[1] Zhao X., Lee Y. Y. and Liew K. M., ‘‘Free vibrationan alysis of functionally graded plates using the element-free kp-Ritz method,’’Journal of Sound and Vibration, vol. 319, pp. 918–939, 2009.
[2] Liu G. R., Zhao X., Dai K. Y., Zhong Z. H., Li G.Y. and Han X. ‘‘Static and free vibration analysis
of laminated composite plates using the conforming radial point interpolation method,’’ Composites Science and Technology , vol. 68, pp. 354– 366, 2008.
[3] Belytschko T, Lu Y and Gu L. ‘‘Element-free Galerkin methods,’’ Int J Numer Methods Eng, vol. 37, pp. 229– 56, 1994.
[4] Liu G.R, Liu M.B. ‘‘Smoothed particle hydrodynamics: a meshfree particle method,’’ New Jersey: World Scientific, 2003.
[5] Liu W.K, Jun S and Zhang Y.F. ‘‘Reproducing kernel particle methods,’’ Int J Numer Methods Fluid , vol. 20, pp. 1081– 106, 1995.
[6] Batra R.C, Zhang G.M. ‘‘Analysis of adiabatic shear bands in elastothermo-viscoplastic materials by modified smoothed-particle hydrodynamics (MSPH) method,’’ J Comput Phys , vol. 201, pp. 172– 90, 2004.
[7] Atluri S. N, Zhu T. ‘‘A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,’’ Comput Mech , vol. 22, pp. 117–27, 1998.
[8] Chen J. K, Beraun J. E and Jih C. J. ‘‘Completeness of corrective smoothed particle method for linear elastodynamics,’’ Comput Mech, vol. 24, pp. 273– 85, 1999.
[9] Wang J. G, Liu G. R. ‘‘A point interpolation meshless method based on radial basis functions,’’ Int J Numer Method Eng , vol. 54, pp. 1623– 48, 2002.
[10] Bui T. Q., Nguyen M. N., ‘‘A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates,’’ Computers and Structures , vol. 89, pp. 380– 394, 2011.
[11] K.Y. Dai, G.R. Liu, X. Han and K.M. Lim. ‘‘Thermo mechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method,” Computers and Structures , vol. 83, pp. 1487– 1502, 2005.
[12] Kennedy J., Eberhart R. ‘‘Particle swarm optimization,’’ In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4. Perth, Australia, pp. 1942– 1948, 1995.
[13] Jiang J., Kwong C. K., Chen Z. and Ysim Y. C. ‘‘Chaos particle swarm optimization and T–S fuzzy modeling approaches to constrained predictive control,” Expert Systems with Applications, 2011.
[14] Marinaki M., Marinakis Y and Stavroulakis G. E., ‘‘Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization,” Expert Systems with Applications, vol. 38, pp. 6872–6883, 2011.
[15] Bachlaus M., Shukla N., Tiwari M. K. and Shankar R. ‘‘Optimization of system reliability using chaos-embedded self-organizing hierarchical particle swarm optimization,” Proceedings of the institution of mechanical engineers , vol. 220, pp. 77– 91, 2006.
[16] Chen J. S., Pan C., Wu C. T. and Liu W. K. ‘‘Reproducing kernel particle methods for large deformation analysis of nonlinear structures,’’ Computer Methods in Applied Mechanics and Engineering, vol. 139, pp. 195– 227, 1996.
[17] Liew K. M., He X. Q. and Kitipornchai S., ‘‘Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators,’’ Comput. Methods Appl. Mech. Energy., vol. 193, pp. 257–273, 2004.
[18] Touloukian, Y. S. Thermophysical Properties of High Temperature Solid Materials, Macmillian, New York, 1967.
[19] Reddy, J. N., Mechanics of Laminated composite plates and shells: Theory and Analysis, 2NdEd CRC Press, Boca Raton, London New York Washington, D.C 2004.
[20] Slotine J. J. E., Li, W., Applied Nonlinear Control, Prentice-Hall, Englewood Clifs, NJ, 1991.
[21] K. J. Astrom, B. Wittenmark, Adaptive Control, Addison-Wesley, New York, 1995.