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between subsystems. To evaluate and perform the effectiveness of the suggested approach, the results 

obtained on the multi-robot system are compared with the results of the predictive control methods of the 

centralized, distributed model, and L1 adaptive control}. 
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1- Preliminaries
1- 1- Key Concepts

Concept I Centralized Control System (CCS): The system 
is considered as a single system and it is assumed that all the 
global information of the system is available and there is only 
one central controller.

Concept II Decentralized Control System (DeCS): The 
system is divided into several subsystems and a separate 
control is considered for each subsystem.

Concept III Hierarchical Control System (HCS): In this 
structure, the system is divided into several subsystems and 
the control is done in a multi-level manner.

Concept IV Distributed Control System (DCS): This 
structure is similar to decentralized control with the difference 
that subsystems interact and exchange information.

Concept V Lasso Regression (LR): LR is a method of 
model adjustment to prevent preprocessing in regression.

1- 2- Introduction
The MPC has absorbed a lot of attention in both applied 

and theoretical areas during the recent decades. It has been 
utilized successfully in different industrial operations [1]. For 
further information, see [2] and the references therein.

In recent years, system size and complexity have 
increased, making centralized control approaches increasingly 

challenging, time-consuming, and impracticable. During 
centralized control, all system parameters are gathered in 
one control unit, in which calculations are made to ensure 
the best operation all around. The method may frequently fail 
when a large-scale system is actually scattered in this way 
[3]. Furthermore, if a certain process step had a challenge or 
failed, the entire system would be shut down.

To prevent issues related to centralized control and 
decrease computational complexity, different algorithms such 
as distributed, hierarchical, and decentralized ones have been 
presented throughout the years. These approaches show that a 
large-scale system is composed of many smaller systems, each 
with a local controller. Several strategies have been suggested 
to divide the initial framework into connected components 
with low coupling; for example, see [4, 5]. In a decentralized 
approach, each component is managed independently, 
whereas other components’ impacts are disregarded or seen as 
model defects or disruptions. There are several decentralized 
MPC methods for coupled systems published in the literature. 
Alessio et al. looked at the level of sub-model decoupling in 
[6] and how it affected the computational load and overall 
system performance while taking input and output constraints 
into account. Vaccarini et al. published a decentralized 
strategy for systems of fast networks in [7], which, despite 
the subsystems’ tight dependence, ensures system stability. 
This approach’s states, output, and input are unrestricted. [8, 
9] also discusses stabilizing decentralized MPC for nonlinear *Corresponding author’s email: imansharifi@aut.ac.ir
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systems.
A control subsystem is taken into consideration for each 

subsystem in distributed techniques. Each agent has the ability 
to interact with others. If the information exchange happened 
more than once throughout the sample period, the process 
would be iterative. Cooperative and Nash-based model 
predictive control, for example [10-13], has been suggested 
via the use of iterative information sharing and a range of 
cost functions. Using both local and transmitted information, 
a cooperative approach solves the overall optimization 
problem by assigning a common objective function to all 
agents that account for all system variables. In this method, 
agents must be completely connected to one another and share 
all information [10]. In a Nash-based algorithm, the Nash 
optimum solution is found by constantly sharing information 
between each agent, which has an objective function that 
depends on local variables [10, 11]. The distributed MPC 
suggested in [13] achieves the centralized MPC optimum 
point. It does this by working together and resolving issues 
in stages. Maestre et al. provided an MPC approach with 
two stages of solution based on game theory [14]. Each 
controller in the first phase resolves its local optimization 
issue and communicates the results to the other controllers. 
To ensure optimum system performance, subsystems select 
the most favorable suboptimal alternative in the second step. 
Following the introduction of a decomposition approach for 
large-scale systems in [15], Camponogara et al. presented 
an MPC approach with distributed communication. Liu and 
Christofides [16] also suggested a distributed MPC based on 
Lyapunov that keeps the closed-loop stability of the original 
system even when shocks happen.

Numerous robust distributed MPC (RD-MPC) strategies 
have also been developed for uncertain large-scale systems 
[17, 18, 19]. The problem’s stability and viability of all 
agents are provided while taking the necessity for robustness 
with external disturbance into consideration, as described 
in [20], which describes a RD-MPC strategy for systems of 
nonlinear. In [21], Shi and Li concentrated on creating RD-
MPC for constrained nonlinear systems with communication 
delays. Based on the method described in [17], Al-Gherwi 
et al. [22] suggested a RD-MPC where agents’ total objective 
function minimizes and gives feedback control to the related 
subsystem. In this case, all system data should be available to 
every agent. It is usually not possible to construct a structure 
that fully describes the system, and even if it were, the 
computations of the method would be very expensive and 
time-consuming. These shortcomings prompt us to develop a 
unique distributed MPC methodology that is equivalent to the 
centralized method in terms of optimality, performance, and 
cost-effectiveness.

In this work, a novel robust-distributed  asso-MPC 
algorithm (called RD-MPC) is suggested for LTV systems in 
the presence of polytopic uncertainty. There are M  state-
coupled subsystems in the system. A RD-LMPC has been 
made to decrease the over limit on the worst-case value of 
the cost function inside the polytope uncertainty. This is 

done by taking into account the polytope uncertainty. This 
method views the control rule of each agent as a distinct state 
feedback form and feedforward interaction. This control 
input both assures the closed-loop system’s quadratic bound 
stability and reduces the undesirable impacts of surrounding 
subsystems. For the suggested LMPC to work, a distributed 
Kalman filter is also made to show predictors and interactions 
for each agent. This filter takes advantage of local data as well 
as network-provided measures from surrounding subsystems. 
In order to assess the efficacy of the proposed approach, it 
was compared to centralized MPC, distributed MPC, and 1  
adaptive control techniques on a multi-robot system.

In light of the above debate, the contribution of the paper 
is as follows:

1. To provide a distributed system global structure with 
connections and polytopic uncertainty.

2. To propose a robust distributed LMPC based on LMI 
for large-scale systems under uncertainty.

3. The distributed LMPC’s control law to directly consist 
of the interaction signals.

4. To solve a multi-robot system using the offered method 
in order to assess the utility and viability of the solution.

2- RD  asso Model Predictive Control
2- 1- Problem Statement

Consider the following linear time-variant system [23]:

( 1) ( ) ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( )

[ ( ), ( )]

x k A k x k B k u k E k w k
y k C k x k v k
A k B k

+ = + +
= +

∈Ω
 (1)

where, xnx ∈ , yny ∈ , unu ∈  represent the state, 
output, and control input vectors, respectively. Measurement 
and process noises are ,w vn nw v∈ ∈  , respectively. The 
polytope Ù  has the discrete-time index k defined as follows:

𝑥𝑥(𝑘𝑘 + 1) =𝐴𝐴(𝑘𝑘)𝑥𝑥(𝑘𝑘)𝐴𝐴(𝑘𝑘)𝑥𝑥(𝑘𝑘)
 

+𝐵𝐵(𝑘𝑘)𝑢𝑢(𝑘𝑘) + 𝐸𝐸(𝑘𝑘)𝑤𝑤(𝑘𝑘),
𝑦𝑦(𝑘𝑘) =𝐶𝐶(𝑘𝑘)𝑥𝑥(𝑘𝑘) + 𝑣𝑣(𝑘𝑘)

[𝐴𝐴(𝑘𝑘), 𝐵𝐵(𝑘𝑘)] ∈ Ω
 

 

Ω = Co⁡{[𝐴𝐴1, 𝐵𝐵1], [𝐴𝐴2, 𝐵𝐵2], … , [𝐴𝐴𝐿𝐿, 𝐵𝐵𝐿𝐿]} (2) 

 

[𝐴𝐴(𝑘𝑘)𝐵𝐵(𝑘𝑘)] = ∑  
𝐿𝐿

𝑙𝑙=1
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Ω = Co⁡{[𝐴𝐴1, 𝐵𝐵1], [𝐴𝐴2, 𝐵𝐵2], … , [𝐴𝐴𝐿𝐿, 𝐵𝐵𝐿𝐿]} (2) 

 

[𝐴𝐴(𝑘𝑘)𝐵𝐵(𝑘𝑘)] = ∑  
𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑙𝑙[𝐴𝐴𝑙𝑙𝐵𝐵𝑙𝑙], ⁡∑  

𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑙𝑙 = 1. (3) 

 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1)⁡= 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐸𝐸𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)

⁡+ ∑  
𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑗𝑗(𝑘𝑘),

⁡= 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐸𝐸𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)
⁡+𝐷𝐷𝑖𝑖(𝑘𝑘)𝑧𝑧𝑖𝑖(𝑘𝑘)

(4) 

 

𝑧𝑧𝑖𝑖(𝑘𝑘)⁡= [𝑥𝑥1𝑇𝑇(𝑘𝑘)…𝑥𝑥𝑖𝑖−1𝑇𝑇 (𝑘𝑘)𝑥𝑥𝑖𝑖+1𝑇𝑇 (𝑘𝑘)…𝑥𝑥𝑀𝑀𝑇𝑇 (𝑘𝑘)]
𝑇𝑇,

𝐷𝐷𝑖𝑖⁡= [𝐴𝐴𝑖𝑖1 …𝐴𝐴𝑖𝑖,𝑖𝑖−1𝐴𝐴𝑖𝑖,𝑖𝑖+1 …𝐴𝐴𝑖𝑖𝑖𝑖]
(5) 

 

 

[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘), 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘), 𝐵𝐵𝑖𝑖(𝑘𝑘)] ∈ Ω𝑖𝑖 = ∑  
𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑖𝑖𝑙𝑙[𝐴𝐴𝑖𝑖𝑖𝑖

𝑙𝑙 , 𝐴𝐴𝑖𝑖𝑖𝑖
𝑙𝑙 , 𝐵𝐵𝑖𝑖𝑙𝑙],

𝑖𝑖 = 1,… ,𝑀𝑀; 𝑗𝑗 = 1,… ,𝑀𝑀; 𝑗𝑗 ≠ 𝑖𝑖,
(6) 

 

 (4)

The neighboring subsystem states that affect on the i -th 
agent are blended linearly to provide the interaction signals (

( ) , , ,w ui in n
i i iz k w u∈ ∈   and x in

ix ∈ ):

𝑥𝑥(𝑘𝑘 + 1) =𝐴𝐴(𝑘𝑘)𝑥𝑥(𝑘𝑘)𝐴𝐴(𝑘𝑘)𝑥𝑥(𝑘𝑘)
 

+𝐵𝐵(𝑘𝑘)𝑢𝑢(𝑘𝑘) + 𝐸𝐸(𝑘𝑘)𝑤𝑤(𝑘𝑘),
𝑦𝑦(𝑘𝑘) =𝐶𝐶(𝑘𝑘)𝑥𝑥(𝑘𝑘) + 𝑣𝑣(𝑘𝑘)

[𝐴𝐴(𝑘𝑘), 𝐵𝐵(𝑘𝑘)] ∈ Ω
 

 

Ω = Co⁡{[𝐴𝐴1, 𝐵𝐵1], [𝐴𝐴2, 𝐵𝐵2], … , [𝐴𝐴𝐿𝐿, 𝐵𝐵𝐿𝐿]} (2) 

 

[𝐴𝐴(𝑘𝑘)𝐵𝐵(𝑘𝑘)] = ∑  
𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑙𝑙[𝐴𝐴𝑙𝑙𝐵𝐵𝑙𝑙], ⁡∑  

𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑙𝑙 = 1. (3) 

 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1)⁡= 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐸𝐸𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)

⁡+ ∑  
𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑗𝑗(𝑘𝑘),

⁡= 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐸𝐸𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)
⁡+𝐷𝐷𝑖𝑖(𝑘𝑘)𝑧𝑧𝑖𝑖(𝑘𝑘)

(4) 

 

𝑧𝑧𝑖𝑖(𝑘𝑘)⁡= [𝑥𝑥1𝑇𝑇(𝑘𝑘)…𝑥𝑥𝑖𝑖−1𝑇𝑇 (𝑘𝑘)𝑥𝑥𝑖𝑖+1𝑇𝑇 (𝑘𝑘)…𝑥𝑥𝑀𝑀𝑇𝑇 (𝑘𝑘)]
𝑇𝑇,

𝐷𝐷𝑖𝑖⁡= [𝐴𝐴𝑖𝑖1 …𝐴𝐴𝑖𝑖,𝑖𝑖−1𝐴𝐴𝑖𝑖,𝑖𝑖+1 …𝐴𝐴𝑖𝑖𝑖𝑖]
(5) 

 

 

[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘), 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘), 𝐵𝐵𝑖𝑖(𝑘𝑘)] ∈ Ω𝑖𝑖 = ∑  
𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑖𝑖𝑙𝑙[𝐴𝐴𝑖𝑖𝑖𝑖

𝑙𝑙 , 𝐴𝐴𝑖𝑖𝑖𝑖
𝑙𝑙 , 𝐵𝐵𝑖𝑖𝑙𝑙],

𝑖𝑖 = 1,… ,𝑀𝑀; 𝑗𝑗 = 1,… ,𝑀𝑀; 𝑗𝑗 ≠ 𝑖𝑖,
(6) 

 

 (5)

Be aware that the j -th agent is a neighbor of the i -th 
agent when 0ijA ≠ . The i -th agent is thought to include 
the following polytopic uncertainties:

𝑥𝑥(𝑘𝑘 + 1) =𝐴𝐴(𝑘𝑘)𝑥𝑥(𝑘𝑘)𝐴𝐴(𝑘𝑘)𝑥𝑥(𝑘𝑘)
 

+𝐵𝐵(𝑘𝑘)𝑢𝑢(𝑘𝑘) + 𝐸𝐸(𝑘𝑘)𝑤𝑤(𝑘𝑘),
𝑦𝑦(𝑘𝑘) =𝐶𝐶(𝑘𝑘)𝑥𝑥(𝑘𝑘) + 𝑣𝑣(𝑘𝑘)

[𝐴𝐴(𝑘𝑘), 𝐵𝐵(𝑘𝑘)] ∈ Ω
 

 

Ω = Co⁡{[𝐴𝐴1, 𝐵𝐵1], [𝐴𝐴2, 𝐵𝐵2], … , [𝐴𝐴𝐿𝐿, 𝐵𝐵𝐿𝐿]} (2) 

 

[𝐴𝐴(𝑘𝑘)𝐵𝐵(𝑘𝑘)] = ∑  
𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑙𝑙[𝐴𝐴𝑙𝑙𝐵𝐵𝑙𝑙], ⁡∑  

𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑙𝑙 = 1. (3) 

 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1)⁡= 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐸𝐸𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)

⁡+ ∑  
𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑗𝑗(𝑘𝑘),

⁡= 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐸𝐸𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)
⁡+𝐷𝐷𝑖𝑖(𝑘𝑘)𝑧𝑧𝑖𝑖(𝑘𝑘)

(4) 

 

𝑧𝑧𝑖𝑖(𝑘𝑘)⁡= [𝑥𝑥1𝑇𝑇(𝑘𝑘)…𝑥𝑥𝑖𝑖−1𝑇𝑇 (𝑘𝑘)𝑥𝑥𝑖𝑖+1𝑇𝑇 (𝑘𝑘)…𝑥𝑥𝑀𝑀𝑇𝑇 (𝑘𝑘)]
𝑇𝑇,

𝐷𝐷𝑖𝑖⁡= [𝐴𝐴𝑖𝑖1 …𝐴𝐴𝑖𝑖,𝑖𝑖−1𝐴𝐴𝑖𝑖,𝑖𝑖+1 …𝐴𝐴𝑖𝑖𝑖𝑖]
(5) 

 

 

[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘), 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘), 𝐵𝐵𝑖𝑖(𝑘𝑘)] ∈ Ω𝑖𝑖 = ∑  
𝐿𝐿

𝑙𝑙=1
 𝜆𝜆𝑖𝑖𝑙𝑙[𝐴𝐴𝑖𝑖𝑖𝑖

𝑙𝑙 , 𝐴𝐴𝑖𝑖𝑖𝑖
𝑙𝑙 , 𝐵𝐵𝑖𝑖𝑙𝑙],

𝑖𝑖 = 1,… ,𝑀𝑀; 𝑗𝑗 = 1,… ,𝑀𝑀; 𝑗𝑗 ≠ 𝑖𝑖,
(6) 

 

 (6)

When a distributed Kalman filter (DKF) is used to 
anticipate the states and interactions that result from distinct 
subsystems, it is expected that a local control subsystem 
would give the proper control input for the concerned agent. 
To estimate the missing variables, the DKF employs both the 
local data and the data supplied by other subsystems across 
the network.

Additionally, the following constraint likely applies to the 
control signal of the i -th subsystem:

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢𝑖𝑖,max
ℎ , ℎ = 1,2, … , 𝑛𝑛𝑢𝑢𝑖𝑖 (7) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1 ∣ 𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) +
𝐵𝐵𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐷𝐷𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (8) 

 

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (9) 

 

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)
ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖. (10) 

 

𝑉𝑉𝑁𝑁𝑜𝑜(𝑞̃𝑞)⁡= min
𝜏𝜏a

 {𝑉𝑉𝑁𝑁(𝑞̃𝑞, 𝜏𝜏a) =̂ 𝐹𝐹(𝑞̃𝑞𝑁𝑁) + ∑  
𝑁𝑁−1

𝑗𝑗=0
 ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎)}

𝑠𝑠. 𝑡𝑡.∶
𝜏𝜏𝑎𝑎𝑎𝑎 ∈ 𝕌𝕌, ⁡𝑞̃𝑞𝑗𝑗 ∈ 𝕏𝕏, ⁡𝑗𝑗 = 0,… ,𝑁𝑁 − 1

(11) 

 

ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎) = 𝑞̃𝑞𝑗𝑗𝑇𝑇𝑄𝑄𝑞̃𝑞𝑗𝑗 + 𝜏𝜏𝑎𝑎𝑎𝑎𝑇𝑇 𝑅𝑅𝜏𝜏𝑎𝑎𝑎𝑎 + ∥∥𝑆𝑆𝜏𝜏𝑎𝑎𝑎𝑎∥∥1, (12) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑖𝑖(𝑘𝑘+𝑙𝑙∣𝑘𝑘)

⁡ 𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁡𝑡𝑡𝑡𝑡
𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)
|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)

ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖.

(13) 

 

 (7)

In the predictive control of the robust distributed model, 
with an infinite horizon, each control agent seeks to reduce 
the overbound on the worst-case value of the cost function. 
The minimization problem is fixed at each iteration, and the 
demands of the problem are satisfied. The following is the 
prediction model for the i -th agent that is utilized to solve 
the LMPC issue since an estimator makes the state values 
accessible [20]:

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢𝑖𝑖,max
ℎ , ℎ = 1,2, … , 𝑛𝑛𝑢𝑢𝑖𝑖 (7) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1 ∣ 𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) +
𝐵𝐵𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐷𝐷𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (8) 

 

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (9) 

 

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)
ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖. (10) 

 

𝑉𝑉𝑁𝑁𝑜𝑜(𝑞̃𝑞)⁡= min
𝜏𝜏a

 {𝑉𝑉𝑁𝑁(𝑞̃𝑞, 𝜏𝜏a) =̂ 𝐹𝐹(𝑞̃𝑞𝑁𝑁) + ∑  
𝑁𝑁−1

𝑗𝑗=0
 ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎)}

𝑠𝑠. 𝑡𝑡.∶
𝜏𝜏𝑎𝑎𝑎𝑎 ∈ 𝕌𝕌, ⁡𝑞̃𝑞𝑗𝑗 ∈ 𝕏𝕏, ⁡𝑗𝑗 = 0,… ,𝑁𝑁 − 1

(11) 

 

ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎) = 𝑞̃𝑞𝑗𝑗𝑇𝑇𝑄𝑄𝑞̃𝑞𝑗𝑗 + 𝜏𝜏𝑎𝑎𝑎𝑎𝑇𝑇 𝑅𝑅𝜏𝜏𝑎𝑎𝑎𝑎 + ∥∥𝑆𝑆𝜏𝜏𝑎𝑎𝑎𝑎∥∥1, (12) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑖𝑖(𝑘𝑘+𝑙𝑙∣𝑘𝑘)

⁡ 𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁡𝑡𝑡𝑡𝑡
𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)
|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)

ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖.

(13) 
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in which ( )ˆ
i

z k n k+  and ( )ˆ
i

x k n k+
 

represent, 

respectively, the vector of surrounding states and the 
estimate of ( )

ˆ
ix k n+  in time step k , both of which 

are given to agent i  by the associated estimator. 
Agent i ’s control signal is consider as follows:

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢𝑖𝑖,max
ℎ , ℎ = 1,2, … , 𝑛𝑛𝑢𝑢𝑖𝑖 (7) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1 ∣ 𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) +
𝐵𝐵𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐷𝐷𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (8) 

 

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (9) 

 

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)
ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖. (10) 

 

𝑉𝑉𝑁𝑁𝑜𝑜(𝑞̃𝑞)⁡= min
𝜏𝜏a

 {𝑉𝑉𝑁𝑁(𝑞̃𝑞, 𝜏𝜏a) =̂ 𝐹𝐹(𝑞̃𝑞𝑁𝑁) + ∑  
𝑁𝑁−1

𝑗𝑗=0
 ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎)}
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𝜏𝜏𝑎𝑎𝑎𝑎 ∈ 𝕌𝕌, ⁡𝑞̃𝑞𝑗𝑗 ∈ 𝕏𝕏, ⁡𝑗𝑗 = 0,… ,𝑁𝑁 − 1

(11) 

 

ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎) = 𝑞̃𝑞𝑗𝑗𝑇𝑇𝑄𝑄𝑞̃𝑞𝑗𝑗 + 𝜏𝜏𝑎𝑎𝑎𝑎𝑇𝑇 𝑅𝑅𝜏𝜏𝑎𝑎𝑎𝑎 + ∥∥𝑆𝑆𝜏𝜏𝑎𝑎𝑎𝑎∥∥1, (12) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑖𝑖(𝑘𝑘+𝑙𝑙∣𝑘𝑘)

⁡ 𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁡𝑡𝑡𝑡𝑡
𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)
|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)

ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖.

(13) 
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where iK  is the online-calculated feed-forward gain of 
the interactive effect and iF  is the feedback output gain. Each 
factor additionally specifies the input condition as follows:

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢𝑖𝑖,max
ℎ , ℎ = 1,2, … , 𝑛𝑛𝑢𝑢𝑖𝑖 (7) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1 ∣ 𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) +
𝐵𝐵𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐷𝐷𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (8) 

 

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (9) 

 

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)
ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖. (10) 

 

𝑉𝑉𝑁𝑁𝑜𝑜(𝑞̃𝑞)⁡= min
𝜏𝜏a

 {𝑉𝑉𝑁𝑁(𝑞̃𝑞, 𝜏𝜏a) =̂ 𝐹𝐹(𝑞̃𝑞𝑁𝑁) + ∑  
𝑁𝑁−1

𝑗𝑗=0
 ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎)}

𝑠𝑠. 𝑡𝑡.∶
𝜏𝜏𝑎𝑎𝑎𝑎 ∈ 𝕌𝕌, ⁡𝑞̃𝑞𝑗𝑗 ∈ 𝕏𝕏, ⁡𝑗𝑗 = 0,… ,𝑁𝑁 − 1

(11) 

 

ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎) = 𝑞̃𝑞𝑗𝑗𝑇𝑇𝑄𝑄𝑞̃𝑞𝑗𝑗 + 𝜏𝜏𝑎𝑎𝑎𝑎𝑇𝑇 𝑅𝑅𝜏𝜏𝑎𝑎𝑎𝑎 + ∥∥𝑆𝑆𝜏𝜏𝑎𝑎𝑎𝑎∥∥1, (12) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑖𝑖(𝑘𝑘+𝑙𝑙∣𝑘𝑘)

⁡ 𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁡𝑡𝑡𝑡𝑡
𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)
|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)

ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖.

(13) 
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where ( ),
h
i maxu  is the upper limit on the h -th of the input 

of ( )h
iu k .

2- 2- Objective Function
Definition 1.: asso − 
The model predictive control problem based on the 

asso  regression theory is expressed as follows:

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢𝑖𝑖,max
ℎ , ℎ = 1,2, … , 𝑛𝑛𝑢𝑢𝑖𝑖 (7) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1 ∣ 𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) +
𝐵𝐵𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐷𝐷𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (8) 

 

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (9) 

 

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)
ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖. (10) 

 

𝑉𝑉𝑁𝑁𝑜𝑜(𝑞̃𝑞)⁡= min
𝜏𝜏a

 {𝑉𝑉𝑁𝑁(𝑞̃𝑞, 𝜏𝜏a) =̂ 𝐹𝐹(𝑞̃𝑞𝑁𝑁) + ∑  
𝑁𝑁−1

𝑗𝑗=0
 ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎)}
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁡𝑡𝑡𝑡𝑡
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ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖.

(13) 
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with

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢𝑖𝑖,max
ℎ , ℎ = 1,2, … , 𝑛𝑛𝑢𝑢𝑖𝑖 (7) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1 ∣ 𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) +
𝐵𝐵𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐷𝐷𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (8) 

 

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (9) 

 

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)
ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖. (10) 

 

𝑉𝑉𝑁𝑁𝑜𝑜(𝑞̃𝑞)⁡= min
𝜏𝜏a

 {𝑉𝑉𝑁𝑁(𝑞̃𝑞, 𝜏𝜏a) =̂ 𝐹𝐹(𝑞̃𝑞𝑁𝑁) + ∑  
𝑁𝑁−1

𝑗𝑗=0
 ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎)}

𝑠𝑠. 𝑡𝑡.∶
𝜏𝜏𝑎𝑎𝑎𝑎 ∈ 𝕌𝕌, ⁡𝑞̃𝑞𝑗𝑗 ∈ 𝕏𝕏, ⁡𝑗𝑗 = 0,… ,𝑁𝑁 − 1

(11) 

 

ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎) = 𝑞̃𝑞𝑗𝑗𝑇𝑇𝑄𝑄𝑞̃𝑞𝑗𝑗 + 𝜏𝜏𝑎𝑎𝑎𝑎𝑇𝑇 𝑅𝑅𝜏𝜏𝑎𝑎𝑎𝑎 + ∥∥𝑆𝑆𝜏𝜏𝑎𝑎𝑎𝑎∥∥1, (12) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑖𝑖(𝑘𝑘+𝑙𝑙∣𝑘𝑘)

⁡ 𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁡𝑡𝑡𝑡𝑡
𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)
|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)

ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖.

(13) 

 

 (12)

with 
0 1a N

T T T
a aτ τ τ

−
 =   , and S  is a constant matrix. 

The asso −   executes the first action of the optimum 
policy, ( )

0a akτ τ=  , at the current state, ( )
˜ ˜
q q k= , at 

each iteration k . This action is determined by the online 
solution of (10), (12). The obtained implicit control law is 
also considered as 

0

˜

N aK q τ  ≡ 
 

  [22].
In general, LMPC is a technique for allocating control 

while minimizing the goal function in accordance with 
limitations on the system states, output, and input. Since 
the system being studied is uncertain, the robust LMPC 
technique changes the challenge of reducing the cost function 
into a problem of minimizing or maximizing. It establishes 
the upper limit for the worst possible value of the minimal 
objective function. In this case, the max-min problem for an 
agent is phrased as follows [23]:
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|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢𝑖𝑖,max
ℎ , ℎ = 1,2, … , 𝑛𝑛𝑢𝑢𝑖𝑖 (7) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1 ∣ 𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) +
𝐵𝐵𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐷𝐷𝑖𝑖(𝑘𝑘 + 𝑛𝑛)𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (8) 

 

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) (9) 

 

|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)
ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖. (10) 

 

𝑉𝑉𝑁𝑁𝑜𝑜(𝑞̃𝑞)⁡= min
𝜏𝜏a

 {𝑉𝑉𝑁𝑁(𝑞̃𝑞, 𝜏𝜏a) =̂ 𝐹𝐹(𝑞̃𝑞𝑁𝑁) + ∑  
𝑁𝑁−1

𝑗𝑗=0
 ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎)}

𝑠𝑠. 𝑡𝑡.∶
𝜏𝜏𝑎𝑎𝑎𝑎 ∈ 𝕌𝕌, ⁡𝑞̃𝑞𝑗𝑗 ∈ 𝕏𝕏, ⁡𝑗𝑗 = 0,… ,𝑁𝑁 − 1

(11) 

 

ℓ(𝑞̃𝑞𝑗𝑗, 𝜏𝜏𝑎𝑎𝑎𝑎) = 𝑞̃𝑞𝑗𝑗𝑇𝑇𝑄𝑄𝑞̃𝑞𝑗𝑗 + 𝜏𝜏𝑎𝑎𝑎𝑎𝑇𝑇 𝑅𝑅𝜏𝜏𝑎𝑎𝑎𝑎 + ∥∥𝑆𝑆𝜏𝜏𝑎𝑎𝑎𝑎∥∥1, (12) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑖𝑖(𝑘𝑘+𝑙𝑙∣𝑘𝑘)

⁡ 𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁡𝑡𝑡𝑡𝑡
𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑙𝑙 ∣ 𝑘𝑘) = 𝐹𝐹𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘) + 𝐾𝐾𝑖𝑖𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 𝑛𝑛 ∣ 𝑘𝑘)
|𝑢𝑢𝑖𝑖ℎ(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)| ≤ 𝑢𝑢(𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚)

ℎ , ℎ = 1,2,… , 𝑛𝑛𝑢𝑢𝑖𝑖.

(13) 

 

 (13)

The cost function for the i -th agent’s infinite horizon is 
written as follows:

𝐽𝐽(𝑘𝑘)⁡= ∑  
𝑀𝑀

𝑖𝑖=1
 𝐽𝐽𝑖𝑖(𝑘𝑘),

𝐽𝐽𝑖𝑖(𝑘𝑘)⁡= ∑  
∞

𝑛𝑛=0
 {

𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)
}

⁡+∥∥𝑆𝑆𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)∥∥1.

(14) 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) =
𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖 (15)

 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤
⁡−𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) (16)   

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) 

⁡∑  
∞

𝑛𝑛=0
 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤

⁡−∑  
∞

𝑛𝑛=0
 {𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) +

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)}
𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘)) = 𝑥̂𝑥𝑖𝑖𝑇𝑇(𝑘𝑘|𝑘𝑘)𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖

(17) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑗𝑗(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘) ≤ 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)) ≤ 𝛾𝛾𝑖𝑖 (18) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

𝛾𝛾𝑖𝑖 (19) 

 

 (14)

The worst-case scenario indicates that for each of the 
multiple vertices, the outcomes of each vertex’s prediction 
are different due to the proper weight functions iM  and iR . 
We will therefore have various cost-function values. The cost 
function may thus determine the highest value by setting the 
values of one of the polyhedron’s vertices. As a result, the 
minimization issue, which will be described in further detail 
later, has been resolved for all of the polyhedron’s vertices. 
Reduce the largest’s upper limit as well.

2- 3- Proposed Control Algorithm
Consider 

ˆ ˆ ˆT

i i iiV x x P x  = 
 

 as the Lyapunov function. 
Based on the theorem of quadratic constraint in [25, 26], iP  is 
a positive definite matrix that fulfills the following conditions 
of quadratic constraint for ( ) ( ) ( ), ,i i i iA i k B k A j k ∈Ω  :

𝐽𝐽(𝑘𝑘)⁡= ∑  
𝑀𝑀

𝑖𝑖=1
 𝐽𝐽𝑖𝑖(𝑘𝑘),

𝐽𝐽𝑖𝑖(𝑘𝑘)⁡= ∑  
∞

𝑛𝑛=0
 {

𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)
}

⁡+∥∥𝑆𝑆𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)∥∥1.

(14) 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) =
𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖 (15)

 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤
⁡−𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) (16)   

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) 

⁡∑  
∞

𝑛𝑛=0
 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤

⁡−∑  
∞

𝑛𝑛=0
 {𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) +

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)}
𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘)) = 𝑥̂𝑥𝑖𝑖𝑇𝑇(𝑘𝑘|𝑘𝑘)𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖

(17) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑗𝑗(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘) ≤ 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)) ≤ 𝛾𝛾𝑖𝑖 (18) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

𝛾𝛾𝑖𝑖 (19) 

 

 (15)

which, under the requirements of the quadratic limitation, 
can be written:

𝐽𝐽(𝑘𝑘)⁡= ∑  
𝑀𝑀

𝑖𝑖=1
 𝐽𝐽𝑖𝑖(𝑘𝑘),

𝐽𝐽𝑖𝑖(𝑘𝑘)⁡= ∑  
∞

𝑛𝑛=0
 {

𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)
}

⁡+∥∥𝑆𝑆𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)∥∥1.

(14) 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) =
𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖 (15)

 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤
⁡−𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) (16)   

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) 

⁡∑  
∞

𝑛𝑛=0
 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤

⁡−∑  
∞

𝑛𝑛=0
 {𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) +

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)}
𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘)) = 𝑥̂𝑥𝑖𝑖𝑇𝑇(𝑘𝑘|𝑘𝑘)𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖

(17) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑗𝑗(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘) ≤ 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)) ≤ 𝛾𝛾𝑖𝑖 (18) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

𝛾𝛾𝑖𝑖 (19) 

 

 (16)

In actuality, the quadratic restriction for each subsystem 
is weaker than the aforementioned formula. To prove the 
robust condition’s stability, 

ˆ
( | ) 0x k∞ = , which is identical 

to 
ˆ

( ( | ))iiV x k∞ , must hold. The two previously stated sides 
of the inequality will now add up to:

𝐽𝐽(𝑘𝑘)⁡= ∑  
𝑀𝑀

𝑖𝑖=1
 𝐽𝐽𝑖𝑖(𝑘𝑘),

𝐽𝐽𝑖𝑖(𝑘𝑘)⁡= ∑  
∞

𝑛𝑛=0
 {

𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)
}

⁡+∥∥𝑆𝑆𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)∥∥1.

(14) 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) =
𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖 (15)

 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤
⁡−𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) (16)   

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) 

⁡∑  
∞

𝑛𝑛=0
 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤

⁡−∑  
∞

𝑛𝑛=0
 {𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) +

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)}
𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘)) = 𝑥̂𝑥𝑖𝑖𝑇𝑇(𝑘𝑘|𝑘𝑘)𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖

(17) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑗𝑗(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘) ≤ 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)) ≤ 𝛾𝛾𝑖𝑖 (18) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

𝛾𝛾𝑖𝑖 (19) 

 

 (17)

to which it is equal:

𝐽𝐽(𝑘𝑘)⁡= ∑  
𝑀𝑀

𝑖𝑖=1
 𝐽𝐽𝑖𝑖(𝑘𝑘),

𝐽𝐽𝑖𝑖(𝑘𝑘)⁡= ∑  
∞

𝑛𝑛=0
 {

𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)
}

⁡+∥∥𝑆𝑆𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)∥∥1.

(14) 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) =
𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖 (15)

 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤
⁡−𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) (16)   

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) 

⁡∑  
∞

𝑛𝑛=0
 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤

⁡−∑  
∞

𝑛𝑛=0
 {𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) +

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)}
𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘)) = 𝑥̂𝑥𝑖𝑖𝑇𝑇(𝑘𝑘|𝑘𝑘)𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖

(17) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑗𝑗(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘) ≤ 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)) ≤ 𝛾𝛾𝑖𝑖 (18) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

𝛾𝛾𝑖𝑖 (19) 

 

 (18)

iγ  can be expressed as follows and is a non-negative 
suitable variable that needs to be minimized:

𝐽𝐽(𝑘𝑘)⁡= ∑  
𝑀𝑀

𝑖𝑖=1
 𝐽𝐽𝑖𝑖(𝑘𝑘),

𝐽𝐽𝑖𝑖(𝑘𝑘)⁡= ∑  
∞

𝑛𝑛=0
 {

𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)
}

⁡+∥∥𝑆𝑆𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)∥∥1.

(14) 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) =
𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖 (15)

 

 

𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤
⁡−𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) (16)   

+𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) 

⁡∑  
∞

𝑛𝑛=0
 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛 + 1|𝑘𝑘)) − 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)) ≤

⁡−∑  
∞

𝑛𝑛=0
 {𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑀𝑀𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘) +

𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘 + 𝑛𝑛|𝑘𝑘)}
𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘)) = 𝑥̂𝑥𝑖𝑖𝑇𝑇(𝑘𝑘|𝑘𝑘)𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) ≤ 𝛾𝛾𝑖𝑖

(17) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
[𝐴𝐴𝑖𝑖𝑖𝑖(𝑘𝑘),𝐵𝐵𝑖𝑖(𝑘𝑘),𝐴𝐴𝑖𝑖𝑗𝑗(𝑘𝑘)]∈Ω𝑖𝑖

𝐽𝐽𝑖𝑖(𝑘𝑘) ≤ 𝑉𝑉𝑖𝑖(𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)) ≤ 𝛾𝛾𝑖𝑖 (18) 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

𝛾𝛾𝑖𝑖 (19) 

 

 (19)

Calculating the control input (9), which is the outcome 
of reducing the upper band on 

ˆ
( ( | ))iiV x k k , is the robust 

LMPC  algorithm’s goal. Therefore, the first computed input, 
( | )iu k k , is applied to the system to calculate the input with 

an infinite horizon. The estimate of ( )
ˆ

1ix k +  is acquired for 
the subsequent time sample, and the optimization is carried 
out once again to determine iK  and iF . The following 
theorem lays forth the prerequisites for iP  being appropriate 
in the context of research, together with interaction effect 
feedback iK  and output feedback iF  for agent i .

Theorem 1.  The minimization problem for the LTI 
subsystem (1) must be solved in accordance with the input 
constraint (10), optimization problem (19), feedforward iK
, and feedback gain iF  for 0n ≥  in each time sample k . 
Then The following LMI are obtained:
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⁡ min
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

 𝛾𝛾𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗⁡𝑡𝑡𝑡𝑡

[ 1 𝑥̂𝑥𝑖𝑖
𝑇𝑇(𝑘𝑘 ∣ 𝑘𝑘)

𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) 𝑄𝑄𝑖𝑖
] ≥ 0

[
 
 
 
 
 
 
 
 (1 − 𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖,𝑘𝑘)𝑄𝑄𝑖𝑖 0 (𝑉𝑉𝑖𝑖

𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖)𝑇𝑇 (𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖)𝑇𝑇

0 𝛼𝛼𝑖𝑖𝐼𝐼 (𝑁𝑁𝑖𝑖
𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖)𝑇𝑇 0

𝑉𝑉𝑖𝑖
𝑙𝑙 𝑁𝑁𝑖𝑖

𝑙𝑙 𝑄𝑄𝑖𝑖 0 0

𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖 𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖 0 𝛾𝛾𝑖𝑖𝐼𝐼 0

𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖 0 0 0 𝛾𝛾𝑖𝑖𝐼𝐼 ]

 
 
 
 
 
 
 
 

⁡≥ 0, 𝑙𝑙 ∈ {1,… , 𝐿𝐿}

[
 
 
 
 𝜌𝜌𝑖𝑖 √2𝑌𝑌𝑖𝑖 √2𝐾𝐾𝑖𝑖
√2𝑌𝑌𝑖𝑖

𝑇𝑇 𝑄𝑄𝑖𝑖 0

√2𝐾𝐾𝑖𝑖
𝑇𝑇 0 𝛽𝛽𝑖𝑖,𝑘𝑘

−1
2𝐼𝐼]

 
 
 
 
≥ 0,

𝜌𝜌𝑖𝑖 = diag⁡[(𝑢𝑢𝑖𝑖,max
1 )2, (𝑢𝑢𝑖𝑖,max

2 )2,… , (𝑢𝑢𝑖𝑖,max
𝑛𝑛 )2]

(20) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1) ≤
𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) (21) 

 

∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (22) 

 

∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (23) 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+𝐸𝐸𝑖𝑖𝑤𝑤𝑖𝑖(𝑘𝑘) + ∑  
𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗(𝑘𝑘)

𝑦𝑦𝑖𝑖(𝑘𝑘) = 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑦𝑦𝑖𝑖(𝑘𝑘) + 𝑣𝑣𝑖𝑖(𝑘𝑘)
(24) 

 

 (20)

where l l l
i ii i i iV A Q B Y= +  and l l l

i i i iN D B K= + .

2- 4- Feasibility Conditions
Now, to claim robust stability of the problem, we need to 

prove fixed elliptic and feasibility theorems for the proposed 
algorithm. First, to prove the constant elliptic theorem of the 
proposed algorithm, since the quadratic constraint condition 
is used, the result of establishing the quadratic constraint is 
the following theorem, which is proved in [27] and finally 
it is used in the constant elliptic theorem for the proposed 
control algorithm. 

Theorem 2. [28] If (15) is quadratic bounded for 
the Lyapunov matrix P , then it can be said: The ellipse 

{ : 1}n T
p z R z Pzε ≡ ∈ ≤  is a robust positive fixed set for 

the (15).
Now for system (4) using the above theorem, the following 

theorem can be expressed. 
Theorem 3. It considers the time-varying linear system 

(4) and iΩ  is an indefinite set for it. Suppose that the 
optimization problem (20) has a solution from which iQ , iY  
and iK  are determined. Then, for all future inputs obtained 
from equation (9) and 1

i i iP Qγ −= , it can be concluded that: 

( ), ( ), ( )
max

(

ˆ

) ˆ ( )
il i ij i

T
iA k n B k n A k n

i i ik n k P k n k

x

x γ

 + + + ∈Ω 

+ +

×

≤

 (21)

Therefore, { : }in T
i i i i iz R z Pzε γ≡ ∈ ≤  is a fixed 

ellipse for all future states of the uncertain system (4) obtained 
from equation (9) and if the optimization problem (20) has 
a feasible solution at sampling time k, then this solution is 
feasible for all times t > k.

2- 5- Robust Stability Check
Theorem 4.  (Robust Stability): The feasible answer 

obtained from the optimization problem (20) guarantees 
asymptotic stability: if for k ∞→ , ( ) 0ix k →  is established.

Proof. According to the feasibility of the problem, at 
sampling time 1k + , one of the possible answers for 1iγ +  
is iγ , but by solving the optimization problem at time 1k +
, the statement 1i iγ γ+ ≥  is fulfilled and iγ  is the upper limit 
of ( )

ˆ ˆ

,( )T
i ii kx k k P x k k , which is uniformly does not 

decrease but for large k , iγ  becomes less than a certain 
value, which means that ( )

ˆ
ix k  and ( )iu k  converge to the 

neighborhood of zero and remain in that region. It should be 
noted that [27]. is fulfilled for very small iQ  and iγ , and 
as a result, ( )

ˆ
1ix k +  is placed in a small ellipse, and since 

( ) ( )
ˆ

i ix k x k→  is for k ∞→ , the result is ( ) 0ix k → .
In the  asso-model predictive control of robust 

distribution, each control agent satisfies the following 
condition by solving the optimization problem and due to 
robust stability.

⁡ min
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

 𝛾𝛾𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗⁡𝑡𝑡𝑡𝑡

[ 1 𝑥̂𝑥𝑖𝑖
𝑇𝑇(𝑘𝑘 ∣ 𝑘𝑘)

𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) 𝑄𝑄𝑖𝑖
] ≥ 0

[
 
 
 
 
 
 
 
 (1 − 𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖,𝑘𝑘)𝑄𝑄𝑖𝑖 0 (𝑉𝑉𝑖𝑖

𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖)𝑇𝑇 (𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖)𝑇𝑇

0 𝛼𝛼𝑖𝑖𝐼𝐼 (𝑁𝑁𝑖𝑖
𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖)𝑇𝑇 0

𝑉𝑉𝑖𝑖
𝑙𝑙 𝑁𝑁𝑖𝑖

𝑙𝑙 𝑄𝑄𝑖𝑖 0 0

𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖 𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖 0 𝛾𝛾𝑖𝑖𝐼𝐼 0

𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖 0 0 0 𝛾𝛾𝑖𝑖𝐼𝐼 ]

 
 
 
 
 
 
 
 

⁡≥ 0, 𝑙𝑙 ∈ {1,… , 𝐿𝐿}

[
 
 
 
 𝜌𝜌𝑖𝑖 √2𝑌𝑌𝑖𝑖 √2𝐾𝐾𝑖𝑖
√2𝑌𝑌𝑖𝑖

𝑇𝑇 𝑄𝑄𝑖𝑖 0

√2𝐾𝐾𝑖𝑖
𝑇𝑇 0 𝛽𝛽𝑖𝑖,𝑘𝑘

−1
2𝐼𝐼]

 
 
 
 
≥ 0,

𝜌𝜌𝑖𝑖 = diag⁡[(𝑢𝑢𝑖𝑖,max
1 )2, (𝑢𝑢𝑖𝑖,max

2 )2,… , (𝑢𝑢𝑖𝑖,max
𝑛𝑛 )2]

(20) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1) ≤
𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) (21) 

 

∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (22) 

 

∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (23) 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+𝐸𝐸𝑖𝑖𝑤𝑤𝑖𝑖(𝑘𝑘) + ∑  
𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗(𝑘𝑘)

𝑦𝑦𝑖𝑖(𝑘𝑘) = 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑦𝑦𝑖𝑖(𝑘𝑘) + 𝑣𝑣𝑖𝑖(𝑘𝑘)
(24) 

 

 (22)

which implies

⁡ min
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

 𝛾𝛾𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗⁡𝑡𝑡𝑡𝑡

[ 1 𝑥̂𝑥𝑖𝑖
𝑇𝑇(𝑘𝑘 ∣ 𝑘𝑘)

𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) 𝑄𝑄𝑖𝑖
] ≥ 0

[
 
 
 
 
 
 
 
 (1 − 𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖,𝑘𝑘)𝑄𝑄𝑖𝑖 0 (𝑉𝑉𝑖𝑖

𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖)𝑇𝑇 (𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖)𝑇𝑇

0 𝛼𝛼𝑖𝑖𝐼𝐼 (𝑁𝑁𝑖𝑖
𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖)𝑇𝑇 0

𝑉𝑉𝑖𝑖
𝑙𝑙 𝑁𝑁𝑖𝑖

𝑙𝑙 𝑄𝑄𝑖𝑖 0 0

𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖 𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖 0 𝛾𝛾𝑖𝑖𝐼𝐼 0

𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖 0 0 0 𝛾𝛾𝑖𝑖𝐼𝐼 ]

 
 
 
 
 
 
 
 

⁡≥ 0, 𝑙𝑙 ∈ {1,… , 𝐿𝐿}

[
 
 
 
 𝜌𝜌𝑖𝑖 √2𝑌𝑌𝑖𝑖 √2𝐾𝐾𝑖𝑖
√2𝑌𝑌𝑖𝑖

𝑇𝑇 𝑄𝑄𝑖𝑖 0

√2𝐾𝐾𝑖𝑖
𝑇𝑇 0 𝛽𝛽𝑖𝑖,𝑘𝑘

−1
2𝐼𝐼]

 
 
 
 
≥ 0,

𝜌𝜌𝑖𝑖 = diag⁡[(𝑢𝑢𝑖𝑖,max
1 )2, (𝑢𝑢𝑖𝑖,max

2 )2,… , (𝑢𝑢𝑖𝑖,max
𝑛𝑛 )2]

(20) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1) ≤
𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) (21) 

 

∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (22) 

 

∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (23) 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+𝐸𝐸𝑖𝑖𝑤𝑤𝑖𝑖(𝑘𝑘) + ∑  
𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗(𝑘𝑘)

𝑦𝑦𝑖𝑖(𝑘𝑘) = 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑦𝑦𝑖𝑖(𝑘𝑘) + 𝑣𝑣𝑖𝑖(𝑘𝑘)
(24) 

 

 (23)

By establishing the above relationship in each agent, it 
can be claimed that the interactive effect vector in the i-th 
subsystem will be as follows:

⁡ min
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

 𝛾𝛾𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗⁡𝑡𝑡𝑡𝑡

[ 1 𝑥̂𝑥𝑖𝑖
𝑇𝑇(𝑘𝑘 ∣ 𝑘𝑘)

𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) 𝑄𝑄𝑖𝑖
] ≥ 0

[
 
 
 
 
 
 
 
 (1 − 𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖,𝑘𝑘)𝑄𝑄𝑖𝑖 0 (𝑉𝑉𝑖𝑖

𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖)𝑇𝑇 (𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖)𝑇𝑇

0 𝛼𝛼𝑖𝑖𝐼𝐼 (𝑁𝑁𝑖𝑖
𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖)𝑇𝑇 0

𝑉𝑉𝑖𝑖
𝑙𝑙 𝑁𝑁𝑖𝑖

𝑙𝑙 𝑄𝑄𝑖𝑖 0 0

𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖 𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖 0 𝛾𝛾𝑖𝑖𝐼𝐼 0

𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖 0 0 0 𝛾𝛾𝑖𝑖𝐼𝐼 ]

 
 
 
 
 
 
 
 

⁡≥ 0, 𝑙𝑙 ∈ {1,… , 𝐿𝐿}

[
 
 
 
 𝜌𝜌𝑖𝑖 √2𝑌𝑌𝑖𝑖 √2𝐾𝐾𝑖𝑖
√2𝑌𝑌𝑖𝑖

𝑇𝑇 𝑄𝑄𝑖𝑖 0

√2𝐾𝐾𝑖𝑖
𝑇𝑇 0 𝛽𝛽𝑖𝑖,𝑘𝑘

−1
2𝐼𝐼]

 
 
 
 
≥ 0,

𝜌𝜌𝑖𝑖 = diag⁡[(𝑢𝑢𝑖𝑖,max
1 )2, (𝑢𝑢𝑖𝑖,max

2 )2,… , (𝑢𝑢𝑖𝑖,max
𝑛𝑛 )2]

(20) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1) ≤
𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) (21) 

 

∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (22) 

 

∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (23) 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+𝐸𝐸𝑖𝑖𝑤𝑤𝑖𝑖(𝑘𝑘) + ∑  
𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗(𝑘𝑘)

𝑦𝑦𝑖𝑖(𝑘𝑘) = 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑦𝑦𝑖𝑖(𝑘𝑘) + 𝑣𝑣𝑖𝑖(𝑘𝑘)
(24) 

 

 (24)

3- Distributed Kalman Filter
The dynamics of distributed subsystems are different from 

a simple system, so for estimation, it is necessary to design a 
filter that can estimate the states of the subsystem according 
to the presence of the effect of neighboring subsystems. In 
this way, the Kalman filter needs to use information from 
other subsystems in addition to local measurements. In 
the design of the Kalman filter, the nominal model of each 
subsystem is used, which means that it is the polyhedral center 
resulting from uncertainty. The i-th model of the subsystem is 
considered as follows:
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⁡ min
𝑌𝑌𝑖𝑖,𝐾𝐾𝑖𝑖,𝑄𝑄𝑖𝑖

 𝛾𝛾𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗⁡𝑡𝑡𝑡𝑡

[ 1 𝑥̂𝑥𝑖𝑖
𝑇𝑇(𝑘𝑘 ∣ 𝑘𝑘)

𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) 𝑄𝑄𝑖𝑖
] ≥ 0

[
 
 
 
 
 
 
 
 (1 − 𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖,𝑘𝑘)𝑄𝑄𝑖𝑖 0 (𝑉𝑉𝑖𝑖

𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖)𝑇𝑇 (𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖)𝑇𝑇

0 𝛼𝛼𝑖𝑖𝐼𝐼 (𝑁𝑁𝑖𝑖
𝑙𝑙)𝑇𝑇 (𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖)𝑇𝑇 0

𝑉𝑉𝑖𝑖
𝑙𝑙 𝑁𝑁𝑖𝑖

𝑙𝑙 𝑄𝑄𝑖𝑖 0 0

𝑅𝑅𝑖𝑖

1
2𝑌𝑌𝑖𝑖 𝑅𝑅𝑖𝑖

1
2𝐾𝐾𝑖𝑖 0 𝛾𝛾𝑖𝑖𝐼𝐼 0

𝑀𝑀𝑖𝑖

1
2𝑄𝑄𝑖𝑖 0 0 0 𝛾𝛾𝑖𝑖𝐼𝐼 ]

 
 
 
 
 
 
 
 

⁡≥ 0, 𝑙𝑙 ∈ {1,… , 𝐿𝐿}

[
 
 
 
 𝜌𝜌𝑖𝑖 √2𝑌𝑌𝑖𝑖 √2𝐾𝐾𝑖𝑖
√2𝑌𝑌𝑖𝑖

𝑇𝑇 𝑄𝑄𝑖𝑖 0

√2𝐾𝐾𝑖𝑖
𝑇𝑇 0 𝛽𝛽𝑖𝑖,𝑘𝑘

−1
2𝐼𝐼]

 
 
 
 
≥ 0,

𝜌𝜌𝑖𝑖 = diag⁡[(𝑢𝑢𝑖𝑖,max
1 )2, (𝑢𝑢𝑖𝑖,max

2 )2,… , (𝑢𝑢𝑖𝑖,max
𝑛𝑛 )2]

(20) 

 

𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1) ≤
𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)𝑇𝑇𝑃𝑃𝑖𝑖𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘) (21) 

 

∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑥̂𝑥𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (22) 

 

∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘 + 1)∥∥ ≤ ∥∥𝑧̂𝑧𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘)∥∥ (23) 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+𝐸𝐸𝑖𝑖𝑤𝑤𝑖𝑖(𝑘𝑘) + ∑  
𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗(𝑘𝑘)

𝑦𝑦𝑖𝑖(𝑘𝑘) = 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑦𝑦𝑖𝑖(𝑘𝑘) + 𝑣𝑣𝑖𝑖(𝑘𝑘)
(24) 

 

 (25)

so that the process noise ( )iw k  is a discrete-time white 
noise signal whose covariance matrix is defined below:

𝐸𝐸{𝑤𝑤𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑄𝑄𝑤𝑤𝑤𝑤 (25) 

 

𝐸𝐸{𝑣𝑣𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑅𝑅𝑣𝑣𝑣𝑣 (26) 

 

𝑥̂𝑥𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 ) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 ) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1) +

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 )]

(27) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑗𝑗(𝑘𝑘) −𝐶𝐶𝑗𝑗(𝑘𝑘)𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)] 

𝑒𝑒𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) = 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) − 𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) (28) 

(29) 

Σ𝑖𝑖(𝑘𝑘 + |1|𝑘𝑘) = 

Cov{𝑒𝑒𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 )} = 

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 + 𝐸𝐸𝑖𝑖𝑄𝑄𝑤𝑤𝑤𝑤𝐸𝐸𝑖𝑖𝑇𝑇 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 − 1 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1) 

{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 + 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇 − 

2{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

 (26)

The measurement noise ( )iv k  is also a discrete-time 
white noise signal. Its covariance matrix is expressed as 
follows:

𝐸𝐸{𝑤𝑤𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑄𝑄𝑤𝑤𝑤𝑤 (25) 

 

𝐸𝐸{𝑣𝑣𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑅𝑅𝑣𝑣𝑣𝑣 (26) 

 

𝑥̂𝑥𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 ) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 ) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1) +

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 )]

(27) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑗𝑗(𝑘𝑘) −𝐶𝐶𝑗𝑗(𝑘𝑘)𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)] 

𝑒𝑒𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) = 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) − 𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) (28) 

(29) 

Σ𝑖𝑖(𝑘𝑘 + |1|𝑘𝑘) = 

Cov{𝑒𝑒𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 )} = 

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 + 𝐸𝐸𝑖𝑖𝑄𝑄𝑤𝑤𝑤𝑤𝐸𝐸𝑖𝑖𝑇𝑇 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 − 1 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1) 

{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 + 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇 − 

2{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

 (27)

The prediction equation is modified using the Kalman 
gain iiL  and the measurement it has at time k  (which is 
available) as follows:

𝐸𝐸{𝑤𝑤𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑄𝑄𝑤𝑤𝑤𝑤 (25) 

 

𝐸𝐸{𝑣𝑣𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑅𝑅𝑣𝑣𝑣𝑣 (26) 

 

𝑥̂𝑥𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 ) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 ) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1) +

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 )]

(27) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑗𝑗(𝑘𝑘) −𝐶𝐶𝑗𝑗(𝑘𝑘)𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)] 

𝑒𝑒𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) = 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) − 𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) (28) 

(29) 

Σ𝑖𝑖(𝑘𝑘 + |1|𝑘𝑘) = 

Cov{𝑒𝑒𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 )} = 

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 + 𝐸𝐸𝑖𝑖𝑄𝑄𝑤𝑤𝑤𝑤𝐸𝐸𝑖𝑖𝑇𝑇 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 − 1 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1) 

{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 + 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇 − 

2{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

 (28)

In the above expression, ( )ijL k  is the Kalman gain of the 
j -th agent, which is considered as the correction gain of the 

interaction effect in the j -th agent. Also, ( )
ˆ

1ix k k −  is the 
estimate of the state at the previous time in the corresponding 
agent, which is available to the i -th Kalman filter. The 
Kalman gain ( )iiL k  is chosen to minimize the estimation 
covariance error matrix. The estimation error 1k +  at time 
k  is considered as follows:

𝐸𝐸{𝑤𝑤𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑄𝑄𝑤𝑤𝑤𝑤 (25) 

 

𝐸𝐸{𝑣𝑣𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑅𝑅𝑣𝑣𝑣𝑣 (26) 

 

𝑥̂𝑥𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 ) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 ) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1) +

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 )]

(27) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑗𝑗(𝑘𝑘) −𝐶𝐶𝑗𝑗(𝑘𝑘)𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)] 

𝑒𝑒𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) = 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) − 𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) (28) 

(29) 

Σ𝑖𝑖(𝑘𝑘 + |1|𝑘𝑘) = 

Cov{𝑒𝑒𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 )} = 

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 + 𝐸𝐸𝑖𝑖𝑄𝑄𝑤𝑤𝑤𝑤𝐸𝐸𝑖𝑖𝑇𝑇 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 − 1 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1) 

{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 + 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇 − 

2{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

 (29)

By inserting (27) and (24) in the above equation, the error 
covariance matrix will be obtained as follows:

𝐸𝐸{𝑤𝑤𝑖𝑖(𝑘𝑘)𝑤𝑤𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑄𝑄𝑤𝑤𝑤𝑤 (25) 

 

𝐸𝐸{𝑣𝑣𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘)𝑇𝑇} = 𝑅𝑅𝑣𝑣𝑣𝑣 (26) 

 

𝑥̂𝑥𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 ) = 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 ) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑘𝑘) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1) +

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑥̂𝑥𝑖𝑖( 𝑘𝑘 ∣ 𝑘𝑘 − 1 )]

(27) 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)[𝑦𝑦𝑗𝑗(𝑘𝑘) −𝐶𝐶𝑗𝑗(𝑘𝑘)𝑥̂𝑥𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)] 

𝑒𝑒𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) = 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) − 𝑥̂𝑥𝑖𝑖(𝑘𝑘 + 1 ∣ 𝑘𝑘) (28) 

(29) 

Σ𝑖𝑖(𝑘𝑘 + |1|𝑘𝑘) = 

Cov{𝑒𝑒𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 )} = 

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 + 𝐸𝐸𝑖𝑖𝑄𝑄𝑤𝑤𝑤𝑤𝐸𝐸𝑖𝑖𝑇𝑇 

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 − 1 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1) 

{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 + 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇 − 

2{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

 (30)

Now the derivative of the estimation error covariance 
matrix is calculated relative to ( )iiL k :

 

 

 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

Σ𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 ) = 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

{𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 + 𝐸𝐸𝑖𝑖𝑄𝑄𝑤𝑤𝑤𝑤𝐸𝐸𝑖𝑖𝑇𝑇 

+𝑀𝑀𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗( 𝑘𝑘 − 1 ∣ 𝑘𝑘 − 1 )𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

⁡+{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)
{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 + 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇

(30) 

−2{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 } 

 

−2𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 

+22{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖)}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 (31) 

+2𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣 = 0 

 

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 

× [𝑅𝑅𝑣𝑣𝑣𝑣 + 𝐶𝐶𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇]
−1 (32) 

 

 

 

 (31)

In this way, the ( )iiL k  that minimizes the covariance 
matrix of the estimation error satisfies the following equation:

 

 

 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

Σ𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 ) = 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

{𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 + 𝐸𝐸𝑖𝑖𝑄𝑄𝑤𝑤𝑤𝑤𝐸𝐸𝑖𝑖𝑇𝑇 

+𝑀𝑀𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗( 𝑘𝑘 − 1 ∣ 𝑘𝑘 − 1 )𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

⁡+{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)
{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 + 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇

(30) 

−2{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 } 

 

−2𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 

+22{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖)}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 (31) 

+2𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣 = 0 

 

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 

× [𝑅𝑅𝑣𝑣𝑣𝑣 + 𝐶𝐶𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇]
−1 (32) 

 

 

 

 (32)
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Finally, the Kalman gain for the i th−  subsystem will 
be as follows:

 

 

 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

Σ𝑖𝑖( 𝑘𝑘 + 1 ∣ 𝑘𝑘 ) = 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

{𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 + 𝐸𝐸𝑖𝑖𝑄𝑄𝑤𝑤𝑤𝑤𝐸𝐸𝑖𝑖𝑇𝑇 

+𝑀𝑀𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗( 𝑘𝑘 − 1 ∣ 𝑘𝑘 − 1 )𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

⁡+{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)
{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 + 𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑇𝑇

(30) 

−2{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇 } 

 

−2𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 

+22{𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖)}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 (31) 

+2𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝑅𝑅𝑣𝑣𝑣𝑣 = 0 

 

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇 

× [𝑅𝑅𝑣𝑣𝑣𝑣 + 𝐶𝐶𝑖𝑖Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐶𝐶𝑖𝑖𝑇𝑇]
−1 (32) 

 

 

 

 (33)

To calculate ( )ijL k , we can also write:

 

 

 

(33) 

∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘)⁡=

⁡
 

∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐸𝐸{𝑒𝑒𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘)𝑒𝑒𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘)𝑇𝑇} = 

𝑀𝑀𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 {𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}Σ𝑖𝑖(𝑘𝑘 ∣ 𝑘𝑘 − 1){𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 

−2∑ 
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1){𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑖𝑖}𝑇𝑇 

 

 

 

 

 

 

 (33)

The minimum of the above expression is as follows:

 

 

 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 Σ𝑗𝑗( 𝑘𝑘 ∣ 𝑘𝑘 ) = 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+∑ 
𝑀𝑀

𝑗𝑗≠1
𝑗𝑗≠𝑖𝑖

 {𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗} 

Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1){𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗}
𝑇𝑇
 

−2∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1){𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗}
𝑇𝑇,

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑇𝑇[𝐶𝐶𝑗𝑗𝐶𝐶𝑗𝑗𝑇𝑇]
−1

 

(34) 

 

 

𝜏𝜏 = 𝐽𝐽𝐿𝐿𝜃̈𝜃 + 𝐵𝐵𝐿𝐿𝜃̇𝜃 + 𝐾𝐾𝑠𝑠𝜃𝜃 (35) 

 

[𝑥̇𝑥1(𝑡𝑡)𝑥̇𝑥2(𝑡𝑡)]
= [

0 1
−𝐾𝐾𝑠𝑠
𝐽𝐽𝐿𝐿

0] [
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)]

+⁡[
0
1
𝐽𝐽𝐿𝐿
] 𝜏𝜏(𝑡𝑡) (36) 

 (34)

In the distributed Kalman filter design, each 
of the local Kalman filters by predicting one 
time unit ahead of the local states, provide timely 
information to the controllers for decision making. 

4- Simulation-Based Validation of the Proposed Method
4- 1- Case Study

In order to evaluate the proposed method, a three-link 
flexible manipulator is considered, where each link acts 
like a Quanser robot and the links interfere with each other. 
According to [29], each link can be considered as a mass-
spring-damper system as shown in Figure 1. In this case, the 
model of each link is obtained as follows:

Fig. 1. Schematic model of one-link flexible manipulator.
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∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 Σ𝑗𝑗( 𝑘𝑘 ∣ 𝑘𝑘 ) = 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+∑ 
𝑀𝑀

𝑗𝑗≠1
𝑗𝑗≠𝑖𝑖

 {𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗} 

Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1){𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗}
𝑇𝑇
 

−2∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1){𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗}
𝑇𝑇,

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑇𝑇[𝐶𝐶𝑗𝑗𝐶𝐶𝑗𝑗𝑇𝑇]
−1

 

(34) 

 

 

𝜏𝜏 = 𝐽𝐽𝐿𝐿𝜃̈𝜃 + 𝐵𝐵𝐿𝐿𝜃̇𝜃 + 𝐾𝐾𝑠𝑠𝜃𝜃 (35) 

 

[𝑥̇𝑥1(𝑡𝑡)𝑥̇𝑥2(𝑡𝑡)]
= [

0 1
−𝐾𝐾𝑠𝑠
𝐽𝐽𝐿𝐿

0] [
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)]

+⁡[
0
1
𝐽𝐽𝐿𝐿
] 𝜏𝜏(𝑡𝑡) (36) 

 (35)

Now, assuming 1 20, ,LB x xθ θ= = = , the above 
differential equation can be rewritten as follows:

 

 

 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 Σ𝑗𝑗( 𝑘𝑘 ∣ 𝑘𝑘 ) = 

∂
∂𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)

∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1)𝐴𝐴𝑖𝑖𝑖𝑖
𝑇𝑇  

+∑ 
𝑀𝑀

𝑗𝑗≠1
𝑗𝑗≠𝑖𝑖

 {𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗} 

Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1){𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗}
𝑇𝑇

 

−2∑  
𝑀𝑀

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 𝐴𝐴𝑖𝑖𝑖𝑖Σ𝑗𝑗(𝑘𝑘 ∣ 𝑘𝑘 − 1){𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘)𝐶𝐶𝑗𝑗}
𝑇𝑇,

𝐿𝐿𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝐴𝐴𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑇𝑇[𝐶𝐶𝑗𝑗𝐶𝐶𝑗𝑗𝑇𝑇]
−1

 

(34) 

 

 

𝜏𝜏 = 𝐽𝐽𝐿𝐿𝜃̈𝜃 + 𝐵𝐵𝐿𝐿𝜃̇𝜃 + 𝐾𝐾𝑠𝑠𝜃𝜃 (35) 

 

[𝑥̇𝑥1(𝑡𝑡)𝑥̇𝑥2(𝑡𝑡)]
= [

0 1
−𝐾𝐾𝑠𝑠
𝐽𝐽𝐿𝐿

0] [
𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)]

+⁡[
0
1
𝐽𝐽𝐿𝐿
] 𝜏𝜏(𝑡𝑡) (36)  (36)

Therefore, by assuming 1LJ =  and 0.4sK =  and adding 
uncertainty and the effect of interaction of agents (links) on 
each other, the following general model is obtained for each 
agent:

 

 

[𝑥̇𝑥1,1(𝑡𝑡)𝑥̇𝑥1,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼1(𝑡𝑡)

−0.4 0 ] [𝑥𝑥1,1(𝑡𝑡)𝑥𝑥1,2(𝑡𝑡)]
+

[01] 𝑢𝑢1(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)

]

𝑦𝑦1(𝑡𝑡) = [1 0] [
𝑥𝑥1,1(𝑡𝑡)
𝑥𝑥1,2(𝑡𝑡)]

[𝑥̇𝑥2,1(𝑡𝑡)𝑥̇𝑥2,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼2(𝑡𝑡)

−0.4 0 ] [𝑥𝑥2,1(𝑡𝑡)𝑥𝑥2,2(𝑡𝑡)]
+

[01] 𝑢𝑢2(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥1,1(𝑡𝑡)
𝑥𝑥1,2(𝑡𝑡)]

+ [0 0
1 0] [

𝑥𝑥3,1(𝑡𝑡)
𝑥𝑥3,2(𝑡𝑡)]

𝑦𝑦2(𝑡𝑡) = [1 0] [
𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)]

[𝑥̇𝑥3,1(𝑡𝑡)𝑥̇𝑥3,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼3(𝑡𝑡)

−0.4 0 ] [𝑥𝑥1,1(𝑡𝑡)𝑥𝑥1,2(𝑡𝑡)]
+

[01] 𝑢𝑢3(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)]

𝑦𝑦3(𝑡𝑡) = [1 0] [
𝑥𝑥3,1(𝑡𝑡)
𝑥𝑥3,2(𝑡𝑡)]

(37) 

 

 

−1 ≤ 𝛼𝛼𝑖𝑖(𝑡𝑡) ≤ 1 (38) 

 (37)

 

 

[𝑥̇𝑥1,1(𝑡𝑡)𝑥̇𝑥1,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼1(𝑡𝑡)

−0.4 0 ] [𝑥𝑥1,1(𝑡𝑡)𝑥𝑥1,2(𝑡𝑡)]
+

[01] 𝑢𝑢1(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)

]

𝑦𝑦1(𝑡𝑡) = [1 0] [
𝑥𝑥1,1(𝑡𝑡)
𝑥𝑥1,2(𝑡𝑡)]

[𝑥̇𝑥2,1(𝑡𝑡)𝑥̇𝑥2,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼2(𝑡𝑡)

−0.4 0 ] [𝑥𝑥2,1(𝑡𝑡)𝑥𝑥2,2(𝑡𝑡)]
+

[01] 𝑢𝑢2(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥1,1(𝑡𝑡)
𝑥𝑥1,2(𝑡𝑡)]

+ [0 0
1 0] [

𝑥𝑥3,1(𝑡𝑡)
𝑥𝑥3,2(𝑡𝑡)]

𝑦𝑦2(𝑡𝑡) = [1 0] [
𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)]

[𝑥̇𝑥3,1(𝑡𝑡)𝑥̇𝑥3,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼3(𝑡𝑡)

−0.4 0 ] [𝑥𝑥1,1(𝑡𝑡)𝑥𝑥1,2(𝑡𝑡)]
+

[01] 𝑢𝑢3(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)]

𝑦𝑦3(𝑡𝑡) = [1 0] [
𝑥𝑥3,1(𝑡𝑡)
𝑥𝑥3,2(𝑡𝑡)]

(37) 

 

 

−1 ≤ 𝛼𝛼𝑖𝑖(𝑡𝑡) ≤ 1 (38) 

Since the suggested control approach is for systems with 
multifaceted uncertainty, the following 20% of variations 
around the present uncertain nominal values are taken into 
consideration:

 

 

[𝑥̇𝑥1,1(𝑡𝑡)𝑥̇𝑥1,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼1(𝑡𝑡)

−0.4 0 ] [𝑥𝑥1,1(𝑡𝑡)𝑥𝑥1,2(𝑡𝑡)]
+

[01] 𝑢𝑢1(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)

]

𝑦𝑦1(𝑡𝑡) = [1 0] [
𝑥𝑥1,1(𝑡𝑡)
𝑥𝑥1,2(𝑡𝑡)]

[𝑥̇𝑥2,1(𝑡𝑡)𝑥̇𝑥2,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼2(𝑡𝑡)

−0.4 0 ] [𝑥𝑥2,1(𝑡𝑡)𝑥𝑥2,2(𝑡𝑡)]
+

[01] 𝑢𝑢2(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥1,1(𝑡𝑡)
𝑥𝑥1,2(𝑡𝑡)]

+ [0 0
1 0] [

𝑥𝑥3,1(𝑡𝑡)
𝑥𝑥3,2(𝑡𝑡)]

𝑦𝑦2(𝑡𝑡) = [1 0] [
𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)]

[𝑥̇𝑥3,1(𝑡𝑡)𝑥̇𝑥3,2(𝑡𝑡)]
= [ 0 1 + 0.2𝛼𝛼3(𝑡𝑡)

−0.4 0 ] [𝑥𝑥1,1(𝑡𝑡)𝑥𝑥1,2(𝑡𝑡)]
+

[01] 𝑢𝑢3(𝑡𝑡) + [0 0
1 0] [

𝑥𝑥2,1(𝑡𝑡)
𝑥𝑥2,2(𝑡𝑡)]

𝑦𝑦3(𝑡𝑡) = [1 0] [
𝑥𝑥3,1(𝑡𝑡)
𝑥𝑥3,2(𝑡𝑡)]

(37) 

 

 

−1 ≤ 𝛼𝛼𝑖𝑖(𝑡𝑡) ≤ 1 (38)  (38)

The weight matrices for all regions are taken into 
consideration as 

ii nM I=  and 1iR = , with initial state 
( ) [ ]0 0.1 0 T

ix =  and 0.01iepsilon = , while designing 
the controller. The input condition is also for all areas 

( ) 4iu k n k+ ≤ .

4- 2- Simulation and Validation
The simulation results are shown in Figures 2-4. According 

to the simulation findings, the distributed technique performs 
the worst. The DMPC controller is unable to solve it because 
of the strong interaction impact, and the system converges. 
Additionally, the distributed technique has a relatively high 
average control cost, but the problem-solving time is much 
reduced since each region is handled separately. Considering 

Fig. 2. Simulation results with RD-LMPC, D-MPC, and centralized MPC: The 
control signal and state path for the first subsystem.
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Fig. 3. Simulation results with RD-LMPC, D-MPC, and centralized MPC: The 
control signal and state path for the second subsystem.

Fig. 4. Simulation results with RD-LMPC, D-MPC, and centralized MPC: The 
control signal and state path for the third subsystem.
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that the approach used in this research requires more 
computation time than the distributed mode, it performs almost 
as well as the centralized mode, allowing the cost of solving 
the sub-problems repeatedly and transferring information to 
be reduced. Control has been diminished to the same degree 
as the centralized approach. The RD-LMPC method is the best 
option because its computational load is insignificant despite 
the fact that the performance benefits and the control cost 
is low. Based on the instructions for this solution method, 
solving the problem centrally is almost impossible in practice 
for such a system and has high computational complexity.

4- 3- Comparison
As seen in the simulation results, the proposed method has 

better performance and stability compared to the distributed 
predictive control method (presented in references [12, 15]) 
and is very close to the centralized control performance. For 
further comparison, the 1  adaptive control method (see 
[30]) was tested on the studied system and its results are 
shown in Figure 5 along with the proposed method (for states 

1,1 1,2,x x ). As seen in Figure 5, the performance of the two 
methods is close to each other, but the proposed method has a 
smoother and better control signal. For a better evaluation, the 
cost value of the methods is also given in Table 1 according 
to the cost functions of the methods. As can be seen from this 

Fig. 5. Simulation results to compare the proposed method with the L1 adaptive method: 
The control signal and state path for the first subsystem.

table, the cost value of the proposed method is much closer 
to the centralized predictive control method, and according to 
the simulation results, it can be said that the proposed method 
has similar behavior to the centralized control method.

5- Conclusion
In this study, a novel robust distributed  asso-MPC 

algorithm (RD-LMPC) is proposed for LTV systems with 
polytopic uncertainty. There are M  state-coupled subsystems 
in the system. A robust LMPC has been made to reduce the 
over limit on the worst-case value of the objective function 
inside the polytope uncertainty. This is done by taking into 
account the polytope uncertainty. This approach views the 
control rule of each agent as a distinct feedforward interaction 
and state feedback form. This control input both assures the 
closed-loop system’s quadratic bound stability and reduces 
the undesirable impacts of surrounding subsystems. For the 
suggested LMPC to work, a distributed Kalman filter is also 
made to show predictors and interactions for each agent. This 
filter uses local data as well as measurements from nearby 
subsystems given by the network. To assess the efficacy of 
the proposed approach, it was compared to centralized MPC, 
distributed MPC, and 1  adaptive control techniques on a 
multi-robot system.
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Table 1. Comparison between cost values (mean).Table 1: Comparison between cost values (mean). 

Methods Cost value 

𝒞𝒞 −ℳ𝒫𝒫𝒫𝒫 6.17 

𝒟𝒟 −ℳ𝒫𝒫𝒫𝒫 6.67 

Proposed method (ℛ𝒟𝒟 − ℒℳ𝒫𝒫𝒫𝒫) 6.21 

 

 
References
[1] 	T. Gholaminejad, A. Khaki-Sedigh, and P. Bagheri, 

”Adaptive Tuning of Model Predictive Control 
Parameters Based on Analytical Results,” AUT  Journal 
of Modeling and Simulation, vol. 50, no. 2, pp. 109-116, 
2018.

[2] Q. Sun, K. Zhang, and Y. Shi, ”Resilient model predictive 
control of cyber–physical systems under DoS attacks,” 
IEEE Transactions on Industrial Informatics, vol. 16, no. 
7, pp. 4920-4927, 2019.

[3] S. Hashemipour, N. Vasegh, and A. Khaki Sedigh, 
”Decentralized Model Reference Adaptive Control of 
Large Scale Interconnected Systems with Both State and 
Input Delays,” AUT Journal of Modeling and Simulation, 
vol. 50, no. 1, pp. 3-12, 2018.

[4] Y. Zhu and E. Fridman, ”Predictor methods for 
decentralized control of large-scale systems with input 
delays,” Automatica, vol. 116, p. 108903, 2020.

[5] X.-B. Chen and S. S. Stankovi´c, ”Decomposition and 
decentralized control of systems with multi-overlapping 
structure,” Automatica, vol. 41, no. 10, pp. 1765-1772, 
2005.

[6] Z. Karami, Q. Shafee, Y. Khayat, M. Yaribeygi, T. 
Dragiˇcevi´c, and H. Bevrani, ”Decentralized model 
predictive control of DC microgrids with constant power 
load,” IEEE Journal of Emerging and Selected Topics in 
Power Electronics, vol. 9, no. 1, pp. 451-460, 2019.

[7] P. Ojaghi, N. Bigdeli, and M. Rahmani, ”An LMI 
approach to robust model predictive control of nonlinear 
systems with state-dependent uncertainties,” Journal of 
Process Control, vol. 47, pp. 1-10, 2016.

[8] C. Liu, H. Li, J. Gao, and D. Xu, ”Robust self-triggered 
min–max model predictive control for discrete-time 
nonlinear systems,” Automatica, vol. 89, pp. 333-339, 
2018.

[9] P. Ojaghi and M. Rahmani, ”LMI-based robust 

predictive load frequency control for power systems with 
communication delays,” IEEE Transactions on Power 
Systems, vol. 32, no. 5, pp. 4091-4100, 2017.

[10] S. Yu, M. Hirche, Y. Huang, H. Chen, and F. Allg¨ower, 
”Model predictive control for autonomous ground 
vehicles: A review,” Autonomous Intelligent Systems, 
vol. 1, no. 1, pp. 1-17, 2021.

[11]  D. R. Robinson, R. T. Mar, K. Estabridis, and G. Hewer, 
”An efcient algorithm for optimal trajectory generation 
for heterogeneous multi-agent systems in non-convex 
environments,” IEEE Robotics and Automation Let ters, 
vol. 3, no. 2, pp. 1215-1222, 2018.

[12] J. A. Preiss, W. H¨onig, N. Ayanian, and G. S. 
Sukhatme, ”Downwash- aware trajectory planning for 
large quadrotor teams,” in 2017 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS), 
2017:IEEE, pp. 250-257.

[13] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, ”Online 
trajectory generation with distributed model predictive 
control for multi-robot motion planning,” IEEE Robotics 
and Automation Letters, vol. 5, no. 2, pp. 604-611, 2020.

[14] R. A. Shalmani, M. Rahmani, and N. Bigdeli, ”Nash-
based robust distributed model predictive control for 
large-scale systems,” Journal of Process Control, vol. 88, 
pp. 43-53, 2020.

[15] S. Tang and V. Kumar, ”A complete algorithm for 
generating safe trajectories for multi-robot teams,” in 
Robotics Research: Springer, 2018, pp.599-616.

[16] R. Van Parys and G. Pipeleers, ”Distributed model 
predictive formation control with inter-vehicle collision 
avoidance,” in 2017 11th Asian Control Conference 
(ASCC), 2017: IEEE, pp. 2399-2404.

[17] L. Dai, Q. Cao, Y. Xia, and Y. Gao, ”Distributed MPC 
for formation of multi-agent systems with collision 
avoidance and obstacle avoidance,” Journal of the 
Franklin Institute, vol. 354, no. 4, pp. 2068-2085, 2017. 



H. Ahmadian et al., AUT J. Model. Simul., 55(1) (2023) 127-138, DOI: 10.22060/miscj.2023.22087.5312

138

[18] P. Wang and B. Ding, ”A synthesis approach of distributed 
model predictive control for homogeneous multi-agent 
system with collision avoidance,” International Journal 
of Control, vol. 87, no. 1, pp. 52-63, 2014.

[19] G. Xu, T. Long, Z. Wang, and J. Sun, ”Trust-region 
fltered sequential convex programming for multi-UAV 
trajectory planning and collision avoid ance,” ISA 
transactions, vol. 128, pp. 664-676, 2022.

[20] G. K. Larsen, N. D. Van Foreest, and J. M. Scherpen, 
”Distributed MPC applied to a network of households 
with micro-CHP and heat storage,” IEEE Transactions 
on Smart Grid, vol. 5, no. 4, pp. 2106-2114, 2014.

[21] Z. Feng, G. Wen, and G. Hu, ”Distributed secure 
coordinated control for multiagent systems under 
strategic attacks,” IEEE transactions on cyber- netics, 
vol. 47, no. 5, pp. 1273-1284, 2016.

[22] M. Gallieri, ”Principles of LASSO MPC,” in Lasso-
MPC–Predictive Control with L1-Regularised Least 
Squares: Springer, 2016, pp. 47-63.

[23] J. Zhan, Y. Chen, A. Aleksandrov, and X. Li, ”Robust 
distributed model predictive control based consensus 
of general linear multi-agent systems,” in 2019 IEEE 
International Symposium on Circuits and Systems 
(ISCAS), 2019: IEEE, pp. 1-5.

[24] H. Li and Y. Shi, ”Distributed model predictive control 
of constrained non- linear systems with communication 

delays,” Systems and Control Letters, vol. 62, no. 10, pp. 
819-826, 2013.

[25] A. Katriniok, B. Rosarius, and P. M¨ah¨onen, ”Fully 
distributed model pre- dictive control of connected 
automated vehicles in intersections: Theory and 
vehicle experiments,” IEEE Transactions on Intelligent 
Transportation Systems, 2022.

[26] C. D. Lellis and P. M. Topping, ”Almost-Schur lemma,” 
Calculus of Variations and Partial Di-erential Equations, 
vol. 43, pp. 347-354, 2012.

[27] R. Vadigepalli and F. J. Doyle, ”A distributed state 
estimation and control algorithm for plantwide 
processes,” IEEETransactions on Control Systems 
Technology, vol. 11, pp. 119-127, 2003.

[28] W. Hackbusch, Elliptic di-erential equations: theory and 
numerical treat-  ment. Springer, 2017.

[29] W. Alam, N. Ali, H. M. W. Aziz, and J. Iqbal, ”Control 
of flexible joint robotic manipulator: Design and 
prototyping,” in 2018 International Con- ference on 
Electrical Engineering (ICEE), 2018: IEEE, pp. 1-6.

[30] H. Ahmadian, M. Lotf, M. B. Menhaj, H. A. Talebi, 
and I. Sharif, ”A novel L1 adaptive-hybrid control with 
guaranteed stability for a class of uncertain nonlinear 
systems: A case study on SA330 Puma,” Journal of the 
Franklin Institute, vol. 359, no. 17, pp. 9860-9885, 2022.

HOW TO CITE THIS ARTICLE
H. Ahmadian, I. Sharifi, H. A. Talebi, Robust Distributed Robust Distributed ℒℒ asso-Model Predictive Control Design: A Case Study on 

Large-Scale Multi-Robot Systems 
                                       H. Ahmadian, I. Sharifi, H. A. Talebi 

Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran 
 

Abstract: 

The complexity and dynamic order of large-scale systems is continuously increasing. Considering the many 

challenges that exist for these systems, it is very important to provide a robust distributed controller that 

performs well against uncertainties, computation volume, and interaction between subsystems. A robust-

distributed ℒ asso-MPC (RD-LMPC) approach is suggested in this study for multi-robot systems in the 

presence of polytopic uncertainty. In addition, a distributed Kalman filter is used to capture interactions 

between subsystems. To evaluate and perform the effectiveness of the suggested approach, the results 

obtained on the multi-robot system are compared with the results of the predictive control methods of the 

centralized, distributed model, and L1 adaptive control}. 

Keywords: 

Distributed MPC, Large Scale Multi-Robot Systems, ℒ asso Regression, ℒ asso- MPC, Model Predictive 

Control (MPC), Robust MPC. 

 

 

                                                           
 Corresponding Author, Email: imansharifi@aut.ac.ir 

asso-Model Predictive Control De-
sign: A Case Study on Large-Scale Multi-Robot Systems, AUT J. Model. Simul., 55(1) (2023) 
127-138.

DOI: 10.22060/miscj.2023.22087.5312


