[1] F.P. Oliveira, J.M.R. Tavares, Medical image registration: a review, Computer methods in biomechanics and biomedical engineering, 17(2) (2014) 73-93.
[2] J. Ma, X. Jiang, A. Fan, J. Jiang, J. Yan, Image matching from handcrafted to deep features: A survey, International Journal of Computer Vision, 129(1) (2021) 23-79.
[3] H. Hermessi, O. Mourali, E. Zagrouba, Multimodal medical image fusion review: Theoretical background and recent advances, Signal Processing, 183 (2021) 108036.
[4] G. Song, J. Han, Y. Zhao, Z. Wang, H. Du, A review on medical image registration as an optimization problem, Current Medical Imaging, 13(3) (2017) 274-283.
[5] Q.R. Razlighi, N. Kehtarnavaz, S. Yousefi, Evaluating similarity measures for brain image registration, Journal of visual communication and image representation, 24(7) (2013) 977-987.
[6] M.A. Viergever, J.A. Maintz, S. Klein, K. Murphy, M. Staring, J.P. Pluim, A survey of medical image registration–under review, in, Elsevier, 2016, pp. 140-144.
[7] M. Wang, P. Li, A review of deformation models in medical image registration, Journal of Medical and Biological Engineering, 39(1) (2019) 1-17.
[8] X. Jiang, J. Ma, G. Xiao, Z. Shao, X. Guo, A review of multimodal image matching: Methods and applications, Information Fusion, 73 (2021) 22-71.
[9] F.E.-Z.A. El-Gamal, M. Elmogy, A. Atwan, Current trends in medical image registration and fusion, Egyptian Informatics Journal, 17(1) (2016) 99-124.
[10] X. Chen, A. Diaz-Pinto, N. Ravikumar, A.F. Frangi, Deep learning in medical image registration, Progress in Biomedical Engineering, 3(1) (2021) 012003.
[11] X. Cao, J. Fan, P. Dong, S. Ahmad, P.-T. Yap, D. Shen, Image registration using machine and deep learning, in: Handbook of medical image computing and computer assisted intervention, Elsevier, 2020, pp. 319-342.
[12] F. Alam, S.U. Rahman, S. Ullah, K. Gulati, Medical image registration in image guided surgery: Issues, challenges and research opportunities, Biocybernetics and Biomedical Engineering, 38(1) (2018) 71-89.
[13] D. Rivas-Villar, Á.S. Hervella, J. Rouco, J. Novo, Color fundus image registration using a learning-based domain-specific landmark detection methodology, Computers in Biology and Medicine, 140 (2022) 105101.
[14] J. Öfverstedt, J. Lindblad, N. Sladoje, Fast and robust symmetric image registration based on distances combining intensity and spatial information, IEEE Transactions on Image Processing, 28(7) (2019) 3584-3597.
[15] Z. Mohammadi, M.R. Keyvanpour, Similarity Measures in Medical Image Registration A Review Article, in: 2021 12th International Conference on Information and Knowledge Technology (IKT), IEEE, 2021, pp. 89-95.
[16] G. Haskins, U. Kruger, P. Yan, Deep learning in medical image registration: a survey, Machine Vision and Applications, 31(1) (2020) 1-18.
[17] M.-R. Keyvanpour, S. Alehojat, Analytical comparison of learning based methods to increase the accuracy and robustness of registration algorithms in medical imaging, (2012).
[18] S. Suganyadevi, V. Seethalakshmi, K. Balasamy, A review on deep learning in medical image analysis, International Journal of Multimedia Information Retrieval, 11(1) (2022) 19-38.
[19] K. Aghajani, Multi-modal image registration in the presence of spatially varying intensity distortion using structural representation, Multimedia Tools and Applications, 80(25) (2021) 33885-33909.
[20] F. Zhu, X. Zhu, Z. Huang, M. Ding, Q. Li, X. Zhang, Deep learning based data-adaptive descriptor for non-rigid multi-modal medical image registration, Signal Processing, 183 (2021) 108023.
[21] X. Zhu, M. Ding, T. Huang, X. Jin, X. Zhang, PCANet-based structural representation for nonrigid multimodal medical image registration, Sensors, 18(5) (2018) 1477.
[22] E.M. McKenzie, A. Santhanam, D. Ruan, D. O'Connor, M. Cao, K. Sheng, Multimodality image registration in the head‐and‐neck using a deep learning‐derived synthetic CT as a bridge, Medical physics, 47(3) (2020) 1094-1104.
[23] X. Cao, J. Yang, Y. Gao, Y. Guo, G. Wu, D. Shen, Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis, Medical image analysis, 41 (2017) 18-31.
[24] X. Cao, J. Yang, Y. Gao, Q. Wang, D. Shen, Region-adaptive deformable registration of CT/MRI pelvic images via learning-based image synthesis, IEEE Transactions on Image Processing, 27(7) (2018) 3500-3512.
[25] X. Liu, D. Jiang, M. Wang, Z. Song, Image synthesis-based multi-modal image registration framework by using deep fully convolutional networks, Medical & Biological Engineering & Computing, 57(5) (2019) 1037-1048.
[26] R. Han, C.K. Jones, J. Lee, P. Wu, P. Vagdargi, A. Uneri, P.A. Helm, M. Luciano, W.S. Anderson, J.H. Siewerdsen, Deformable MR-CT image registration using an unsupervised, dual-channel network for neurosurgical guidance, Medical image analysis, 75 (2022) 102292.
[27] M. Simonovsky, B. Gutiérrez-Becker, D. Mateus, N. Navab, N. Komodakis, A deep metric for multimodal registration, in: International conference on medical image computing and computer-assisted intervention, Springer, 2016, pp. 10-18.
[28] X. Cheng, L. Zhang, Y. Zheng, Deep similarity learning for multimodal medical images, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6(3) (2018) 248-252.
[29] M. Blendowski, M.P. Heinrich, Combining MRF-based deformable registration and deep binary 3D-CNN descriptors for large lung motion estimation in COPD patients, International journal of computer assisted radiology and surgery, 14(1) (2019) 43-52.
[30] G. Haskins, J. Kruecker, U. Kruger, S. Xu, P.A. Pinto, B.J. Wood, P. Yan, Learning deep similarity metric for 3D MR–TRUS image registration, International journal of computer assisted radiology and surgery, 14(3) (2019) 417-425.
[31] S.K. Zhou, H.N. Le, K. Luu, H.V. Nguyen, N. Ayache, Deep reinforcement learning in medical imaging: A literature review, Medical image analysis, 73 (2021) 102193.
[32] J. Hu, Z. Luo, X. Wang, S. Sun, Y. Yin, K. Cao, Q. Song, S. Lyu, X. Wu, End-to-end multimodal image registration via reinforcement learning, Medical Image Analysis, 68 (2021) 101878.
[33] K. Ma, J. Wang, V. Singh, B. Tamersoy, Y.-J. Chang, A. Wimmer, T. Chen, Multimodal image registration with deep context reinforcement learning, in: International conference on medical image computing and computer-assisted intervention, Springer, 2017, pp. 240-248.
[34] S. Miao, S. Piat, P. Fischer, A. Tuysuzoglu, P. Mewes, T. Mansi, R. Liao, Dilated FCN for multi-agent 2D/3D medical image registration, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[35] H. Xiao, X. Teng, C. Liu, T. Li, G. Ren, R. Yang, D. Shen, J. Cai, A review of deep learning-based three-dimensional medical image registration methods, Quantitative Imaging in Medicine and Surgery, 11(12) (2021) 4895.
[36] S. Abbasi, M. Tavakoli, H.R. Boveiri, M.A.M. Shirazi, R. Khayami, H. Khorasani, R. Javidan, A. Mehdizadeh, Medical image registration using unsupervised deep neural network: A scoping literature review, Biomedical Signal Processing and Control, 73 (2022) 103444.
[37] S.S.M. Salehi, S. Khan, D. Erdogmus, A. Gholipour, Real-time deep pose estimation with geodesic loss for image-to-template rigid registration, IEEE transactions on medical imaging, 38(2) (2018) 470-481.
[38] X. Wang, L. Mao, X. Huang, M. Xia, Z. Gu, Multimodal MR image registration using weakly supervised constrained affine network, Journal of Modern Optics, 68(13) (2021) 679-688.
[39] J. Fan, X. Cao, P.-T. Yap, D. Shen, BIRNet: Brain image registration using dual-supervised fully convolutional networks, Medical image analysis, 54 (2019) 193-206.
[40] H. Xiao, R. Ni, S. Zhi, W. Li, C. Liu, G. Ren, X. Teng, W. Liu, W. Wang, Y. Zhang, A dual‐supervised deformation estimation model (DDEM) for constructing ultra‐quality 4D‐MRI based on a commercial low‐quality 4D‐MRI for liver cancer radiation therapy, Medical Physics, 49(5) (2022) 3159-3170.
[41] B.D. De Vos, F.F. Berendsen, M.A. Viergever, H. Sokooti, M. Staring, I. Išgum, A deep learning framework for unsupervised affine and deformable image registration, Medical image analysis, 52 (2019) 128-143.
[42] Y. Ma, D. Niu, J. Zhang, X. Zhao, B. Yang, C. Zhang, Unsupervised deformable image registration network for 3D medical images, Applied Intelligence, 52(1) (2022) 766-779.
[43] S. Li, T. Zhang, D. Zhang, Y. Nie, J. Wang, Metric learning for patch-based 3-d image registration, IEEE Transactions on Automation Science and Engineering, 16(4) (2019) 1575-1583.
[44] M.I. Gandhi, Image registration quality assessment with similarity measures-a research study, in: 2015 International Conference on Communications and Signal Processing (ICCSP), IEEE, 2015, pp. 0084-0088.
[45] Z. Chen, Z. Xu, Q. Gui, X. Yang, Q. Cheng, W. Hou, M. Ding, Self-learning based medical image representation for rigid real-time and multimodal slice-to-volume registration, Information Sciences, 541 (2020) 502-515.
[46] A.A. Goshtasby, Image registration: Principles, tools and methods, Springer Science & Business Media, 2012.
[47] S. Liu, B. Yang, Y. Wang, J. Tian, L. Yin, W. Zheng, 2D/3D multimode medical image registration based on normalized cross-correlation, Applied Sciences, 12(6) (2022) 2828.
[48] M.A. Azam, K.B. Khan, M. Ahmad, M. Mazzara, Multimodal medical image registration and fusion for quality Enhancement, Cmc-Comput. Mater. Contin, 68 (2021) 821-840.
[49] H. Bakhshayesh, S.P. Fitzgibbon, A.S. Janani, T.S. Grummett, K.J. Pope, Detecting synchrony in EEG: A comparative study of functional connectivity measures, Computers in biology and medicine, 105 (2019) 1-15.
[50] D. Sengupta, P. Gupta, A. Biswas, A survey on mutual information based medical image registration algorithms, Neurocomputing, 486 (2022) 174-188.
[51] L. Gong, H. Wang, C. Peng, Y. Dai, M. Ding, Y. Sun, X. Yang, J. Zheng, Non-rigid MR-TRUS image registration for image-guided prostate biopsy using correlation ratio-based mutual information, Biomedical engineering online, 16(1) (2017) 1-21.
[52] H. Rivaz, Z. Karimaghaloo, D.L. Collins, Self-similarity weighted mutual information: a new nonrigid image registration metric, Medical image analysis, 18(2) (2014) 343-358.
[53] Y. Fu, Y. Lei, T. Wang, W.J. Curran, T. Liu, X. Yang, Deep learning in medical image registration: a review, Physics in Medicine & Biology, 65(20) (2020) 20TR01.
[54] R.W. So, A.C. Chung, Multi-modal non-rigid image registration based on similarity and dissimilarity with the prior joint intensity distributions, in: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2010, pp. 368-371.
[55] S. Jabari, M. Rezaee, F. Fathollahi, Y. Zhang, Multispectral change detection using multivariate Kullback-Leibler distance, ISPRS Journal of Photogrammetry and Remote sensing, 147 (2019) 163-177.
[56] R.W. So, A.C. Chung, A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya Distances, Pattern Recognition, 62 (2017) 161-174.
[57] X. Chen, X. Wang, K. Zhang, K.-M. Fung, T.C. Thai, K. Moore, R.S. Mannel, H. Liu, B. Zheng, Y. Qiu, Recent advances and clinical applications of deep learning in medical image analysis, Medical Image Analysis, (2022) 102444.
[58] N. Zhu, M. Najafi, B. Han, S. Hancock, D. Hristov, Feasibility of image registration for ultrasound-guided prostate radiotherapy based on similarity measurement by a convolutional neural network, Technology in cancer research & treatment, 18 (2019) 1533033818821964.
[59] M. Blendowski, L. Hansen, M.P. Heinrich, Weakly-supervised learning of multi-modal features for regularised iterative descent in 3D image registration, Medical image analysis, 67 (2021) 101822.
[60] B.D.d. Vos, F.F. Berendsen, M.A. Viergever, M. Staring, I. Išgum, End-to-end unsupervised deformable image registration with a convolutional neural network, in: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, 2017, pp. 204-212.
[61] G. Balakrishnan, A. Zhao, M.R. Sabuncu, J. Guttag, A.V. Dalca, VoxelMorph: a learning framework for deformable medical image registration, IEEE transactions on medical imaging, 38(8) (2019) 1788-1800.
[62] Y. Zheng, S. Jiang, Z. Yang, Deformable registration of chest CT images using a 3D convolutional neural network based on unsupervised learning, Journal of Applied Clinical Medical Physics, 22(10) (2021) 22-35.
[63] Y. Lei, Y. Fu, T. Wang, Y. Liu, P. Patel, W.J. Curran, T. Liu, X. Yang, 4D-CT deformable image registration using multiscale unsupervised deep learning, Physics in Medicine & Biology, 65(8) (2020) 085003.
[64] G.A. Benvenuto, M. Colnago, W. Casaca, Unsupervised Deep Learning Network for Deformable Fundus Image Registration, in: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2022, pp. 1281-1285.
[65] S.K. Zhou, H. Greenspan, C. Davatzikos, J.S. Duncan, B. Van Ginneken, A. Madabhushi, J.L. Prince, D. Rueckert, R.M. Summers, A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises, Proceedings of the IEEE, 109(5) (2021) 820-838.
[66] H. Siebert, L. Hansen, M.P. Heinrich, Learning a Metric for Multimodal Medical Image Registration without Supervision Based on Cycle Constraints, Sensors, 22(3) (2022) 1107.