[1] A. Barbadekar, P. Kulkarni, A survey of face recognition from sketches, International Journal of Latest Trends in Engineering and Technology (IJLTET), 6(3) (2016) 150-158.
[2] S. Klum, H. Han, A.K. Jain, B. Klare, Sketch based face recognition: Forensic vs. composite sketches, in: 2013 international conference on biometrics (ICB), IEEE, 2013, pp. 1-8.
[3] X. Tang, X. Wang, Face sketch synthesis and recognition, in: Proceedings Ninth IEEE International Conference on Computer Vision, IEEE, 2003, pp. 687-694.
[4] X. Tang, X. Wang, Face sketch recognition, IEEE Transactions on Circuits and Systems for video Technology, 14(1) (2004) 50-57.
[5] X. Wang, X. Tang, Face photo-sketch synthesis and recognition, IEEE transactions on pattern analysis and machine intelligence, 31(11) (2008) 1955-1967.
[6] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of gans for improved quality, stability, and variation, arXiv preprint arXiv:1710.10196, (2017).
[7] T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial networks, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 4401-4410.
[8] M. Zhang, J. Zhang, Y. Chi, Y. Li, N. Wang, X. Gao, Cross-domain face sketch synthesis, IEEE Access, 7 (2019) 98866-98874.
[9] N. Wang, D. Tao, X. Gao, X. Li, J. Li, A comprehensive survey to face hallucination, International journal of computer vision, 106 (2014) 9-30.
[10] J. Zhang, N. Wang, X. Gao, D. Tao, X. Li, Face sketch-photo synthesis based on support vector regression, in: 2011 18th IEEE International Conference on Image Processing, IEEE, 2011, pp. 1125-1128.
[11] N. Wang, D. Tao, X. Gao, X. Li, J. Li, Transductive face sketch-photo synthesis, IEEE transactions on neural networks and learning systems, 24(9) (2013) 1364-1376.
[12] N. Wang, X. Gao, D. Tao, X. Li, Face sketch-photo synthesis under multi-dictionary sparse representation framework, in: 2011 Sixth International Conference on Image and Graphics, IEEE, 2011, pp. 82-87.
[13] X. Gao, N. Wang, D. Tao, X. Li, Face sketch–photo synthesis and retrieval using sparse representation, IEEE Transactions on circuits and systems for video technology, 22(8) (2012) 1213-1226.
[14] C. Peng, X. Gao, N. Wang, D. Tao, X. Li, J. Li, Multiple representations-based face sketch–photo synthesis, IEEE transactions on neural networks and learning systems, 27(11) (2015) 2201-2215.
[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, Advances in neural information processing systems, 27 (2014).
[16] Z. Yongxin, A survey of image to image translation with gans, (2020).
[17] P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1125-1134.
[18] J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 2223-2232.
[19] Z. Yi, H. Zhang, P. Tan, M. Gong, Dualgan: Unsupervised dual learning for image-to-image translation, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 2849-2857.
[20] L. Wang, V. Sindagi, V. Patel, High-quality facial photo-sketch synthesis using multi-adversarial networks, in: 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018), IEEE, 2018, pp. 83-90.
[21] W. Chao, L. Chang, X. Wang, J. Cheng, X. Deng, F. Duan, High-fidelity face sketch-to-photo synthesis using generative adversarial network, in: 2019 IEEE International Conference on Image Processing (ICIP), IEEE, 2019, pp. 4699-4703.
[22] H.-Y. Lee, H.-Y. Tseng, Q. Mao, J.-B. Huang, Y.-D. Lu, M. Singh, M.-H. Yang, Drit++: Diverse image-to-image translation via disentangled representations, International Journal of Computer Vision, 128 (2020) 2402-2417.
[23] O. Nizan, A. Tal, Breaking the cycle-colleagues are all you need, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 7860-7869.
[24] U. Osahor, H. Kazemi, A. Dabouei, N. Nasrabadi, Quality guided sketch-to-photo image synthesis, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2020, pp. 820-821.
[25] Y. Lin, S. Ling, K. Fu, P. Cheng, An identity-preserved model for face sketch-photo synthesis, IEEE Signal Processing Letters, 27 (2020) 1095-1099.
[26] J. Zheng, W. Song, Y. Wu, R. Xu, F. Liu, Feature encoder guided generative adversarial network for face photo-sketch synthesis, IEEE Access, 7 (2019) 154971-154985.
[27] M. Zhu, J. Li, N. Wang, X. Gao, A deep collaborative framework for face photo–sketch synthesis, IEEE transactions on neural networks and learning systems, 30(10) (2019) 3096-3108.
[28] J. Yu, X. Xu, F. Gao, S. Shi, M. Wang, D. Tao, Q. Huang, Toward realistic face photo–sketch synthesis via composition-aided GANs, IEEE transactions on cybernetics, 51(9) (2020) 4350-4362.
[29] Y. Fang, W. Deng, J. Du, J. Hu, Identity-aware CycleGAN for face photo-sketch synthesis and recognition, Pattern Recognition, 102 (2020) 107249.
[30] S.-Y. Chen, W. Su, L. Gao, S. Xia, H. Fu, Deep generation of face images from sketches, arXiv preprint arXiv:2006.01047, (2020).
[31] Y. Li, X. Chen, B. Yang, Z. Chen, Z. Cheng, Z.-J. Zha, Deepfacepencil: Creating face images from freehand sketches, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 991-999.
[32] E. Collins, R. Bala, B. Price, S. Susstrunk, Editing in style: Uncovering the local semantics of gans, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5771-5780.
[33] Y. Shen, J. Gu, X. Tang, B. Zhou, Interpreting the latent space of gans for semantic face editing, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 9243-9252.
[34] T. Wang, T. Zhang, B. Lovell, Faces a la carte: Text-to-face generation via attribute disentanglement, in: Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2021, pp. 3380-3388.
[35] E. Richardson, Y. Alaluf, O. Patashnik, Y. Nitzan, Y. Azar, S. Shapiro, D. Cohen-Or, Encoding in style: a stylegan encoder for image-to-image translation, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 2287-2296.
[36] R. Abdal, Y. Qin, P. Wonka, Image2stylegan: How to embed images into the stylegan latent space?, in: Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 4432-4441.
[37] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila, Analyzing and improving the image quality of stylegan, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 8110-8119.
[38] R. Abdal, Y. Qin, P. Wonka, Image2stylegan++: How to edit the embedded images?, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 8296-8305.
[39] A. Tewari, M. Elgharib, F. Bernard, H.-P. Seidel, P. Pérez, M. Zollhöfer, C. Theobalt, Pie: Portrait image embedding for semantic control, ACM Transactions on Graphics (TOG), 39(6) (2020) 1-14.
[40] R. Saha, B. Duke, F. Shkurti, G.W. Taylor, P. Aarabi, Loho: Latent optimization of hairstyles via orthogonalization, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1984-1993.
[41] Y. Shen, C. Yang, X. Tang, B. Zhou, Interfacegan: Interpreting the disentangled face representation learned by gans, IEEE transactions on pattern analysis and machine intelligence, 44(4) (2020) 2004-2018.
[42] J. Zhu, Y. Shen, D. Zhao, B. Zhou, In-domain gan inversion for real image editing, in: European conference on computer vision, Springer, 2020, pp. 592-608.
[43] K.M. Lewis, S. Varadharajan, I. Kemelmacher-Shlizerman, Tryongan: Body-aware try-on via layered interpolation, ACM Transactions on Graphics (TOG), 40(4) (2021) 1-10.
[44] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 815-823.
[45] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014).
[46] O.M. Parkhi, Andrea Vedaldi et Andrew Zisserman,«, Deep face recognition, (2015).
[47] Q. Cao, L. Shen, W. Xie, O.M. Parkhi, A. Zisserman, Vggface2: A dataset for recognising faces across pose and age, in: 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018), IEEE, 2018, pp. 67-74.
[48] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), Ieee, 2005, pp. 886-893.
[49] D.E. King, Dlib-ml: A machine learning toolkit, The Journal of Machine Learning Research, 10 (2009) 1755-1758.
[50] A. Martinez, R. Benavente, The ar face database: Cvc technical report, 24, (1998).
[51] L. Panabee, Ai picture colorizer, in, 2021.
[52] ImageColorizer, in, 2021, pp. Colourise your black and white photos.
[53] Photomyne Ltd, in, 2020, pp. Magical b&w photo and video colorization.