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ABSTRACT: The purpose of automated negotiations, as a novel field of study in Artificial Intelligence, 
is focused on autonomous agents that can appear as humans’ intelligent representatives, attend 
negotiations with other agents, and attain acceptable outcomes. The so-called automated negotiating 
agents are implemented such that they can beat as many opponents as possible in different kinds of 
domains. Like what happens in our daily negotiations, agents in automated negotiations do not reveal 
their preferences explicitly. Numerous research studies have heretofore accentuated that an opponent 
model would be a great salvation to reduce this uncertainty, since it can be of much assistance in making 
wiser decisions in the next steps, reaching ideal eventual utility, and more satisfaction, accordingly. 
Although most opponents in our world have single-peaked preferences, the functionality of negotiating 
agents in modeling single-peaked opponents has not been studied. Gaussian agents are one important 
sort of single-peaked agents that utilize the Gaussian function to ascribe the ranking of each negotiation 
item. The Gaussian opponent’s bliss point estimation is of high importance during a negotiation. 
Therefore, we first proposed a variety of Gaussian bidding agents and then focused on how accurately 
Automated Negotiating Agents Competition (ANAC) attendees during 2010-2019 would model these 
bidder agents. The results of our experiments revealed that existing ANAC agents are performing well 
regarding individual utility and social welfare on average, but they are poor in modeling Gaussian 
negotiating bidding agents.
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1- Introduction
Nowadays, with the expansion of the Internet, there is a 

tremendous desire to make time-consuming and tiring tasks 
automated. One of these tasks is negotiation which refers to the 
offer exchange between some parties to reach an agreement 
[1]. Negotiation is practical in a myriad of situations amongst 
which we can refer to daily shopping as well as international 
decision-making [2]. Automated negotiation has received 
high attention in diverse disciplines including economics, 
artificial intelligence, politics, management, and e-commerce 
[3, 4]. An automated negotiation usually includes two or 
more automated agents that negotiate under a specified 
turn-taking protocol for a finite amount of time in bilateral 
or multilateral negotiations, respectively [5-7]. Agents are 
autonomous and hence, have control over their behavior 
as well as their internal state [8-10]. Despite game theory 
in which the alternatives in joint outcome space and their 
respective utilities to all parties are known to all participants, 
in automated negotiations, the utilities corresponding to the 
joint known space of alternatives are private information 
to each party [11]. Even in Bayesian games agents interact 
through imperfect but still complete information. In another 

field of study, group decision-making, the realized votes of 
the group members to known alternatives are aggregated into 
a social choice [12, 13], which again differs from negotiation 
encountering in which the problem is pertinent to each agent 
for what to bid and when to accept. In automated negotiations, 
the agent is not aware of their opponents’ information space. 
Such an agent is programmed once, attends a negotiation to 
fulfill its owner’s needs, makes offers and counter-offers, 
and none of the negotiation steps includes direct human 
supervision or intervention. 

The Automated Negotiating Agents Competition (ANAC) 
[14] is an international event that aims to advance automated 
negotiations by holding annual competitions and rewarding 
the winners. Attendees from all around the world ought to 
implement their agents according to the BOA architecture 
[15] which constitutes the initialism of the Bidding strategy, 
Opponent model, and Acceptance strategy. The Bidding 
strategy decides what to bid when the opponent’s turn 
approaches, while the Opponent model creates a model of the 
opponent’s features, and the Acceptance strategy decides if 
the agent should reject or accept the opponent’s received bid. 
Simulating real-world cases, the agents are interdicted from 
explicitly exposing their preferences. This is mainly done to 
reduce communication costs and avoid agents’ exploitation *Corresponding author’s email: fnasiri@eng.ui.ac.ir
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of each other. In this regard, every agent needs a proper 
opponent model to predict some attributes of its opponent 
[16-18]. In addition to the bidding strategy and acceptance 
strategy, opponent modeling is also private. 

In automated negotiations, agents utilize 1) Bayesian 
or 2) frequency-based opponent models. Bayesian models 
rely upon strong hypotheses about the opponent’s behavior 
and utilize Bayes’ rule to update and hence, decrease them 
during negotiation. However, it is not wise to rely upon such 
assumptions when the opponents’ preferences are not known. 
Frequency-based models consider how the received bids’ 
weights and evaluation functions’ values change and estimate 
their utility, accordingly. Therefore, ANAC attendees often 
utilize methods that enable their agents to beat as many 
opponents as possible to win the competition. 

Single-peaked preferences, as a salient sort of preferences, 
have been studied in different disciplines such as mathematics 
[19], economics [20], artificial intelligence [21], etc. A 
single-peaked agent prefers one alternative (the peak) most 
and it gives the agent the highest satisfaction e.g. he/she likes 
the color blue more than other colors. Such agents utilize a 
single-peaked function to rank negotiation items. The single-
peaked utility is also among the functions that are considered 
for SLA (service level agreement) using negotiation 
for allocating resources [22]. Although some mediated 
negotiations evaluated the social surplus when the agents’ 
preferences are single-peaked [23], according to the ANAC 
repository [24] and our investigations, the present study is 
specifically concerned about the design and implementation 
of BOA agents with single-peaked preferences as well as 
comparing other agents’ capability toward modeling single-
peaked preferences in automated negotiations. Therefore, we 
have utilized the Gaussian function (due to its capability in 
producing diverse single-peaked shapes) to create 27 single-
peaked bidder agents.  Afterward, we examine the efficiency 
as well as the accuracy of 14 opponent models extracted 
from the agents of ANAC 2010-2019 in confronting the 
Gaussian bidding agents using experiments utilized in Zafari 
and Nassiri-Mofakham [1]. The results of these experiments 
reveal that the most accurate opponent model is a Bayesian 
one, while the opponent models that surpassed in individual 
utility and social welfare are frequency-based.

In this regard, Section 2 elucidates single-peaked 
preferences in the previous studies. Sections 3 and 4 describe 
prerequisite concepts, Section 5 discusses the experimental 
setups for accuracy as well as performance experiments, and 
Section 6 illustrates the experiments’ results. Finally, Section 
7 concludes our work.

2- Literature Review
In the previous paper [25], we investigated winner 

agents of ANAC in modeling single-peaked agents in an 
experimental approach without getting into details. The 
present paper extends it by rendering comprehensive details 
of the problem, approach, experiments, and results.

Only a few automated negotiation studies have been 
conducted on the matter of single-peaked agents. Ito and Klein 

[23] focus on designing nonlinear multi-issue negotiating 
protocols rather than evaluating the agents’ opponent models. 
Klein et al. [26] introduce evaluation functions as a part of the 
bidding strategies of negotiating agents and test the agents’ 
bidding behaviors like those in the prisoner’s dilemma game 
under the developed protocols. They are the agents with 
hill-climbing and simulated annealing methods to be able to 
search the optimum, the peak, in their own single- or multi-
peak utility spaces. They also arm these agents with opponent 
modeling to find the type of counterparty bidding, climbing, 
or annealing. These protocols and agents have been the basis 
for ANAC protocols [14] and classic agents in the repository 
[24]. 

However, there has been copious research in the area 
of single-peaked preferences’ applications in different 
disciplines. In the following, we will explicate some of them.

One routine task conducted in multi-agent systems is 
the aggregation of the preferences to attain a joint decision 
e.g., an aggregate ranking of alternatives. It has been 
revealed that when the setting contains no restriction, we 
will face some inevitable setbacks, amongst which we refer 
to Condorcet cycles. A Condorcet cycle appears when the 
setting entails three alternatives, and the agents’ preferences 
are unrestricted. As a result, it won’t be feasible to attain an 
aggregate ranking consistent with the outcomes of all pairwise 
elections [27]. Some other equally essential problems with 
general settings are stated in Arrow’s impossibility theorem 
[28] and Gibbard-Satterthwaite’s theorem [29], amongst 
which we can refer to the inability to fulfill properties like 
strategy-proofness, voting paradoxes, non-dictatorship, 
unanimity, etc. All of these problems are avoidable if there 
exists a restriction on the preferences of agents [27]. The 
most notable such restriction is the one introduced by Black 
[30], known as single-peaked preferences. These preferences 
form the basic tenets of abundant studies in the analytical 
political sciences [31]. Single-peaked preferences are also 
well known for their significant importance in Social Choice 
Theory e.g., in the renowned median voter theorem [32]. This 
theorem states that the equilibrium point of voting is the peak 
of the median voter (the voter whose peak is located in the 
median so that half of the voters have smaller and another 
half have bigger peaks than this value). Another instance 
is fair allocation while preferences are single-peaked, like 
what Juarez et al. conducted. Their research focuses on 
the allocation of a fixed amount of a divisible resource and 
proved that the best solution is using a “uniform rule”. This 
solution maximizes efficiency, envy-freeness, and worst-
case surplus [33]. Beynier and his colleagues’ research 
investigated efficient and fair resource allocation of the 
house market to some agents [34] such that every agent 
has a house. Their research revealed that utilizing a crawler 
would guarantee Pareto optimality, strategy-proofness, and 
individual rationality, as long as the preferences are single-
peaked. Interestingly, Bade’s research [35] showed the same 
results and based on his research, Tamura et al. expressed 
that in resource allocation, the probability distribution of 
allocations a crawler chooses from arbitrary endowments 
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likens to the one selected by  the random priority rule. In the 
case of a cake-cutting problem, which refers to a divisible 
resource (cake) allocation amongst n  agents, Wang et al. 
represented a protocol in a standard model which has linear 
complexity and leads to an envy-freeness solution [36]. Later 
on, Bhardwaj et al. acclaimed that Wang and his colleagues’ 
mechanism suffers from losing a lot of welfare; therefore, 
they introduced some other mechanisms that are also Pareto-
efficient [37]. As for the single-peakedness recognition in 
a preference profile, Fitzsimmons and his colleagues [38] 
investigated incomplete preference profiles. This research 
revealed that the problem of single-peakedness recognition 
for incomplete profiles consisting of partial orders is NP-
complete. In another research related to single-peakedness 
recognition, Escoffier et al. [39] represented a polynomial-
time procedure for arbitrary graphs.

 When an agent is said to have single-peaked preferences, 
it implies that up to a critical point, called the peak, an increase 
in the agent’s endowment raises its welfare; while beyond 
the peak, the opposite is true [40]. For instance, in Fig. 1 
the issue values of negotiation are [ ],  , ,  ,  A B C D E . For 
agent 1, E  is preferred to D , D  is preferred to C , C  is 
preferred to B , and B  is preferred to A , respectively. In the 
case of agent 2,  B  is preferred to C , C  is preferred to D  
(and A ), and D  (and A ) is preferred to E , respectively. 
B  is the peak point for this agent, which is preferred to all 
other values. In other words, having a continuous preference 
relation iR  defined over +  and ip  as a strict preference, 
each iR   has a unique maximum ( )ip R +∈ such that, for 
each pair 

´
,  i ix x ∈ , there is 

´

 i i ix P x  as long as either 
( )

´

i i ix x p R< ≤  or ( )
´

i i ip R x x≤ <  holds [40].

3- Preliminaries
An automated negotiation has a scenario with two or more 

preference profiles, a negotiation domain, and a protocol 
[41]. The role of the protocol is adjusting the interaction 
between agents and it comprises the rules for exchanging 
bids as well as the time [41]. In the present study, we use 
the Alternating Bids Protocol (AOP) [42] in our experiments 
that take place as bilateral negotiations between all agents in 
a tournament style so that every agent plays both sides for 
fair play. Randomly, one of the agents offers a bid and hence, 
initiates the negotiation. Subsequently, the second agent has 
two options: 1) it can reject the bid and make a counteroffer 
or 2) accept it. These agents continue exchanging bids until 
they reach the deadline with no accomplishment or they arrive 
at a compromise. The deadline is specified as either time 
or rounds. In the present work, we measure the deadline as 
rounds. A domain includes all possible bids that negotiating 
agents can make. It consists of negotiation issues and a set of 
all feasible values for every issue. Every domain contains two 
preference profiles or more to be assigned to the negotiating 
agents. Here, Ω denotes the negotiation domain. Every 
preference profile is a private component that determines the 
desirability of issue values from that agent’s point of view. A 
bid is shown as a vector w  and has n  elements as 1, ,  nω ω…  
so that every iw  takes a value from the set { }1, ii imv v  [1]. 
Here, im  refers to the number of all possible values for the 
issue i  so that 1 i n≤ ≤ . Each preference profile is shown 
as ( ) }{ , |w w w Ω∈

 



   and includes a utility function ( )U w  that 
maps every bid w ∈Ω

  to a utility in [ ]0,1 . It should be noted 
that we use the preference profiles that have been utilized in 
ANAC and later on, incorporated into ANAC’s repository (cf. 
5-2). Therefore, every negotiation value has been assigned 

 

Fig. 1. An instance of two single-peaked utility functions 
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a utility in the preference profiles. In the current research, 
ANAC agents utilize the domains’ preference profile without 
applying any change, while our single-peaked agents reassign 
a new utility to every negotiation value based on the Gaussian 
utility function they are equipped with.

In multi-issue negotiations, the agents apply linear-
additive utility functions to calculate the relative utility of a 
bid [43]. Accordingly, every issue has an evaluation function 
and a weight that shows its relative importance. All issue 
weights must add up to 1. In more detail, for every bid, we 
denote the set of weights as iλ , the evaluation function of 
each issue value iω  as ( )i ieval ω , and 1 i n≤ ≤ . As such, 
the linear-additive utility function is calculated as illustrated 
in the literature as follows [44, 45]:

𝑈𝑈(�⃗⃗�𝑤 ) = ∑  𝜆𝜆𝑖𝑖 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖(𝜔𝜔𝑖𝑖)𝑛𝑛
𝑖𝑖=1 .    (1) 

 

𝑓𝑓(𝑥𝑥, 𝜔𝜔, 𝑝𝑝, 𝛼𝛼) = 

1
𝜔𝜔𝜔𝜔 𝑒𝑒

(𝓍𝓍−𝑝𝑝)2
2𝜔𝜔2 ∫ 𝑒𝑒

−𝑡𝑡2
2 𝑑𝑑𝑑𝑑(𝛼𝛼(𝓍𝓍−𝑝𝑝

𝜔𝜔 ))
−∞     (2) 

 

𝑈𝑈𝑡𝑡 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 . (1 − 𝑑𝑑1 𝐸𝐸⁄ )              (3) 

𝑈𝑈𝑡𝑡 = 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 + (1 − 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 ). 𝑑𝑑  (4) 

 

𝐴𝐴𝑒𝑒𝐴𝐴𝑈𝑈𝑑𝑑𝐴𝐴𝑒𝑒𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴 = ∑ 𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐴𝐴
𝑖𝑖𝑁𝑁

𝑖𝑖=1
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𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑈𝑈𝑑𝑑𝐴𝐴𝑒𝑒𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴,𝐵𝐵 = 

∑ 𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐴𝐴
𝑖𝑖 +𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐵𝐵

𝑖𝑖𝑁𝑁
𝑖𝑖=1
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√∑ (𝑢𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−𝑢𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )2 ∑ (�́�𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−�́�𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )2�⃗⃗⃗�𝜔 ∈Ω�⃗⃗⃗�𝜔 ∈Ω

    (7) 
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4- Benchmark Gaussian Bidder Agents
In the experimental analysis of studies in opponent 

modeling of automated negotiating agents, researchers need 
benchmark agents that either bid (Fig. 2a) or bid and decide to 
accept a bid (Fig. 2b), to assess the performance and accuracy 
of their models. 

Here, we provide specific types of these two benchmark 
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 (2)

where, ω  refers to scale, and p  and α  denote location 
(of peak) and skewness (or shape), respectively. This function 
(Eq. 2) can produce both symmetric and asymmetric shapes 
based on three major parameters by changing the value of α
. Positive and negative values for α  respectively cause right-
skewness and left-skewness while for 0α = , we will have a 
(normal) Gaussian shape. In the present research, we utilize 
symmetric shapes produced by the Gaussian function.

Here, when there is more than one issue, we utilize the 
single-peaked utility function on all issue values to determine 
their utility and make all issues single-peaked. This Gaussian 
utility function is embedded in the Bidding and Acceptance 
strategies of B and BA Gaussian Benchmark bidding agents 
(cf. Fig. 2a and 2b).

4- 1- Single-Peaked Bidding Strategy of B and BA Agents
We need to train the agents under the fair and same 

conditions to make sure that the results and comparisons 
we get from their opponent models’ evaluation regarding 
performance measures are fair and reliable. To this end, the 
benchmark agents must be armed with non-adaptive bidding 
strategies in performance as well as accuracy experiments, or 
else their bidding strategy changes according to the strategy 

 

 

 

Fig. 2. The architecture of benchmark bidding agents for evaluating opponent model of counterparties: a) B: 
utilizing  Bidding Strategy component, b) BA: utilizing Bidding Strategy and Acceptance Strategy components 

(adapted from [1]). 
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of the opponent agents and hence, produces incongruous 
training data.

We have used three types of bidding strategies from three 
general strategy families as follows:

Concession strategies: In such strategies, a target utility is 
calculated by Eq. (3) [46]:

𝑈𝑈(�⃗⃗�𝑤 ) = ∑  𝜆𝜆𝑖𝑖 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖(𝜔𝜔𝑖𝑖)𝑛𝑛
𝑖𝑖=1 .    (1) 

 

𝑓𝑓(𝑥𝑥, 𝜔𝜔, 𝑝𝑝, 𝛼𝛼) = 

1
𝜔𝜔𝜔𝜔 𝑒𝑒

(𝓍𝓍−𝑝𝑝)2
2𝜔𝜔2 ∫ 𝑒𝑒

−𝑡𝑡2
2 𝑑𝑑𝑑𝑑(𝛼𝛼(𝓍𝓍−𝑝𝑝

𝜔𝜔 ))
−∞     (2) 

 

𝑈𝑈𝑡𝑡 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 . (1 − 𝑑𝑑1 𝐸𝐸⁄ )              (3) 

𝑈𝑈𝑡𝑡 = 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 + (1 − 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 ). 𝑑𝑑  (4) 

 

𝐴𝐴𝑒𝑒𝐴𝐴𝑈𝑈𝑑𝑑𝐴𝐴𝑒𝑒𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴 = ∑ 𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐴𝐴
𝑖𝑖𝑁𝑁

𝑖𝑖=1
𝑁𝑁 ,  (5) 

 

𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑈𝑈𝑑𝑑𝐴𝐴𝑒𝑒𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴,𝐵𝐵 = 

∑ 𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐴𝐴
𝑖𝑖 +𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐵𝐵

𝑖𝑖𝑁𝑁
𝑖𝑖=1

2𝑁𝑁   (6) 

 

𝑑𝑑𝑝𝑝(𝑢𝑢𝑂𝑂𝑂𝑂, �́�𝑢𝑂𝑂𝑂𝑂) = 

∑ (𝑢𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−𝑢𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )�⃗⃗⃗�𝜔 ∈Ω (�́�𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−�́�𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )

√∑ (𝑢𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−𝑢𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )2 ∑ (�́�𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−�́�𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )2�⃗⃗⃗�𝜔 ∈Ω�⃗⃗⃗�𝜔 ∈Ω
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According to concession strategies, the agent commences 
the negotiation with a high-utility bid and gradually concedes 
to its reservation value (which refers to the least favorable 
point at which the agent will accept an agreement). Here, 
E  is the concession rate that determines the speed of 
concession, and maxP  refers to the highest utility bid in the 
agent’s preference profile. When 1E ≥ , the agent concedes 
quickly to the reservation value (also called a Concede 
bidding strategy), while for 0 1E< < , the agent concedes at 
the final rounds of the negotiation (Boulware bidding strategy 
in other words) [1].

Concession strategies with an offset: They resemble 
concession strategies, but differ in one case which is starting 
the negotiation with a bid whose utility is lower than the best 
bid.

Non-concession strategies: These strategies start the 
negotiation with a low-utility bid and gradually increase it 
to the highest-utility bid 1maxP = . The target utility in such 
strategies is calculated according to Eq. (4) [46].
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 (4)

4- 2- Single-peaked acceptance strategy of BA agents
In the performance experiment (cf. Section 6.1), agents 

must reach an agreement. In that case, we will be capable of 

analyzing the agreement in terms of performance measures. 
To do so, agents must be armed with an acceptance strategy. 
Instead of more complex acceptance strategies [47], like 
ANAC experiments, a simple strategy entitled nextAC  has 
been utilized for the Benchmark single-peaked bidding 
agents. This is done to make sure the negotiations will finish. 
According to nextAC , an agent accepts the opponent’s offer 
if its utility is equal to or greater than the bid the agent is 
currently going to offer. Instead of nextAC , any other rational 
acceptance strategy is permitted. Rationality means that 
agents ought to prefer more utility to less.

4- 3- No model single-peaked B and BA agents
Again as was described in Section 4-1, the benchmark 

agents are devoid of opponent models to make sure the 
sequence of bids an agent offers remains unchanged. 
Therefore, to assure fairness in both performance and 
accuracy experiments, Benchmark single-peaked bidding 
agents do not contain opponent models.

5- Experiment Setting
This section describes the benchmark bidder agents, 

opponent agents, negotiation domains, and evaluation metrics 
we used in the experiments. 

5- 1- Gaussian benchmark bidders
Using 0α =  in Eq. (2), we will have 3 distinct symmetric 

groups of benchmark agents. The combination of these 
agents with 9 bidding strategies (cf. Section 4), engenders 
27 Gaussian benchmark agents (Table 1). We utilize E  
= 0.1, 1, 2, maxP  = 0.7, 0.8, 0.9, and minP = 0.25, 0.5, 0.75 
for Conceder (Eq. 3, 1maxP = ), Offset-based (Eq. 3, 1E =
) and Non-Conceder (Eq. 4, 1maxP = ) bidding strategies, 
respectively. They are depicted in Fig. 3.

5- 2- Opponent Agents
We need some agents to confront our single-peaked 

Gaussian agents and assess their opponent models’ capability 
in terms of performance and accuracy. In order to do so, we 

Table 1. Gaussian bidder agentsTable 1. Gaussian bidder agents 

Type 1 2 3 
Name Left_Half Right_Half Middle 

Parameters w 0.01 0.04 0.005 
p first value last value median 

Bidding Strategy 
conceder with 𝐸𝐸 = 0.1, 1, 2 

offset-based with  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  = 0.7, 0.8, 0.9 
non-conceder with 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚= 0.25, 0.5, 0.75 

Acceptance Strategy 𝐴𝐴𝐴𝐴𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 
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utilized six first superior agents who attended ANAC during 
2010-2019. All of these agents’ opponent models can estimate 
the preferences of their opponents. Needless to say, opponent 
models may predict other attributes of an opponent, but 
since the present study is concerned about preferences, we 
only extracted the ones that have this capability. All agents 
with this capability (14 agents) are listed in Table 2. They 
utilize either frequency-based or Bayesian (cf. Introduction) 
opponent models. They are as follows:

IAMHaggler [29]: It is an efficient implementation of 
Scalable model so that, unlike the Scalable model, it has 
access to the utility of bids from the opponent’s viewpoint

Hardheaded [30]: It assesses the value of evaluation 
functions and issue weights according to the number of times 
they appear in the opponent’s bids and their value changes, 
respectively.

CUHKAgent [31]: This model assesses the value of 
evaluation functions based on the number of times they 
appear in the opponent’s consecutive bids. it utilizes the first 
100 unique bids in its estimations and considers the issue 
weights to be uniform.

AgentLG [28]: It assesses the value of evaluation 
functions based on the number of times they appear in the 
opponent’s consecutive bids. Like CUHKAgent, this model 
also considers the issue weights to be uniform.

Negotiator [32]: It is similar to IAMHaggler, but it utilizes 
different parameters for the opponent’s concession function.

The Fawkes [28]: This model assesses the value of 
evaluation functions based on their incidence in the opponent’s 
bids as many other frequency models. In the case of the issue 
weights estimation, it considers the number of times each 
issue’s value changes in the consecutive bids. This model 
resembles InoxAgent’s opponent model in many facets. 
However unlike InoxAgent, in the current opponent model, 
the last received bid is compared with the first received bid 
from the opponent to evaluate an issue’s change.

InoxAgent [28]: Just as in many other frequency opponent 

models, this model assesses the value of evaluation functions 
based on their incidence in the opponent’s bids. Accordingly, 
the more important an issue is, the less probable its value 
would change. This model compares the two last received 
bids from the opponent to evaluate an issue’s change.

RandomDance [33]: This model doesn’t estimate issue 
weights and solely focuses on each value’s incidence to 
estimate the opponent’s preference profile.

AgentBuyogV2 [34]: This model surmises that the older 
and more frequent values are of a higher evaluation. In this 
regard, all of the issues are assigned the same weight. Then 
the number of unchanged values during multiple bids is 
calculated and a predefined constant is added to their issue 
weights. Consequently, to reduce this predefined constant, it 
is multiplied by the remaining time of the negotiation. 

AgreeableAgent2018 [35]: Every evaluation value is 
calculated according to its incidence in the opponent’s bids. 
In the case of each issue weight, the standard deviation of 
each issue is calculated.

Group Y: The number of times each value recurs in 
the received bids is considered to estimate the opponent’s 
preference profile.

FSEGA2019 [36]: This opponent model is the improved 
version of   the Scalable model so that it regards the time 
limitations of ANAC and therefore, ameliorates the learning 
process.

HardDealer: It creates a hypothesis space of different 
permutations of negotiation issues. Afterward, the probability 
of every hypothesis is calculated according to the distance 
between the target utility and the computed utility by the 
opponent model. After at least two bids are received from the 
opponent, the opponent model is updated.

Group1 BOA: This model has been inspired by 
HardHeaded, but has a main difference which is the way of 
increasing issue weights. In the current opponent model, the 
possible range of change for every issue is calculated and 
normalized to be considered as the issue’s weight.

 
Fig. 3. Gaussian utility functions benchmarked in this study (per a sample issue). 
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All of the experiments have been conducted at the latest 
version of Genius (a Java-based General Environment for 
Negotiation with Intelligent multi-purpose Usage Simulation) 
[48]. These agents utilize the predefined embedded utility 
function as well as the reservation value (RV) that exists in 
the domain. Needless to say, as the RV increases, the utility 
space of the agent tends to shrink. As a result, the agent 
becomes more and more greedy; as defined below Eq. (3), RV 
describes the minimum possible utility that the agent accepts.

In the performance assessment, these agents boast all 
BOA components, while the single-peaked agents are devoid 
of the opponent model (Fig. 4a). What these agents bid or 
accept is not of concern. Since these agents also must bid 
or accept when it is their turn, we simply arm them with the 

nextAC  acceptance strategy and conceder bidding strategy 
with E  = 0.1, 1, 2, and 1maxP =  and as ascribed in Eq. (3). 

As regards the accuracy assessment, we need an equal 
number of exchanged offers in all negotiation sessions (Fig. 

4b). As such, we drop the existing agents’ acceptance strategy 
in the experiments. Since these agents’ bidding strategy has 
no effect on the process of opponent modeling, we can choose 
any arbitrary bidding strategy for them.

5- 3- Negotiation Domains
The single-peaked agents utilize the Gaussian function 

to rate the negotiation items. Therefore, we need monotonic 
domains to correspond with our purpose. In this regard, we 
extracted six monotonic domains from the Genius repository. 
These domains differ in size (Table 3), are devoid of discount, 
and their RV  is set to 0 . They are as follows: 

Barter: This small domain concerns exchanging a certain 
amount of three products. Every product has four, five, and 
four values respectively. Therefore, the aggregate number of 
possible bids is 80 [56].

Itex vs Cypress: It is a small domain that concerns the 
negotiation between representatives of Itex (manufacturer of 

Table 2. List of superior agents who attended ANAC 2010-2019

 

Table 2. List of superior agents who attended ANAC 2010-2019 

Rank Year Opponent Model Agent Name Number 

4 2010 Bayesian IAMHaggler [49] 1 

1 2011 Frequency Hardheaded [50] 2 

1 2012 Frequency CUHKAgent [51] 3 

2 2012 Frequency AgentLG [48] 4 

3 2012 Bayesian Negotiator [52] 5 

1 2013 Frequency TheFawkes [48] 6 

4-5 2013 Frequency InoxAgent [48] 7 

3 2015 Frequency RandomDance [53] 8 

5 2015 Frequency AgentBuyogV2 [54] 9 

1 2018 Frequency AgreeableAgent2018 [17] 10 

6 2018 Frequency Group Y * 11 

2 2019 Bayesian FSEGA2019 [55] 12 

5 2019 Bayesian HardDealer * 13 

6 2019 Frequency Group1 BOA * 14 

* It has not been explained in any other papers. 
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bicycle components) a seller and Cypress (manufacturer of 
bicycles) a buyer. It has four issues such that they have five, 
four, three, and three values respectively. This produces 180 
possible bids in total [57].

Airport Site Selection: It is a medium-sized domain that is 
about deciding where to erect an airport site based upon three 
issues that respectively have ten, seven, and six values. In 
this regard, the aggregate number of feasible bids is 420 [56].

Smart Energy Grid: It is a medium-sized domain that 
concerns energy producers, consumers, and brokers that 
negotiate over four issues. Every issue has five values and 
hence, the aggregate number of possible bids is 625 [58].

Energy Small: It concerns diminishing electricity 
consumption in peak hours so that a representative of 
an electricity distribution company negotiates with a 
representative of a major customer. Energy Small has six 

issues and each issue has five values which produce 15625 
possible bids in total [56]. 

Energy: This domain is a bigger version of the Energy 
Small domain. Energy has eight issues and each issue has 
five values which produce 390625 possible bids in total [56].

5- 4- Evaluation Measures
Here, we apply evaluation measures that also have been 

frequently used in ANAC  for several years. The performance 
of each agent is evaluated using two factors: 1) individual 
utility and 2) social welfare. The individual utility is measured 
as Equation (5) [59]. 
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−∞     (2) 
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Fig. 4. The architecture of the agents whose opponent model is evaluated regarding: a) performance, b) accuracy 
(adapted from [1]). 
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Fig. 4. The architecture of the agents whose opponent model is evaluated regarding: a) per-
formance, b) accuracy (adapted from [1]).
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Here, N  and AAvgUtility  respectively refer to the 
aggregate number of negotiation sessions, and the average 
utility agent A  obtains during N  sessions. i

Autility  shows 
the utility of agent A  in session i .

As for evaluating social welfare, we utilize Equation (6) 
[1]: 

𝑈𝑈(�⃗⃗�𝑤 ) = ∑  𝜆𝜆𝑖𝑖 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖(𝜔𝜔𝑖𝑖)𝑛𝑛
𝑖𝑖=1 .    (1) 

 

𝑓𝑓(𝑥𝑥, 𝜔𝜔, 𝑝𝑝, 𝛼𝛼) = 

1
𝜔𝜔𝜔𝜔 𝑒𝑒

(𝓍𝓍−𝑝𝑝)2
2𝜔𝜔2 ∫ 𝑒𝑒

−𝑡𝑡2
2 𝑑𝑑𝑑𝑑(𝛼𝛼(𝓍𝓍−𝑝𝑝

𝜔𝜔 ))
−∞     (2) 

 

𝑈𝑈𝑡𝑡 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 . (1 − 𝑑𝑑1 𝐸𝐸⁄ )              (3) 

𝑈𝑈𝑡𝑡 = 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 + (1 − 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 ). 𝑑𝑑  (4) 

 

𝐴𝐴𝑒𝑒𝐴𝐴𝑈𝑈𝑑𝑑𝐴𝐴𝑒𝑒𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴 = ∑ 𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐴𝐴
𝑖𝑖𝑁𝑁

𝑖𝑖=1
𝑁𝑁 ,  (5) 

 

𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑈𝑈𝑑𝑑𝐴𝐴𝑒𝑒𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴,𝐵𝐵 = 

∑ 𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐴𝐴
𝑖𝑖 +𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝐵𝐵

𝑖𝑖𝑁𝑁
𝑖𝑖=1

2𝑁𝑁   (6) 

 

𝑑𝑑𝑝𝑝(𝑢𝑢𝑂𝑂𝑂𝑂, �́�𝑢𝑂𝑂𝑂𝑂) = 

∑ (𝑢𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−𝑢𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )�⃗⃗⃗�𝜔 ∈Ω (�́�𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−�́�𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )

√∑ (𝑢𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−𝑢𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )2 ∑ (�́�𝑢𝑂𝑂𝑂𝑂(�⃗⃗⃗�𝜔 )−�́�𝑢𝑂𝑂𝑂𝑂̅̅ ̅̅ ̅̅ )2�⃗⃗⃗�𝜔 ∈Ω�⃗⃗⃗�𝜔 ∈Ω
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so that, N  and ,A BAvgJointUtility  respectively refer to 
the aggregate number of negotiation sessions, and the average 
social welfare for agents ,A B  obtained during N  sessions. 

i
Autility  and i

Butility  respectively show the utility of agents 
A  and B  in session i . 

And eventually, to evaluate the accuracy of each opponent 
model, the Pearson correlation is used (Eq. 7) [1]:
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𝜔𝜔𝜔𝜔 𝑒𝑒

(𝓍𝓍−𝑝𝑝)2
2𝜔𝜔2 ∫ 𝑒𝑒

−𝑡𝑡2
2 𝑑𝑑𝑑𝑑(𝛼𝛼(𝓍𝓍−𝑝𝑝

𝜔𝜔 ))
−∞     (2) 

 

𝑈𝑈𝑡𝑡 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 . (1 − 𝑑𝑑1 𝐸𝐸⁄ )              (3) 

𝑈𝑈𝑡𝑡 = 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 + (1 − 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛 ). 𝑑𝑑  (4) 
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𝑖𝑖=1
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 (7)

where OPu  refers to the real preference profile of the 
opponent, and 

´

OPu   shows the estimated preference profile 
from the opponent model’s point of view. ( )OPu ω  and 

( )
´

OPu ω  ، refer to  the real utility of a bid and  the estimated 
utility of a bid ω



  in the opponent’s preference profile 
respectively.

6- Experiment Interactions and Results
We evaluate opponent agents confronting benchmark 

Gaussian bidders in two distinct experiments. They negotiate 
in different domains that differ in size and issues. Each 
experiment is elucidated in the following.

6- 1- Interactions in Experiment for Assessing Performance
According to Section 5-2, to assess the performance of 

the opponent models regarding individual utility (Eq. 5) as 
well as social welfare (Eq. 6), we need to arm every opponent 
model with 3 sorts of bidding strategy and 1 acceptance 
strategy (Table 2, placed at Side 2 in Fig. 5a). Furthermore, 
each model negotiates over 6 domains (Table 3) with 27 
benchmark agents in Side 1 (Table 1) in 1000 rounds, and 
for both sides. Therefore, for every opponent model, there 
exist 27 6 2  324× × =  sessions. Having 14 opponents 
available, the aggregate number of negotiation sessions is 
324 14 3 1 3608× × = . For every opponent model, the average 
of both individual utility and social welfare in all negotiation 
sessions has been calculated as can be seen in Fig. 6.

6- 2- Interactions in Experiment for Assessing Accuracy
In the accuracy assessment, there are 14 agents (Table 
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Fig.4a 
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Fig.4b 

Incoming Offer 

Offer/Counter-Offer 

Side 1 
(Opponent model is trained) 

Side 2 
(Generates bid instances) 

Fig. 5. Interactions of existing ANAC agents (side A) with benchmark Gaussian agents (side B) in a) performance 
experiment, b) accuracy experiment (adapted from [1]). 
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Fig. 5. Interactions of existing ANAC agents (side A) with benchmark Gaussian agents (side B) in a) perfor-
mance experiment, b) accuracy experiment (adapted from [1]).
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2) on side B of Fig. 5b that negotiate over 6 domains 
(Table 3) with 27 single-peaked agents (Table 1) on side A 
per 5000 rounds. Hence, for each opponent model, there 
are 27 6 1 62× =  sessions and the number of bids used as 
training data is 162 5000  810000× = . Fig. 7 shows the Pearson 
correlation at 11 points in time (with equal intervals) for each 
opponent model and in all sessions. This figure shows how 
every model’s accuracy changes over time.

6- 3- Experiment Results
In the present study, we do not assume any hypothesis. 

Furthermore, we conduct our experiments with a non-random 
dataset such that all encounters in all domains are fairly 
considered. As a result, the statistical significance of the 
results is certain (Also, cf. Sections 4-1 and 5-2, Fig. 2, and 
Fig. 4). All negotiations (cf. Sections 5-1 and 5-2) are bilateral 
and they are executed in the Genius 9.1.13. According to Fig. 
6, Inox and Randomdance outdo their peers in individual 
utility and social welfare (respectively) when they confront 
all Gaussian bidders in all domains. As regards accuracy, 
IAmHaggler outperforms other agents (as shown in Fig. 7). 
However, the results are not satisfactory. The accuracy of 
the opponent models in each of the domains is also depicted 
in Fig. 8. This figure shows that the opponents’ accuracies 
in medium-sized domains are better than in large and small 
domains. Moreover, their accuracies in large domains are 
better than in small domains. Amongst the agents, Fsega was 
not executed in the Energy domain in both experiments and 

the available results are related to 5 domains. The ranks for 
each opponent model regarding individual utility as well as 
social welfare are listed in Table 4. 

7- Conclusion
Single-peaked preferences are common in many real-

world scenarios including competitive negotiations among 
self-interested parties to reach mutually beneficial agreements. 
Automated negotiations facilitate the complexities in making 
decisions about what is the best alternative to bid and when 
is the best time and offer to accept in negotiations over large 
combinatorial domains. To decrease the risk of negotiation 
failure and reach  the best win-win agreement, the automated 
negotiating strategies also include a component to model 
opponents. The present research, as a pioneer one is dedicated to 
evaluating automated negotiating agents’ opponent modeling 
components in modeling single-peaked bidding agents. 
It implements single-peaked preferences in 27 Gaussian 
negotiating bidder agents. Despite ANAC experiments in 
which the agents employ their private negotiation strategies 
but the same utility function embedded in the negotiation 
domain, in this study, the preferences of any bidding agent 
utilize an individual single-peaked utility function rather than 
a general one. We analyzed the capability of ANAC agents 
in fair bilateral negotiation experiments. As a result, two 
frequency-based opponent models, one from ANAC 2015 
and one from ANAC 2019, outdid others in performance 
measures. As for the accuracy measure, a Bayesian opponent 
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Table 4. List of opponent models’ rank in performance experiment’ measures  

 

 

 

Table 4. List of opponent models' rank in performance experiment' measures   

Social Welfare Rank Individual Utility Rank  Agent Name Number 

5 3 IAMHaggler 1 

7 5 Hardheaded 2 

6 3 CUHKAgent 3 

8 4 AgentLG 4 

5 3 Negotiator 5 

4 9 TheFawkes 6 

3 1 InoxAgent 7 

1 11 RandomDance 8 

9 6 AgentBuyogV2 9 

11 7 AgreeableAgent2018 10 

10 10 Group Y 11 

2 2 FSEGA2019 12 

5 3 HardDealer 13 

5 3 Group1 BOA 14 

 

 

Fig. 7. Agents accuracy (cf. Table 2) in modeling Gaussian bidders 
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model from ANAC 2019 showed better results. The results 
of our experiments revealed that the most accurate opponent 
does not necessarily lead to higher performance, since the 
tested opponent models did not show satisfactory results 
for accuracy but showed acceptable results for performance 
measures. Especially, the most accurate opponent models do 
not necessarily lead to higher performance. Therefore,  the 
design and implementation of a more efficient and accurate 
opponent model are recommended. 
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