predictive Control
One of the crucial issues in charging/discharging EVC 

storage devices is satisfying their expected energy when they 
leave the charging stations. To satisfy this constraint, their 
dynamic behaviors have to be predicted until their departure 
times. This can impose a high computational burden on the 
predictive controller. In this section, we aim to transfer the 
terminal constraints (9) to the end of the prediction horizon. 
To do so, considering the dynamic model of an EVC as (8), 
one can obtain

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1) = 

min(𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛max). (7) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ
𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡))

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)
𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1 , 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)

𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1)

, (8) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑇𝑇𝑖𝑖,𝑙𝑙
dep) = 𝐸𝐸𝑖𝑖,𝑙𝑙ref. (9) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(0) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1
 

− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1 ) = 𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟. (10) 

 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
) = 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑖𝑖,𝑙𝑙(0) − 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 − 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 ), (11) 

 (10)

At the first step of the planning, (10) can be rewritten as,

𝐸𝐸𝑖𝑖,𝑛𝑛(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1) = 

min(𝐸𝐸𝑖𝑖,𝑛𝑛
MPC,max,slope(𝑡𝑡 + 1), 𝐸𝐸𝑖𝑖,𝑛𝑛max). (7) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) = 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) −
1

𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ
𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡))

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,min(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1) = ∑ 𝐸𝐸𝑖𝑖,𝑛𝑛MPC,max(𝑡𝑡 + 1)𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑐𝑐ℎ(𝑡𝑡)
𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1 , 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) = ∑ 𝑢𝑢𝑖𝑖,𝑛𝑛𝑑𝑑𝑐𝑐ℎ(𝑡𝑡)

𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡
𝑛𝑛=1

𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) ≤ 𝑝𝑝𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ

𝐸𝐸𝑖𝑖,𝑙𝑙MPC,min(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙(𝑡𝑡 + 1) ≤ 𝐸𝐸𝑖𝑖,𝑙𝑙MPC,max(𝑡𝑡 + 1)

, (8) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(𝑇𝑇𝑖𝑖,𝑙𝑙
dep) = 𝐸𝐸𝑖𝑖,𝑙𝑙ref. (9) 

 

𝐸𝐸𝑖𝑖,𝑙𝑙(0) + 𝓉𝓉(𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1
 

− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=1 ) = 𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟. (10) 

 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑁𝑁𝑃𝑃

𝜅𝜅=1
) = 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑖𝑖,𝑙𝑙(0) − 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 − 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑁𝑁𝑃𝑃+1 ), (11) 

 (11)

where ( ), ,
ch ch
i l i lp p κ =   , ( ), ,

dch dch
i l i lp p κ =   , and Pκ ∈  

are the decision variables of the optimization problem. 
Since ( ), ,

ch ch
i l i lp p κ =    and ( ), ,

dch dch
i l i lp p κ =   , 

,1, 2, , dep
P P i lN N Tκ  ∈ + + …   are outside the prediction 

horizon, they are replaced by nominal values calculated on 
the previous day. This can be considered as a weakness of this 
method, but as planning approaches the end of the horizon, 
the number of incomputable constants decreases and thus 
the accuracy of the method increases. Eventually, at time-
slot t , the terminal constraints transferred to the end of the 
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prediction horizon can be derived as,
 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑡𝑡+𝑁𝑁𝑃𝑃−1

𝜅𝜅=𝑡𝑡
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑡𝑡+𝑁𝑁𝑃𝑃−1

𝜅𝜅=𝑡𝑡
) = 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑖𝑖,𝑙𝑙(0) − 𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
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It is worth noting ( ), ,
ch ch
i l i lp p κ =    and ( ), ,

dch dch
i l i lp p κ =   , 

[ ]1, 2, , 1tκ ∈ … −  should be replaced with the result of prior 
hours.

2- 4- Electric load
The electric loads in smart homes can either be controlled 

or not. The time of those capable of being managed (such as 
schedulable and reducible) can be altered while unmanageable 
loads are required to be energized in every time slot; thus, for 
billing expenditure minimization, they cannot be reduced or 
omitted [2]. All that energy consumers are expected to do is 
to report their profile ( ),

des
i nd t  to the aggregator which is 

deciding to shift or reduce controllable loads to minimize the 
energy cost while satisfying the following constraints,
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Additionally, for stand-alone charging stations, we have,
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where ( )b
ip t  is the power exchanged with the storage unit 

and is negative for discharging.

2- 5- Price function
The total price of electricity production as well as the 

local expenditure of an agent such as ToU pricing tariff, are 
traded off by a local aggregator. It is worth noting the ToU 
is not necessarily the same for all hours of the day. The total 

price of generation (contributed by all aggregators) is written 
below

 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑡𝑡+𝑁𝑁𝑃𝑃−1

𝜅𝜅=𝑡𝑡
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑡𝑡+𝑁𝑁𝑃𝑃−1

𝜅𝜅=𝑡𝑡
) = 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑖𝑖,𝑙𝑙(0) − 𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)

𝑡𝑡−1

𝜅𝜅=1
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑡𝑡−1

𝜅𝜅=1
+ 

𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ,nom(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑡𝑡+𝑁𝑁𝑃𝑃
− 1

𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ
∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ,nom(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑡𝑡+𝑁𝑁𝑃𝑃
). (12) 

 

𝑑𝑑𝑖𝑖𝑈𝑈𝑁𝑁𝑈𝑈(𝑡𝑡) ≤ 𝑑𝑑𝑖𝑖real(𝑡𝑡) ≤ 𝑑𝑑𝑖𝑖𝑑𝑑𝑟𝑟𝑑𝑑(𝑡𝑡) + 𝑑𝑑𝑖𝑖𝑆𝑆𝑆𝑆(𝑡𝑡) (a) 

𝑑𝑑𝑖𝑖real(𝑡𝑡) = 𝑝𝑝𝑖𝑖
𝑔𝑔(𝑡𝑡) + 𝑝𝑝𝑖𝑖𝑐𝑐ℎ(𝑡𝑡) 

−𝑝𝑝𝑖𝑖𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) + 𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑝𝑝𝑖𝑖𝑊𝑊𝑃𝑃(𝑡𝑡) 

(b) 

∑(𝑑𝑑𝑖𝑖𝑑𝑑𝑟𝑟𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑖𝑖RED(𝑡𝑡))
𝑡𝑡

=∑𝑑𝑑𝑖𝑖real
𝑡𝑡

(𝑡𝑡) (c) 

 

 .  

𝑝𝑝𝑖𝑖𝑏𝑏(𝑡𝑡) = 𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑝𝑝𝑖𝑖𝑊𝑊𝑃𝑃(𝑡𝑡) + 𝑝𝑝𝑖𝑖
𝑔𝑔(𝑡𝑡). (14) 

 

Π𝐺𝐺(𝑝𝑝𝑔𝑔(𝑡𝑡)) = 𝑃𝑃 (1𝑃𝑃 ∑ 𝜋𝜋𝑖𝑖
𝑔𝑔(𝑡𝑡)𝑃𝑃

𝑖𝑖=1 ), (15) 

 

𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔(𝑡𝑡)) = Π𝐺𝐺(𝑝𝑝𝑔𝑔(𝑡𝑡)) + 𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑈𝑈(𝑡𝑡), (16) 

 (15)

where g g
i c ik pπ =  and ck  is the constant for the cost of 

electricity, which is adjusted based on the policies adopted by 
governments or the grid’s practical experiences. In addition, 
there should be some rational reasons, such as profit making 
to motivate RHs and charging stations to join the DSM 
program. To do so, ToU tariff is provided to RHs and charging 
stations. Thus, overall price function of each aggregator can 
be formulated as

 

𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)
𝑡𝑡+𝑁𝑁𝑃𝑃−1

𝜅𝜅=𝑡𝑡
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑡𝑡+𝑁𝑁𝑃𝑃−1

𝜅𝜅=𝑡𝑡
) = 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐸𝐸𝑖𝑖,𝑙𝑙(0) − 𝓉𝓉 (𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ(𝜅𝜅)

𝑡𝑡−1

𝜅𝜅=1
− 1
𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ

∑𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ(𝜅𝜅)
𝑡𝑡−1

𝜅𝜅=1
+ 

𝜂𝜂𝑖𝑖,𝑙𝑙𝑐𝑐ℎ ∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ,nom(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑡𝑡+𝑁𝑁𝑃𝑃
− 1

𝜂𝜂𝑖𝑖,𝑙𝑙𝑑𝑑𝑑𝑑ℎ
∑ 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ,nom(𝜅𝜅)
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑

𝜅𝜅=𝑡𝑡+𝑁𝑁𝑃𝑃
). (12) 

 

𝑑𝑑𝑖𝑖𝑈𝑈𝑁𝑁𝑈𝑈(𝑡𝑡) ≤ 𝑑𝑑𝑖𝑖real(𝑡𝑡) ≤ 𝑑𝑑𝑖𝑖𝑑𝑑𝑟𝑟𝑑𝑑(𝑡𝑡) + 𝑑𝑑𝑖𝑖𝑆𝑆𝑆𝑆(𝑡𝑡) (a) 

𝑑𝑑𝑖𝑖real(𝑡𝑡) = 𝑝𝑝𝑖𝑖
𝑔𝑔(𝑡𝑡) + 𝑝𝑝𝑖𝑖𝑐𝑐ℎ(𝑡𝑡) 

−𝑝𝑝𝑖𝑖𝑑𝑑𝑐𝑐ℎ(𝑡𝑡) + 𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑝𝑝𝑖𝑖𝑊𝑊𝑃𝑃(𝑡𝑡) 

(b) 

∑(𝑑𝑑𝑖𝑖𝑑𝑑𝑟𝑟𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑖𝑖RED(𝑡𝑡))
𝑡𝑡

=∑𝑑𝑑𝑖𝑖real
𝑡𝑡

(𝑡𝑡) (c) 

 

 .  

𝑝𝑝𝑖𝑖𝑏𝑏(𝑡𝑡) = 𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑝𝑝𝑖𝑖𝑊𝑊𝑃𝑃(𝑡𝑡) + 𝑝𝑝𝑖𝑖
𝑔𝑔(𝑡𝑡). (14) 

 

Π𝐺𝐺(𝑝𝑝𝑔𝑔(𝑡𝑡)) = 𝑃𝑃 (1𝑃𝑃 ∑ 𝜋𝜋𝑖𝑖
𝑔𝑔(𝑡𝑡)𝑃𝑃

𝑖𝑖=1 ), (15) 

 

𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔(𝑡𝑡)) = Π𝐺𝐺(𝑝𝑝𝑔𝑔(𝑡𝑡)) + 𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑈𝑈(𝑡𝑡), (16)  (16)

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

 (17)
𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =

1
𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

 (18)

Note that loyal users should be treated more fairly and 
charged a lower ToU tariff.

2- 6- The game
The main purpose of each local controller at each time slot 

t  is to diminish its own users’ total energy costs. The cost 
function of the thi  aggregator, if , which is comprised of 
users’ discomfort because of altering their desired loads and 
the cost  resulting from energy generation, could be written as

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

 (19)

where ( ), ,, , ,ch dch g b
i i l i l i ix p p p p= , ( ) { }\

 col(i j j i
X x− ∈




, 

( ), ,
ch ch
i l i lp p κ =   , ( ), ,

dch dch
i l i lp p κ =   , ( )g g

i ip p κ =   , and 

( )b b
i ip p κ =   , Pκ ∈ . Energy consumers’ dissatisfaction 
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is measured by ( )2cents / kWhiλ , which is a weighting 
parameter.

Eventually, the feasible set of solutions is given by

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

Given the fact that the objective of each aggregator (19) 
depends on the local strategy and the aggregative effects of all 
other aggregators, such interaction among them is modelled 
as an aggregative game. The following P  inter-dependent 
optimization problems describe the game.

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

 (20)

In the following, the NE of the game, a set of concurrent 
policies for all problems in (20) will be distributedly 
computed.

Definition 1. An NE is a collection of policies 
( )( )* *col i i

X x
∈

=


 such that, for all i ∈ ,

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

 (21)

Our attention is devoted to convex games. To establish 
regularity conditions, we make the following assumptions.

Assumption 1. For each i ∈ , set iΩ  is convex, 
closed, and nonempty; for any iX − , ( ).,i if X −

 is convex and 
if  is continuous functions.

In addition, the existence of a solution is assumed as 
follows.

Assumption 2. In (20), at least one NE is admissible.
There are sufficient conditions in literature for example, 

in [23] to support the existence of an NE (e.g., compactness 
of 1 2 PΩ = Ω ×Ω ×…×Ω ).

Lemma 1. The optimization problems’ solutions in (21) 
are Lipschitz, which means

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

 (22)

where max

min2 i

PL λ
λ λ

=  for all i ∈ .

Proof: See the appendix. 
To achieve a feedback control policy, only the first 

element of the optimal sequences, ,
ch
i lp , ,

dch
i lp , g

ip , and b
ip  

is implemented according to the receding horizon concept, 

and the optimization problem is resolvable at time slot 1t +  
as soon as new entrance information is provided.

3- Proposed method
The competitive aggregators are assumed to exchange 

information over an unreliable network suffering from DoS 
attacks. Such attacks may destroy the communication graph’s 
connectivity, which is a necessary assumption in proving the 
convergence of existing iterative algorithms.

3- 1- Communication network
Our algorithm to iteratively find the game’ NE will be 

proposed in this section. In the investigated scenario, each 
aggregator i  has full knowledge of its objective function if  
and feasible set iΩ . Also, aggregator i  lacks knowledge 
of other aggregators’ strategies and the aggregate term and 
are reliant only on data communicated locally between 
neighbors over communication graph ( ),ε  . A pair of 
ordered edges ( ),i j  can only belong to the group of links 
ε  if agent i  receives data from agent j . The adjacency 
matrix of communication graph   is denoted by N NW ×∈ , where in 

[ ], ,i j i j
Wω 

 with , 0i jω >  if ( ),i j ε∈  and 
, 0i jω = , otherwise. 

Let ( )( )diag i i
D d

∈
=

  and L D W= −  respectively denote the in-
degree and Laplacian matrices of  , with in

i id =  , where 
( ){ },in

i j i j ε= ∈  is the set of in-neighbors of agent i
. Furthermore, the communicated message that agent j  
transmits to agent i  via graph   is denoted by ,

k
i jy .

Assumption 3. The communication graph ( ),ε   is 
strongly connected.

The malicious adversaries are reported to interrupt the 
communication channel among aggregators. There are 
multiple adversaries in this work, each of which has separate 
attack patterns and their active periods are not necessarily 
the same. Suppose that NE is attainable at iteration NEk  and 

), , , ,,q q q q
i j i j i j i jk k τ +ñ  denote the iteration interval of the thq  

DoS attack on link ( ),i j , where ,
q
i jk  and ,

q
i jτ  are starting 

point and attack length, respectively. During the period, 
exchanging local data on link ( ),i j  is interrupted. Consider 

NE 1k >  and denote ( )NE NE
,1, 1,q

ij i jq Q
k kϑ

∈
   



ñ  as the 
series of iteration instants, where communication link ( ),i j  
is denied. To further describe the characteristics of the DoS 
attack, we make the following assumptions.

Assumption 4. Let ( )NE1,n k  denote the total number 
of DoS attacks active transmission in NE1, k   . There exist 
scalars 

fN  and 0fτ >  such that ( ) ( )NE NE1, 1 /f fn k N k τ= + −  
is satisfied.

Assumption 5. There exist scalars dN  and 0dτ >  that 
satisfy ( ) ( )NE NE1, 1 /ij d dk N kϑ τ≤ + −  [18].

It follows that assumptions 4 and 5 guarantee a limit to 
the duration and frequency of DoS attacks, which means they 
cannot occur all the time and at an infinite rate.

3- 2- Distributed NE seeking algorithm
In order for each aggregator to independently minimize its 
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objective, it should estimate the aggregative term to relax the 
interdependencies. To this end, a local estimation of the term 
has to be appropriately provided by each local aggregator. 
Let k

iz  denotes the estimation of ( )avg Gπ  whose value 
is calculated by the thi  aggregator. By placing k

iz  in (19) 
instead of ( )avg Gπ , the game in (21) is then changed to

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

 (23)

Presented below is a summary of the mechanism used in 
the proposed iterative optimization and estimation algorithm. 
Firstly, at each iteration k , a local estimation signal ,

k
i jy  

is received by each aggregator from its in-neighbors. It is 
also required to transmit its local estimation, ,

k
j iy  to the 

out-neighbors which need the local estimate. Then, for each 
aggregator to optimally respond to the messages received 
from in-neighbors, they solve the relaxed and independent 
optimization problem. The Krasnosel’skii-Mann formula is 
then used by aggregators to calculate the local estimation 
signal to be used in iteration 1k + ,

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
∑ 𝑛𝑛𝑖𝑖,𝑙𝑙𝑡𝑡 𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙∈𝑀𝑀𝑖𝑖 . (18) 

 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) = ∑ 𝜎𝜎𝑖𝑖
buy(𝑝𝑝𝑔𝑔)(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)𝑝𝑝𝑖𝑖

𝑔𝑔(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡)
𝑘𝑘′∈𝒩𝒩𝑃𝑃

 

+𝜆𝜆𝑖𝑖 (𝑑𝑑𝑖𝑖real(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡) − 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡 + 𝑘𝑘′|𝑡𝑡))
2
, (19) 

 

Ω𝑖𝑖 = {(𝑝𝑝𝑖𝑖,𝑙𝑙𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖,𝑙𝑙𝑑𝑑𝑐𝑐ℎ, 𝑝𝑝𝑖𝑖
𝑔𝑔, 𝑝𝑝𝑖𝑖𝑏𝑏)|(8), (12), (13), (14) are satisfied}. 

 

∀𝑖𝑖 ∈ 𝒫𝒫: argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖), (20) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗ ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖). (21) 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖, (22) 

∀𝑖𝑖 ∈ 𝒫𝒫: 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖𝑘𝑘) ∈ argmin
𝑥𝑥𝑖𝑖∈Ω𝑖𝑖

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖𝑘𝑘). (23) 

𝑧𝑧𝑖𝑖𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗𝑘𝑘𝑗𝑗∈𝒩𝒩𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, (24) 

 

𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 = 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2 + 𝜃𝜃(𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−1 − 𝑦𝑦𝑖𝑖,𝑗𝑗𝑘𝑘−2), (25) 

 (24)

where ( )0,1kα ∈ , 0k∀ ≥  are step sizes. The iterative 
algorithm continues until the game’s NE point is achieved (

1
stop

k k
i iz z ε+ − ≤ ).
In the presence of DoS attacks, each aggregator, receiving 

no information, is supposed to utilize the linear combination 
of the received information at the last two iterations. More 
precisely, assume 1

,
k
i jy −  and 2

,
k
i jy −  are the information of 

agent j  at iterations ( 1k − ) and ( 2k − ), respectively. 
Agent i  reconstructs the blocked information at iteration k  
as follows.

𝑘𝑘𝑖𝑖,𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =
1

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑑𝑑𝑑𝑑𝑑𝑑−𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎

{ 
 
  
price1 if 𝑇𝑇𝑖𝑖,𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑡𝑡 < 𝑡𝑡1
price2 if 𝑡𝑡1 ≤ 𝑡𝑡 < 𝑡𝑡2
price3 if 𝑡𝑡2 ≤ 𝑡𝑡 < 𝑡𝑡3
price4 if 𝑡𝑡3 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑

, (17) 

𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 =
1
𝑛𝑛𝑖𝑖𝑡𝑡
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2
, (19) 
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 (25)

where θ ∈ . The range 0 1θ< <  results in the points 
between 1

,
k
i jy −  and 2

,
k
i jy − . However, for 1θ > , the point 

,
k
i jy  lies on the line beyond 1

,
k
i jy − . The proposed distributed 

NE seeking of residential energy grids over unreliable 
communication networks is outlined in Algorithm 1.

4- Simulation results
Simulation examinations are conducted to evaluate the 

successfulness of the proposed MPC-based distributed NE-
seeking algorithm in peak shaving when the communication 
network is interrupted by DoS attacks. A scenario is considered 
wherein there are 63 10×  residential households and 63 10×  
stand-alone EVs. There are also six aggregators; three of 
them are responsible for managing stand-alone charging 
stations, while others are responsible for managing the power 
consumption of RHs. To reduce the level of complexity, 
EVs’ participation requests with only two different departure 
times are accepted by each aggregator. The communication 
topology under DoS attacks is depicted in Fig. 3.

The charging/discharging efficiencies of each EV are 
set to 0.95 and 310ck −=  cents/MWh. The experimental 
datasets of wind turbines and PV panels investigated in 
[24] are employed in this simulation. Moreover, the battery 
capacity of each EV is randomly selected from [9, 11kW] 
and the initial energy stored in batteries is randomly chosen 
from [0.9-2kW]. It is also assumed that ( )1/ 1k kα = + . The 
algorithm is run on a 2.30 GHz  core 5i  process with 8-GB 
RAM.

4- 1- Attack-resilient feature of the algorithm
We apply the proposed strategy in (25) to handle the DoS 

attack depicted in Fig. 3 for several values of θ . The main 
goal here is to determine the best range for θ  for which the 

   

(a)    (b) 

Fig. 3. Multi-aggregator network under DoS attacks. (a) In odd iterations. (b) In even iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Multi-aggregator network under DoS attacks. (a) In odd iterations. (b) In even iterations.
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detrimental impacts of DoS attacks are well compensated. 
The simulation results are illustrated in Table 1 and Fig. 
4. Table 1 indicates that the smallest convergence errors is 
achieved for 1θ = , 1.2, and 1.4. Also, the local estimated 
signals of all aggregators are depicted in Fig. 4.

As a comparison with existing works [e.g., 4], if DoS 
attacks occur and the designed controller takes no action, the 
value of 1max k k

i i iz z+ −  will be 2.17. This means that in 
cases where 0θ =  and 1.8θ = , the convergence error is 
larger than that obtained when the controller takes no action. 

Therefore, the acceptable range for the parameter θ  could be 
[0.2, 1.6].

As explained earlier, the reason for proposing the ToU 
tariff idea is to motivate users to participate in the management 
program longer and penalize those departing the stations 
sooner than others. Another alternative studied in [15] was 
the multi-level price policy that defined a different generation 
cost ( ck ) coefficient for different energy consumption levels. 
In the present study, a multi-level price policy was simulated 
and results are summarized in Table 1. As concluded from 

Algorithm 1 Distributed algorithm over an unreliable network 

Iteration 𝑡𝑡 
According to the new EV entrances’ information, each EVC’s boundary information is initialized by aggregators.  
Initialization: 
Arbitrarily initialize 𝑧𝑧𝑖𝑖

1, 𝑘𝑘 ← 1  ∀𝑖𝑖 ∈ 𝒫𝒫 
Iteration 𝑘𝑘: 
Optimization: for each 𝑖𝑖 ∈ 𝒫𝒫 
(𝑝𝑝𝑖𝑖,𝑙𝑙

ch,∗(𝑧𝑧𝑖𝑖
𝑘𝑘), 𝑝𝑝𝑖𝑖,𝑙𝑙

dch,∗(𝑧𝑧𝑖𝑖
𝑘𝑘), 𝑝𝑝𝑖𝑖

g,∗(𝑧𝑧𝑖𝑖
𝑘𝑘), 𝑝𝑝𝑖𝑖

𝑏𝑏,∗(𝑧𝑧𝑖𝑖
𝑘𝑘) ) ← arg min 𝑓𝑓𝑖𝑖(𝑝𝑝𝑖𝑖,𝑙𝑙

ch, 𝑝𝑝𝑖𝑖,𝑙𝑙
dch, 𝑝𝑝𝑖𝑖

𝑔𝑔, 𝑧𝑧𝑖𝑖
𝑘𝑘), 

Communication and Update: for each 𝑗𝑗 ∈ 𝒫𝒫 
if the information of neighbor 𝑗𝑗 is interrupted then 
   𝑦𝑦𝑖𝑖,𝑗𝑗

𝑘𝑘 = 𝜃𝜃𝑦𝑦𝑖𝑖,𝑗𝑗
𝑘𝑘−1 + (1 − 𝜃𝜃)𝑦𝑦𝑖𝑖,𝑗𝑗

𝑘𝑘−2 
end if 

𝑧𝑧𝑖𝑖
𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗

𝑘𝑘
𝑗𝑗∈𝒩𝒩𝑖𝑖

𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖,𝑗𝑗
𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, 

𝑘𝑘 ← 𝑘𝑘 + 1 
Until ‖𝑧𝑧𝑖𝑖

k+1 − 𝑧𝑧𝑖𝑖
k‖ ≤ 𝜀𝜀stop 

(𝑝𝑝𝑖𝑖,𝑙𝑙
ch,∗(𝑡𝑡), 𝑝𝑝𝑖𝑖,𝑙𝑙

dch,∗(𝑡𝑡), 𝑝𝑝𝑖𝑖
𝑔𝑔,∗(𝑡𝑡), 𝑝𝑝𝑖𝑖

𝑏𝑏,∗(𝑡𝑡) ) = (𝑝𝑝𝑖𝑖,𝑙𝑙
ch,∗(𝑡𝑡|𝑡𝑡), 𝑝𝑝𝑖𝑖,𝑙𝑙

dch,∗(𝑡𝑡|𝑡𝑡), 𝑝𝑝𝑖𝑖
𝑔𝑔,∗(𝑡𝑡|𝑡𝑡), 𝑝𝑝𝑖𝑖

𝑏𝑏,∗(𝑡𝑡|𝑡𝑡) ) 
Until 𝑡𝑡 = 𝑇𝑇 

 

Table 1. The convergence error for two different scenarios. 

𝜃𝜃 
max𝑖𝑖‖𝑧𝑧𝑖𝑖

𝑘𝑘+1 − 𝑧𝑧𝑖𝑖
𝑘𝑘‖ 

After increasing 𝑘𝑘𝑐𝑐  After increasing 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 

0 19.3 3.91 

0.2 6.47 1.231 

0.4 3.20 0.68 

0.6 1.26 0.25 

0.8 0.87 0.18 

1 0.63 0.136 

1.2 0.73 0.14 

1.4 0.79 0.14 

1.6 2.02 0.32 

1.8 23.8 3.68 

 

 

 

 

 

 

 

 

Fig. 4. Convergence of local estimated signals for 𝜃𝜃 = 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Convergence of local estimated signals for θ=1.2.
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simulation results, for a more considerable amount of ck , a 
high number of iterations are required for convergence. Still, 
in the proposed method, by changing ToUk , the number of 
iterations remains constant, and as a result, this method could 
be much better from a real-time energy management point of 
view.

4- 2- The effectiveness of the algorithm in peak-shaving
The best power utilization profiles of intelligent homes 

are ascertained by their relevant aggregators by arranging or 
eliminating the loads that are controllable. This could also be 
done by charging or discharging the EVs’ storage devices. 
As described earlier, proposing ToUk  is for encouraging 
aggregators to alter their desirable power consumption hours 
to different times, and its value is higher in time periods when 
the consumption of electricity is at its maximum level. More 
importantly, its value should be adjusted higher to behave 
fairly towards users participating in the proposed program less 
than they should.

As illustrated in Fig. 5 and as expected, a successful 
transfer of schedulable loads from desired peak consumption 
hours to the time period [11-19] has been achieved. The 
reason why this happens is that EVs’ batteries are mostly 
discharged in the mentioned period. Moreover, as planning 
approaches the end of the planning horizon, the accuracy 
of the algorithm increases. This can be seen in Fig. 5 that 
the actual load demand for 21pN =  has equaled that for 

24pN =  after 11 AM. Furthermore, in the present study, 
aggregators of stand-alone stations purchase a maximum 
value of 5.25 MW to satisfy their subordinate consumers’ 
demand, whereas this value is computed as 8.25 MW for the 
investigated scenario in [13].

The bar charts in Fig. 6 depict that EVCs are not charged 
and discharged simultaneously. Once the charging or 
discharging power of clusters at each time slot is computed, 
they are allocated to the subordinate EVs in the lower level.

5- Conclusion
This paper investigates aggregators that can communicate 

with a few neighbors through a communication network. 
Given that the objective function of each aggregator depends 
on the local strategy and the aggregative impacts of others, 
aggregative games have been utilized in which agents are 
cooperatively trying to learn the aggregative term. Moreover, 
terminal constraints are transferred to the end of the prediction 
horizon to propose a computationally efficient predictive 
controller. Then, a linear combination of the received 
data in the last two iterations is proposed as a promising 
substitution for the blocked data. It was also illustrated that 
the destructive impact of DoS attacks is compensated for a 
specific combination of prior information. Additionally, the 
ToU pricing tariff is proposed to penalize some energy users 
leaving the charging station sooner than their counterparts. 
By doing so, simulation results have indicated that the 
convergence time remains unchanged.
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𝑧𝑧𝑖𝑖
𝑘𝑘+1 = (1 − 𝛼𝛼𝑘𝑘) (∑ 𝜔𝜔𝑖𝑖,𝑗𝑗

𝑘𝑘
𝑗𝑗∈𝒩𝒩𝑖𝑖

𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖,𝑗𝑗
𝑘𝑘 ) + 𝛼𝛼𝑘𝑘𝜋𝜋𝑖𝑖

𝑔𝑔,∗,𝑘𝑘, 

𝑘𝑘 ← 𝑘𝑘 + 1 
Until ‖𝑧𝑧𝑖𝑖

k+1 − 𝑧𝑧𝑖𝑖
k‖ ≤ 𝜀𝜀stop 

(𝑝𝑝𝑖𝑖,𝑙𝑙
ch,∗(𝑡𝑡), 𝑝𝑝𝑖𝑖,𝑙𝑙

dch,∗(𝑡𝑡), 𝑝𝑝𝑖𝑖
𝑔𝑔,∗(𝑡𝑡), 𝑝𝑝𝑖𝑖

𝑏𝑏,∗(𝑡𝑡) ) = (𝑝𝑝𝑖𝑖,𝑙𝑙
ch,∗(𝑡𝑡|𝑡𝑡), 𝑝𝑝𝑖𝑖,𝑙𝑙

dch,∗(𝑡𝑡|𝑡𝑡), 𝑝𝑝𝑖𝑖
𝑔𝑔,∗(𝑡𝑡|𝑡𝑡), 𝑝𝑝𝑖𝑖

𝑏𝑏,∗(𝑡𝑡|𝑡𝑡) ) 
Until 𝑡𝑡 = 𝑇𝑇 

 

Table 1. The convergence error for two different scenarios. 

𝜃𝜃 
max𝑖𝑖‖𝑧𝑧𝑖𝑖

𝑘𝑘+1 − 𝑧𝑧𝑖𝑖
𝑘𝑘‖ 

After increasing 𝑘𝑘𝑐𝑐  After increasing 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 

0 19.3 3.91 

0.2 6.47 1.231 

0.4 3.20 0.68 

0.6 1.26 0.25 

0.8 0.87 0.18 

1 0.63 0.136 

1.2 0.73 0.14 

1.4 0.79 0.14 

1.6 2.02 0.32 

1.8 23.8 3.68 

 

 

 

 

 

 

 



hH. R. Babaei Ghazvini et al., AUT J. Model. Simul., 55(1) (2023) 139-154, DOI: 10.22060/miscj.2023.22098.5313

149

 

Fig. 5. Residential households' daily electricity demand profiles. 
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Fig. 6. Charging/discharging power of two random EVC. 
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strategy for islanded multi-micro-grids considering 
uncertainty,” IEEE Transactions on Smart Grid, vol. 13, 

pp. 2107-2120, May 2022.
[2]  H. Farzaneh, M. Shokri, H. Kebriaei, and F. Aminifar,  

𝒩𝒩 Group of residential households (|𝒩𝒩| = 𝑁𝑁). 

𝒫𝒫 Group of aggregators (|𝒫𝒫| = 𝑃𝑃). 

𝒯𝒯, 𝓉𝓉 Set of time-slots 𝒯𝒯 = {1,2, … , 𝑇𝑇} in a day and sample time. 

𝒩𝒩𝑃𝑃 Group of time slots within the prediction horizon 𝒩𝒩𝑃𝑃 = {1,2, … , 𝑁𝑁𝑃𝑃}. 

𝒯𝒯𝑖𝑖,𝑛𝑛
𝑡𝑡  Part of the prediction horizon at time-slot 𝑡𝑡. 

𝑇𝑇𝑖𝑖,𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎/𝑇𝑇𝑖𝑖,𝑛𝑛

𝑑𝑑𝑑𝑑𝑑𝑑 Arrival and departure time of 𝐸𝐸𝐸𝐸𝑖𝑖,𝑛𝑛. 

𝑛𝑛𝑖𝑖,𝑙𝑙
𝑡𝑡 /𝑛𝑛𝑖𝑖

𝑡𝑡 Number of the residential households at the 𝑙𝑙𝑡𝑡ℎ EVC/𝑖𝑖𝑡𝑡ℎ aggregator at time-slot 𝑡𝑡. 

𝐸𝐸𝑖𝑖,𝑛𝑛/𝐸𝐸𝑖𝑖,𝑙𝑙 Energy trajectory of the 𝑛𝑛𝑡𝑡ℎ EV 𝑙𝑙𝑡𝑡ℎ⁄ EVC connected to the 𝑖𝑖𝑡𝑡ℎ aggregator. 

𝐸𝐸𝑖𝑖,𝑛𝑛
min/𝐸𝐸𝑖𝑖,𝑛𝑛

max Minimum/Maximum attainable energy of 𝐸𝐸𝐸𝐸𝑖𝑖,𝑛𝑛. 

𝐸𝐸𝑖𝑖,𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎/𝐸𝐸𝑖𝑖,𝑛𝑛

𝑎𝑎𝑑𝑑𝑟𝑟 Initial/ expected energy demand of 𝐸𝐸𝐸𝐸𝑖𝑖,𝑛𝑛. 

𝑢𝑢𝑖𝑖,𝑛𝑛
𝑐𝑐ℎ /𝑢𝑢𝑖𝑖,𝑛𝑛

𝑑𝑑𝑐𝑐ℎ Charging/discharging power of 𝐸𝐸𝐸𝐸𝑖𝑖,𝑛𝑛. 

𝜂𝜂𝑖𝑖,𝑛𝑛
𝑐𝑐ℎ /𝜂𝜂𝑖𝑖,𝑛𝑛

𝑑𝑑𝑐𝑐ℎ Charging/discharging efficiency of 𝐸𝐸𝐸𝐸𝑖𝑖,𝑛𝑛. 

𝑢𝑢𝑖𝑖,𝑛𝑛
𝑐𝑐ℎ /𝑢𝑢𝑖𝑖,𝑛𝑛

𝑑𝑑𝑐𝑐ℎ Maximum charging/discharging power of 𝐸𝐸𝐸𝐸𝑖𝑖,𝑛𝑛. 

𝑢𝑢𝑖𝑖,𝑛𝑛
𝑐𝑐ℎ /𝑢𝑢𝑖𝑖,𝑛𝑛

𝑑𝑑𝑐𝑐ℎ Minimum charging/discharging power of 𝐸𝐸𝐸𝐸𝑖𝑖,𝑛𝑛. 

𝐸𝐸𝑖𝑖,𝑙𝑙
min/𝐸𝐸𝑖𝑖,𝑙𝑙

max Lower/Upper cumulative energy boundary of 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑙𝑙. 

𝐸𝐸𝑖𝑖,𝑙𝑙
𝑎𝑎𝑎𝑎𝑎𝑎/𝐸𝐸𝑖𝑖,𝑙𝑙

𝑎𝑎𝑑𝑑𝑟𝑟 Initial/Expected energy of 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑙𝑙. 

𝑇𝑇𝑖𝑖,𝑙𝑙
𝑎𝑎𝑎𝑎𝑎𝑎/𝑇𝑇𝑖𝑖,𝑙𝑙

𝑑𝑑𝑑𝑑𝑑𝑑 Arrival and departure time of 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑙𝑙. 

𝑝𝑝𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ/𝑝𝑝𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ Battery charging/discharging power of 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑙𝑙. 

𝜂𝜂𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ/𝜂𝜂𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ Battery charging/discharging efficiency of 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑙𝑙. 

𝑝𝑝𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ/𝑝𝑝𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ Maximum charging/discharging power of 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑙𝑙. 

𝑝𝑝𝑖𝑖,𝑙𝑙
𝑐𝑐ℎ/𝑝𝑝𝑖𝑖,𝑙𝑙

𝑑𝑑𝑐𝑐ℎ Minimum charging/discharging power of 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑙𝑙. 

𝑝𝑝𝑖𝑖
𝑃𝑃𝑃𝑃/p𝒊𝒊

𝑊𝑊𝑃𝑃 PV/WT power generation of the 𝑖𝑖𝑡𝑡ℎ aggregator. 

𝑝𝑝𝑖𝑖
𝑔𝑔/𝜋𝜋𝑖𝑖

𝑔𝑔 Power consumption/ local cost of 𝑖𝑖𝑡𝑡ℎ aggregator. 

𝑑𝑑𝑖𝑖
𝑢𝑢𝑛𝑛𝑐𝑐/𝑑𝑑𝑖𝑖

𝑆𝑆𝑆𝑆 Uncontrollable/schedulable demands the 𝑖𝑖𝑡𝑡ℎ aggregator. 

𝑑𝑑𝑖𝑖
real/𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑 Actual/desired demand the 𝑖𝑖𝑡𝑡ℎ aggregator. 

𝑑𝑑𝑖𝑖
RED Reducible demand the 𝑖𝑖𝑡𝑡ℎ aggregator. 
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Let us consider that the optimization problem (19) is unconstrained and one can conclude that, 

�̃�𝑝𝑖𝑖
𝑔𝑔(𝑧𝑧𝑖𝑖) = −𝑃𝑃𝑧𝑧𝑖𝑖+𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇

2𝜆𝜆𝑖𝑖
− �̃�𝑝𝑖𝑖𝑅𝑅 − 𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑖𝑖𝑊𝑊𝑃𝑃 + 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑, (A.1) 

Changing the input variable of �̃�𝑝𝑖𝑖
𝑔𝑔 from 𝑧𝑧𝑖𝑖′ to 𝑧𝑧𝑖𝑖′′ we have, 

‖�̃�𝑝𝑖𝑖
𝑔𝑔(𝑧𝑧𝑖𝑖′) − �̃�𝑝𝑖𝑖

𝑔𝑔(𝑧𝑧𝑖𝑖′′)‖ ≤
𝑃𝑃
2𝜆𝜆𝑖𝑖

‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖,  (A.2) 

Therefore the unconstrained solution of the (19) is 𝑃𝑃 2𝜆𝜆𝑖𝑖⁄ -Lipshitz. Since objective function 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) is 

a quadratic, the solution of constrained problem (19) is obtained by the projection of the solution of 

unconstrained problem on the feasible set of the constraints set 𝑥𝑥𝑖𝑖 ∈ Ω𝑖𝑖. Hence, there exists a matrix 𝑄𝑄 such 

that, 

𝑥𝑥𝑖𝑖∗ = projΩ𝑖𝑖
𝑄𝑄 (�̃�𝑥𝑖𝑖) = argmin

𝑥𝑥𝑖𝑖∈Ω𝑖𝑖
‖𝑥𝑥𝑖𝑖 − �̃�𝑥𝑖𝑖‖𝑄𝑄2 ,  (A.3) 

Since the feasible set Ω𝑖𝑖 is nonempty, closed, and convex, the projection operator projΩ𝑖𝑖
𝑄𝑄  is Lipschitz with 

constant 1. This means, Changing the input variable of the 𝑥𝑥𝑖𝑖∗ from 𝑧𝑧𝑖𝑖′ to 𝑧𝑧𝑖𝑖′′ we have, 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖𝑄𝑄 ≤ ‖�̃�𝑥𝑖𝑖(𝑧𝑧𝑖𝑖′) − �̃�𝑥𝑖𝑖(𝑧𝑧𝑖𝑖′′)‖𝑄𝑄. (A.4) 

Using the property 𝜆𝜆min(‖𝑦𝑦‖2) ≤ ‖𝑦𝑦‖𝑄𝑄2 ≤ 𝜆𝜆max(‖𝑦𝑦‖2), one can conclude, 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ √𝜆𝜆max
𝜆𝜆min

‖�̃�𝑥𝑖𝑖(𝑧𝑧𝑖𝑖′) − �̃�𝑥𝑖𝑖(𝑧𝑧𝑖𝑖′′)‖. (A.5) 

Then by using ‖𝑎𝑎 + 𝑏𝑏‖ ≤ ‖𝑎𝑎‖ + ‖𝑏𝑏‖ and (A.2) we have, 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤
𝑃𝑃
2𝜆𝜆𝑖𝑖

√𝜆𝜆max
𝜆𝜆min

‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖. (A.6) 

Finally by assuming Λ𝑖𝑖(𝑧𝑧𝑖𝑖) as the estimation of the agent 𝑖𝑖 from local agent cost 𝜋𝜋𝑖𝑖
𝑔𝑔 = 𝑘𝑘𝑐𝑐𝑝𝑝𝑖𝑖

𝑔𝑔, we have, 

‖Λ𝑖𝑖(𝑧𝑧𝑖𝑖′) − Λ𝑖𝑖(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖. (A.7) 

where 𝐿𝐿 = (𝑃𝑃𝑘𝑘𝑐𝑐 2𝜆𝜆𝑖𝑖⁄ )√𝜆𝜆max 𝜆𝜆min⁄ . Therefore, the mapping Λ𝑖𝑖 is both contractive and continuous for the 

aggregative game for 0 < 𝐿𝐿 < 1. As a consequence, it can be concluded from the contraction mapping 

theorems that the proposed iterative algorithm would converge to an exclusive fixed point of the mapping 

Λ𝑖𝑖 (Λ𝑖𝑖(𝑧𝑧𝑖𝑖) = 𝑧𝑧𝑖𝑖) from any initial conditions. As it can be seen 𝐿𝐿 does not depend on 𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 and does depend 

on 𝑘𝑘𝑐𝑐. 
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Let us consider that the optimization problem (19) is unconstrained and one can conclude that, 

�̃�𝑝𝑖𝑖
𝑔𝑔(𝑧𝑧𝑖𝑖) = −𝑃𝑃𝑧𝑧𝑖𝑖+𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇

2𝜆𝜆𝑖𝑖
− �̃�𝑝𝑖𝑖𝑅𝑅 − 𝑝𝑝𝑖𝑖𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑖𝑖𝑊𝑊𝑃𝑃 + 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑, (A.1) 

Changing the input variable of �̃�𝑝𝑖𝑖
𝑔𝑔 from 𝑧𝑧𝑖𝑖′ to 𝑧𝑧𝑖𝑖′′ we have, 

‖�̃�𝑝𝑖𝑖
𝑔𝑔(𝑧𝑧𝑖𝑖′) − �̃�𝑝𝑖𝑖

𝑔𝑔(𝑧𝑧𝑖𝑖′′)‖ ≤
𝑃𝑃
2𝜆𝜆𝑖𝑖

‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖,  (A.2) 

Therefore the unconstrained solution of the (19) is 𝑃𝑃 2𝜆𝜆𝑖𝑖⁄ -Lipshitz. Since objective function 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑋𝑋−𝑖𝑖) is 

a quadratic, the solution of constrained problem (19) is obtained by the projection of the solution of 

unconstrained problem on the feasible set of the constraints set 𝑥𝑥𝑖𝑖 ∈ Ω𝑖𝑖. Hence, there exists a matrix 𝑄𝑄 such 

that, 

𝑥𝑥𝑖𝑖∗ = projΩ𝑖𝑖
𝑄𝑄 (�̃�𝑥𝑖𝑖) = argmin

𝑥𝑥𝑖𝑖∈Ω𝑖𝑖
‖𝑥𝑥𝑖𝑖 − �̃�𝑥𝑖𝑖‖𝑄𝑄2 ,  (A.3) 

Since the feasible set Ω𝑖𝑖 is nonempty, closed, and convex, the projection operator projΩ𝑖𝑖
𝑄𝑄  is Lipschitz with 

constant 1. This means, Changing the input variable of the 𝑥𝑥𝑖𝑖∗ from 𝑧𝑧𝑖𝑖′ to 𝑧𝑧𝑖𝑖′′ we have, 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖𝑄𝑄 ≤ ‖�̃�𝑥𝑖𝑖(𝑧𝑧𝑖𝑖′) − �̃�𝑥𝑖𝑖(𝑧𝑧𝑖𝑖′′)‖𝑄𝑄. (A.4) 

Using the property 𝜆𝜆min(‖𝑦𝑦‖2) ≤ ‖𝑦𝑦‖𝑄𝑄2 ≤ 𝜆𝜆max(‖𝑦𝑦‖2), one can conclude, 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤ √𝜆𝜆max
𝜆𝜆min

‖�̃�𝑥𝑖𝑖(𝑧𝑧𝑖𝑖′) − �̃�𝑥𝑖𝑖(𝑧𝑧𝑖𝑖′′)‖. (A.5) 

Then by using ‖𝑎𝑎 + 𝑏𝑏‖ ≤ ‖𝑎𝑎‖ + ‖𝑏𝑏‖ and (A.2) we have, 

‖𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′) − 𝑥𝑥𝑖𝑖∗(𝑧𝑧𝑖𝑖′′)‖ ≤
𝑃𝑃
2𝜆𝜆𝑖𝑖

√𝜆𝜆max
𝜆𝜆min

‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖. (A.6) 

Finally by assuming Λ𝑖𝑖(𝑧𝑧𝑖𝑖) as the estimation of the agent 𝑖𝑖 from local agent cost 𝜋𝜋𝑖𝑖
𝑔𝑔 = 𝑘𝑘𝑐𝑐𝑝𝑝𝑖𝑖

𝑔𝑔, we have, 

‖Λ𝑖𝑖(𝑧𝑧𝑖𝑖′) − Λ𝑖𝑖(𝑧𝑧𝑖𝑖′′)‖ ≤ 𝐿𝐿‖𝑧𝑧𝑖𝑖′ − 𝑧𝑧𝑖𝑖′′‖. (A.7) 

where 𝐿𝐿 = (𝑃𝑃𝑘𝑘𝑐𝑐 2𝜆𝜆𝑖𝑖⁄ )√𝜆𝜆max 𝜆𝜆min⁄ . Therefore, the mapping Λ𝑖𝑖 is both contractive and continuous for the 

aggregative game for 0 < 𝐿𝐿 < 1. As a consequence, it can be concluded from the contraction mapping 

theorems that the proposed iterative algorithm would converge to an exclusive fixed point of the mapping 

Λ𝑖𝑖 (Λ𝑖𝑖(𝑧𝑧𝑖𝑖) = 𝑧𝑧𝑖𝑖) from any initial conditions. As it can be seen 𝐿𝐿 does not depend on 𝑘𝑘𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇 and does depend 

on 𝑘𝑘𝑐𝑐. 
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