[1] X. Bai, M. Wang, I. Lee, Z. Yang, X. Kong, F. Xia, Scientific paper recommendation: A survey, Ieee Access, 7 (2019) 9324-9339.
[2] J. Sun, J. Ma, Z. Liu, Y. Miao, Leveraging content and connections for scientific article recommendation in social computing contexts, The Computer Journal, 57(9) (2014) 1331-1342.
[3] M.S. Pera, Y.-K. Ng, Exploiting the wisdom of social connections to make personalized recommendations on scholarly articles, Journal of Intelligent Information Systems, 42(3) (2014) 371-391.
[4] K. Sugiyama, M.-Y. Kan, Serendipitous recommendation for scholarly papers considering relations among researchers, in: Proceedings of the 11th annual international ACM/IEEE joint conference on Digital libraries, 2011, pp. 307-310.
[5] F. Xia, H. Liu, I. Lee, L. Cao, Scientific article recommendation: Exploiting common author relations and historical preferences, IEEE Transactions on Big Data, 2(2) (2016) 101-112.
[6] W. Zhao, R. Wu, H. Liu, Paper recommendation based on the knowledge gap between a researcher's background knowledge and research target, Information processing & management, 52(5) (2016) 976-988.
[7] S. Alotaibi, J. Vassileva, Personalized Recommendation of Research Papers by Fusing Recommendations from Explicit and Implicit Social Network, in: UMAP (Extended Proceedings), 2016.
[8] Q. Wang, W. Li, X. Zhang, S. Lu, Academic paper recommendation based on community detection in citation-collaboration networks, in: Asia-Pacific web conference, Springer, 2016, pp. 124-136.
[9] X. Ma, R. Wang, Personalized scientific paper recommendation based on heterogeneous graph representation, IEEE Access, 7 (2019) 79887-79894.
[10] E. Jafari, B. Shams, S. Haratizadeh, ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network, in: 2021 12th International Conference on Information and Knowledge Technology (IKT), IEEE, 2021, pp. 112-118.
[11] X. Ma, Y. Zhang, J. Zeng, Newly published scientific papers recommendation in heterogeneous information networks, Mobile Networks and Applications, 24(1) (2019) 69-79.
[12] K. Haruna, M.A. Ismail, A.B. Bichi, V. Chang, S. Wibawa, T. Herawan, A citation-based recommender system for scholarly paper recommendation, in: International Conference on Computational Science and Its Applications, Springer, 2018, pp. 514-525.
[13] N. Sakib, R.B. Ahmad, K. Haruna, A collaborative approach toward scientific paper recommendation using citation context, IEEE Access, 8 (2020) 51246-51255.
[14] J. Son, S.B. Kim, Academic paper recommender system using multilevel simultaneous citation networks, Decision Support Systems, 105 (2018) 24-33.
[15] W. Waheed, M. Imran, B. Raza, A.K. Malik, H.A. Khattak, A hybrid approach toward research paper recommendation using centrality measures and author ranking, IEEE Access, 7 (2019) 33145-33158.
[16] G. Guo, B. Chen, X. Zhang, Z. Liu, Z. Dong, X. He, Leveraging title-abstract attentive semantics for paper recommendation, in: Proceedings of the AAAI conference on artificial intelligence, 2020, pp. 67-74.
[17] L. Berkani, R. Hanifi, H. Dahmani, Hybrid recommendation of articles in scientific social networks using optimization and multiview clustering, in: International Conference on Smart Applications and Data Analysis, Springer, 2020, pp. 117-132.
[18] G. Wang, X. He, C.I. Ishuga, HAR-SI: A novel hybrid article recommendation approach integrating with social information in scientific social network, Knowledge-Based Systems, 148 (2018) 85-99.
[19] M. Alfarhood, J. Cheng, CATA++: A collaborative dual attentive autoencoder method for recommending scientific articles, IEEE Access, 8 (2020) 183633-183648.
[20] T. Cai, H. Cheng, J. Luo, S. Zhou, An efficient and simple graph model for scientific article cold start recommendation, in: International Conference on Conceptual Modeling, Springer, 2016, pp. 248-259.
[21] W. Liu, L. Lü, Link prediction based on local random walk, EPL (Europhysics Letters), 89(5) (2010) 58007.
[22] N. Lao, W.W. Cohen, Fast query execution for retrieval models based on path-constrained random walks, in: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, 2010, pp. 881-888.
[23] C. Shi, X. Kong, Y. Huang, S.Y. Philip, B. Wu, Hetesim: A general framework for relevance measure in heterogeneous networks, IEEE Transactions on Knowledge and Data Engineering, 26(10) (2014) 2479-2492.
[24] S. Lee, S. Lee, B.-H. Park, Pathmining: A path-based user profiling algorithm for heterogeneous graph-based recommender systems, in: The Twenty-Eighth International Flairs Conference, 2015.
[25] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation ranking: Bringing order to the web, Stanford InfoLab, 1999.
[26] T.H. Haveliwala, Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search, IEEE transactions on knowledge and data engineering, 15(4) (2003) 784-796.
[27] A. Balmin, V. Hristidis, Y. Papakonstantinou, Objectrank: Authority-based keyword search in databases, in: VLDB, 2004, pp. 564-575.
[28] M. Gori, A. Pucci, V. Roma, I. Siena, Itemrank: A random-walk based scoring algorithm for recommender engines, in: IJCAI, 2007, pp. 2766-2771.
[29] S. Lee, S. Park, M. Kahng, S.-g. Lee, PathRank: Ranking nodes on a heterogeneous graph for flexible hybrid recommender systems, Expert Systems with Applications, 40(2) (2013) 684-697.
[30] Z. Jiang, H. Liu, B. Fu, Z. Wu, T. Zhang, Recommendation in heterogeneous information networks based on generalized random walk model and bayesian personalized ranking, in: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 2018, pp. 288-296.
[31] Y. Sun, J. Han, X. Yan, P.S. Yu, T. Wu, Pathsim: Meta path-based top-k similarity search in heterogeneous information networks, Proceedings of the VLDB Endowment, 4(11) (2011) 992-1003.
[32] N. Li, Y. Yu, Z.-H. Zhou, Diversity regularized ensemble pruning, in: Joint European conference on machine learning and knowledge discovery in databases, Springer, 2012, pp. 330-345.
[33] C. Wang, D.M. Blei, Collaborative topic modeling for recommending scientific articles, in: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011, pp. 448-456.
[34] H. Liu, Z. Jiang, Y. Song, T. Zhang, Z. Wu, User preference modeling based on meta paths and diversity regularization in heterogeneous information networks, Knowledge-Based Systems, 181 (2019) 104784.
[35] R. Pan, Y. Zhou, B. Cao, N.N. Liu, R. Lukose, M. Scholz, Q. Yang, One-class collaborative filtering, in: 2008 Eighth IEEE International Conference on Data Mining, IEEE, 2008, pp. 502-511.
[36] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, arXiv preprint arXiv:1205.2618, (2012).
[37] S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747, (2016).
[38] R. Ying, R. He, K. Chen, P. Eksombatchai, W.L. Hamilton, J. Leskovec, Graph convolutional neural networks for web-scale recommender systems, in: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 974-983.
[39] H. Wang, B. Chen, W.-J. Li, Collaborative topic regression with social regularization for tag recommendation, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
[40] N. Chiluka, N. Andrade, J. Pouwelse, A link prediction approach to recommendations in large-scale user-generated content systems, in: European Conference on Information Retrieval, Springer, 2011, pp. 189-200.
[41] Y. Shi, M. Larson, A. Hanjalic, Unifying rating-oriented and ranking-oriented collaborative filtering for improved recommendation, Information Sciences, 229 (2013) 29-39.