[1] L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, arXiv preprint arXiv:1706.05587, (2017).
[2] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in, 2017, pp. 2881-2890.
[3] A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, Enet: A deep neural network architecture for real-time semantic segmentation, arXiv preprint arXiv:1606.02147, (2016).
[4] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, H. Hajishirzi, Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation, in, 2018, pp. 552-568.
[5] H. Zhao, X. Qi, X. Shen, J. Shi, J. Jia, Icnet for real-time semantic segmentation on high-resolution images, in, 2018, pp. 405-420.
[6] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, N. Sang, Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation, International Journal of Computer Vision, 129 (2021) 3051-3068 %@ 0920-5691.
[7] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, in, 2018, pp. 325-341.
[8] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv preprint arXiv:1503.02531, (2015).
[9] A. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, Y. Bengio, Fitnets: Hints for thin deep nets, arXiv preprint arXiv:1412.6550, (2014).
[10] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in, 2016, pp. 2921-2929.
[11] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in, 2017, pp. 618-626.
[12] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The pascal visual object classes (voc) challenge, International journal of computer vision, 88 (2010) 303-338 %@ 0920-5691.
[13] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in, 2018, pp. 801-818.
[14] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in, 2015, pp. 3431-3440.
[15] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in, 2016, pp. 770-778.
[16] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, A. Anandkumar, Born again neural networks, in, PMLR, 2018, pp. 1607-1616 %@ 2640-3498.
[17] Z. Zhou, C. Zhuge, X. Guan, W. Liu, Channel distillation: Channel-wise attention for knowledge distillation, arXiv preprint arXiv:2006.01683, (2020).
[18] P. Chen, S. Liu, H. Zhao, J. Jia, Distilling knowledge via knowledge review, in, 2021, pp. 5008-5017.
[19] I. Sarridis, C. Koutlis, S. Papadopoulos, I. Kompatsiaris, InDistill: Transferring Knowledge From Pruned Intermediate Layers, arXiv preprint arXiv:2205.10003, (2022).
[20] R. Liu, K. Yang, H. Liu, J. Zhang, K. Peng, R. Stiefelhagen, Transformer-based knowledge distillation for efficient semantic segmentation of road-driving scenes, arXiv preprint arXiv:2202.13393, (2022).
[21] Z. Li, D. Hoiem, Learning without forgetting, IEEE transactions on pattern analysis and machine intelligence, 40(12) (2017) 2935-2947 %@ 0162-8828.
[22] W. Park, D. Kim, Y. Lu, M. Cho, Relational knowledge distillation, in, 2019, pp. 3967-3976.
[23] K. Yue, J. Deng, F. Zhou, Matching guided distillation, in, Springer, 2020, pp. 312-328 %@ 3030585549.
[24] S. Tang, Z. Zhang, Z. Cheng, J. Lu, Y. Xu, Y. Niu, F. He, Distilling Object Detectors with Global Knowledge, in, Springer, 2022, pp. 422-438.
[25] C. Yang, M. Ochal, A. Storkey, E.J. Crowley, Prediction-guided distillation for dense object detection, in, Springer, 2022, pp. 123-138.
[26] D. Chen, J.-P. Mei, H. Zhang, C. Wang, Y. Feng, C. Chen, Knowledge distillation with the reused teacher classifier, in, 2022, pp. 11933-11942.
[27] H.-J. Ye, S. Lu, D.-C. Zhan, Generalized knowledge distillation via relationship matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2) (2022) 1817-1834 %@ 0162-8828.
[28] G. Ros, S. Stent, P.F. Alcantarilla, T. Watanabe, Training constrained deconvolutional networks for road scene semantic segmentation, arXiv preprint arXiv:1604.01545, (2016).
[29] L. Liu, Q. Huang, S. Lin, H. Xie, B. Wang, X. Chang, X. Liang, Exploring inter-channel correlation for diversity-preserved knowledge distillation, in, 2021, pp. 8271-8280.
[30] Y. Wang, W. Zhou, T. Jiang, X. Bai, Y. Xu, Intra-class feature variation distillation for semantic segmentation, in, Springer, 2020, pp. 346-362 %@ 3030585700.
[31] Y. Feng, X. Sun, W. Diao, J. Li, X. Gao, Double similarity distillation for semantic image segmentation, IEEE Transactions on Image Processing, 30 (2021) 5363-5376 %@ 1057-7149.
[32] J. Xie, B. Shuai, J.-F. Hu, J. Lin, W.-S. Zheng, Improving fast segmentation with teacher-student learning, arXiv preprint arXiv:1810.08476, (2018).
[33] S. Park, Y.S. Heo, Knowledge distillation for semantic segmentation using channel and spatial correlations and adaptive cross entropy, Sensors, 20(16) (2020) 4616 %@ 1424-8220.
[34] B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, J.Y. Choi, A comprehensive overhaul of feature distillation, in, 2019, pp. 1921-1930.
[35] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, J. Wang, Structured knowledge distillation for semantic segmentation, in, 2019, pp. 2604-2613.
[36] T. He, C. Shen, Z. Tian, D. Gong, C. Sun, Y. Yan, Knowledge adaptation for efficient semantic segmentation, in, 2019, pp. 578-587.
[37] S. Zagoruyko, N. Komodakis, Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer, arXiv preprint arXiv:1612.03928, (2016).