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Tilt estimation using pressure sensors for unmanned underwater vehicle navigation
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ABSTRACT: Since the Unmanned Underwater Vehicles (UUVs) don’t receive the Global Navigation 
Satellite System (GNSS) signals under the water, other aided measurements are needed to provide the 
required accuracy in tilt estimation including roll and pitch angle estimation. Conventional approaches 
for pressure-based tilt estimation, only consider the relation between the static pressure and the tilt as the 
measurement model. However, the performance of this approach depends on the dynamic pressure which 
is caused by the sea waves. This paper improves the accuracy of pressure-based tilt estimation using the 
more accurate of the measurement model. Also, the proposed approach considers the coupling between 
the axes of UUV. Due to the cost of the approach and the hardware limitations of installation pressure 
sensors, the proposed approach is implemented using two pressure sensors. An Extended Kalman 
Filter (EKF) is used for simultaneous tilt and gyroscopes measurement errors estimation. A Monte-
Carlo simulation is developed to evaluate the performance of the proposed approach in comparison with 
INS only and the conventional static pressure-based tilt estimation. The simulation results show that 
tilt estimation performance of conventional approach is better than the INS only performance and the 
performance of proposed approach is better than the both of them.

Review History:

Received: Jul. 10, 2022
Revised: Dec. 04, 2022
Accepted: Dec. 19, 2022
Available Online: Feb. 28, 2023

Keywords:

Pressure sensor

static and dynamic pressure

tilt estimation

Extended Kalman filter

unmanned underwater vehicle.

161

1- Introduction
INS is one of the main systems for UUV navigation. Due 

to incremental orientation error of INS, auxiliary sensors 
are used to reduce orientation error [1]. Using GNSS and 
Doppler Velocity Logger (DVL) are common approaches 
to decrease this error. But, DVL has dimensional and 
technological limitations and GNSS signals aren’t received 
under water. Also, there are some approaches to improve yaw 
angle estimation such as using magnetometer [2], but these 
approaches cannot be used for tilt estimation improvement. 
Using pressure sensors is one of the suitable methods for this 
purpose.

There are some researches which use pressure sensors to 
measure orientation. In [3] a method for attitude estimation is 
proposed which utilizes the depth and velocity measurement. 
Then orientation is calculated using pressure and velocity 
measurement. Needing velocity measurements is the problem 
with this method which should be measured with velocity 
instruments such as DVL. In [4], tilt is estimated using a 
group of pressure sensors and minimum least square error 
method. In this research the estimation of tilt is improved 
by optimization of pressure sensors configuration based on 
Cramer-Rao lower bound. In [5], four pressure sensors have 
been placed on a cross-section of Autonomous Underwater 
Vehicle (AUV). The relationship between the measurements 

of pressure sensors and tilt has been established, based on the 
theoretical analysis. In this research, a multi-sensor integrated 
system of AUV combined with tri-axial gyroscope, magnetic 
compass and pressure sensor array has been designed. In [4] 
and [5], only static pressure has been considered and this causes 
inaccuracy when the dynamic of environment increases. In 
[6], an Artificial Lateral Line Sensor (ALLS) system based 
on a pressure sensor array is proposed to perform pitch 
motion perception for AUVs. The proposed ALLS system has 
been fabricated in the fish robot. Then sensing experiments 
in the conditions of different pitch motions of the robot is 
conducted and the experimental measurements are compared 
with numerical simulation results. This research uses a lot 
of pressure sensors to perform pitch motion perception and 
the cost and the complexity of the method is increased. More 
important, this method just performs pitch motion perception 
and tilt can’t be estimated. In [7], the uncertainty study of a 
pressure sensor underwater system MEMS is addressed and 
is showed which the accuracy of inertial system relates to 
the distance of pressure sensors. Research [7] has distance 
limitation in arranging pressure sensors and the configuration 
is depended on hardware of the platform. Also, simultaneous 
rotations around different axis of UUV have been neglected 
in this research.

All the cited researches focused on static pressure and they 
have installation limitations and neglecting the simultaneous 
rotations around different axis. Also, there are a few works in 
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this field, so this can be an appropriate field for researching. In 
this research, static pressure, and the dynamic of sea waves are 
taken into account. These increase the accuracy of approach 
in high dynamic environments. Also, the proposed approach 
just uses two pressure sensors due to installation limitations 
and the cost of method. In other words, this paper wants to 
solve tilt accurate estimation problem without using auxiliary 
sensors such DVL and GNSS. The proposed approach can be 
used to estimate tilt of UUVs in many applications. We test 
the proposed method in an UUV navigation simulation loop 
which estimates gyroscope bias and orientation and explain 
this loop in detail in section  6.

The main contributions of the paper can be summarized 
as follows:

Improvement of UUV navigation with pressure sensors
Increase accuracy of the UUV navigation by considering 

dynamic pressure in tilt estimation
Propose a low-cost method using two pressure sensors
The rest of this paper is organized as follows. Section 

 2 describes the problem statement of paper. Section  3 and 
 4 describes the system model and measurement model, 
respectively. Section  5 stands for the state estimation filter 
and explain the tilt estimation using the pressure sensors. 
Simulation results investigate in section  6 and section  7 
concludes the paper.

2- Problem Statement
In this section the concepts of tilt estimation using pressure 

sensors is described. First, we introduce the reference frames 
used in the text including inertial frame (i-frame), earth 
frame (e-frame), navigation frame (n-frame) and body frame 
(b-frame) as illustrated in Fig. 1 [8].

The purpose is estimation of tilt in the lake of 

technological limitations of accurate speed sensors and 
GNSS signals under water. So, we need to estimate tilt by 
pressure sensors. The pressure sensors dispose the static and 
dynamic pressure of water. But, the conventional approaches 
only consider the relation between the static pressure and the 
tilt as the measurement model and this causes inaccuracy in 
tilt estimation. Also, due to cost limitations and installation 
limitations of pressure sensors in an UUV, the proposed 
approach just use two pressure sensors. The accuracy of 
sensors installation place affects on the accuracy of tilt 
estimation. Then, the best place for sensors installation 
is under the UUV. Increasing the distance of the pressure 
sensors improves the accuracy estimation of tilt. Also, due 
to the effect of hydrodynamic disturbance in measurements, 
the two sensors should be installed away from nose and tail 
on a flat place of the UUV. Considering these explanations, 
the sensors have been installed in the bottom of UUV in the 
direction of longitudinal-axis as shown in Fig. 2.

In Fig. 2, The origin of the body frame (point ) is located 
on the center of UUV.  and are the position of the sensors 1 and 
2 in the body frame, respectively. In the proposed approach, 
total measured pressure has a nonlinear relationship with tilt. 
So, EKF is an appropriate estimator for tilt estimation. The 
block diagram of proposed approach is illustrated in Fig. 3.

As shown in Fig. 3, total pressure is measured by pressure 
sensors and these measurements are used in EKF for tilt 
estimation. Estimated tilt can be used for UUV navigation to 
increase the accuracy of the navigation. In sections  3 to  5 we 
explain the implementation for tilt estimation.

3- System Dynamic
System dynamic includes tilt dynamic model. Therefore, 

the state vector is constituted by tilt as follows:

 
 

Fig. 1. Reference frames in the inertial navigation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Reference frames in the inertial navigation
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Where, Pφ  and Pθ  stands for roll and pitch angle, 

respectively. Dynamic model of roll angle describes as (2) 
[9]:
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In (2), [ ]Tp q r is the output of UUV gyroscope in 

body frame. Also, pitch angle dynamic model is as follows 
[9]:
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So, the dynamic of system is defined as:
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Where, PQ is the covariance matrix of the system 

dynamic and considering (2) and (3), ( ),Pg X u  and  can 

be defined as:
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4- Measurement System

This section describes measurement system including 
pressure sensors measurement. So, the measurement vector 
is constituted as:
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Where, 

1sensorP and 
2sensorP are the measured pressure 

by sensor 1 and 2, respectively. As mentioned in section  1, 
static and dynamic pressures have been considered together. 
Therefore, pressure sensor measurement can be model as 
follows:
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In (7), 0P  is sea level pressure and is almost equal to  
Pascale, staticP is the static pressure due to the depth of sensor 

 
 

Fig. 2. Installation place of two sensors in UUV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Installation place of two sensors in UUV

 
Fig. 3. Block diagram of proposed approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Block diagram of proposed approach
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and dynamicP is the dynamic pressure due to the effect of sea 
wave dynamic. staticP can be modeled as follows [10]:
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Where, ρ , g and d are the density of sea water, gravity 
acceleration and depth of UUV, respectively. Also, the 
dynamic pressure describes as [11]:
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Where, A is the altitude of sea waves, k is the numbers 
of sea wave in length of x , ω  is the angular frequency and  
t  is time. Eq. (9) can be summarized as (10) due to the less 
effect of sinusoidal term [11]:
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So, the measurement system is defined as follows:
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PR is the measurement covariance matrix and ( )Ph X  

can be defined with expanding (7). Eq. (8) and (10) can be 
considered for expanding (7) as:
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for the position vector of ith sensor and the position vector 
of body frame origin in navigation frame, respectively. Also, 
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Consequently, the depth of ith sensor can be calculated by 
(14) as:
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Considering (12) and (15), sensorP  for the ith sensor is as 
(16):
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Accordingly, ( )Ph X  can be defined as:
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5- State Estimation Filter

Due to nonlinearity of tilt dynamic model and measurement 
system, EKF applied as state estimation filter. Then, the 
EKF formulation is defined in two steps as prediction and 
correction phase [12].
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Where G and H matrices for EKF can be calculated as 
follows:
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In (19), k index is the time. Consequently, G and H
matrices are as follows:
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In (20), Pφ , Pθ , P̂φ  and P̂θ stand for the last estimated 
roll, estimated pitch, predicted roll and predicted pitch angle, 
respectively.

6- Simulation Results
As mentioned in section  1, the proposed approach is tested 

in an UUV navigation simulation loop illustrated in Fig. 4.
As shown in Fig. 4, the true angular velocity and 

acceleration in body frame are used for gyroscope and 
acceleration sensor model and generating reference data. 
Velocity and position measurement which use in integration 
with Kalman Filter, have been generated by difference of 
GNSS and INS position and velocity. Estimated tilt from 
pressure sensor and measured yaw angle from magnetometer 
are the other measurements which are used in integration with 
Kalman Filter. The Estimated gyroscope bias is used to correct 
angular velocity measurement. Also, the estimated position 
error and velocity error are used to correct INS position and 
INS velocity, respectively. As mentioned in section  1, the 
GNSS signals aren’t received under water. So, UUV needs 
to come up for estimation of position error and velocity error. 
But, we can estimate orientation and gyroscope bias using 
pressure sensors and magnetometer all the time.

We use quaternion method [13] in the implementation of 
UUV navigation by KF. In the simulation, the estimation result 
using proposed approach has been compared with conventional 
approach in paper [4] and [5] (which only considers static 
pressure in measurement model) and INS-only estimation. 
The evaluation of the proposed and conventional approach 
has been done based on the block diagram of Fig. 4. In this 
block diagram, the integration of roll and pitch estimation 
result and INS output has been demonstrated. It is expected 
both of conventional and proposed approach can prevent roll 
and pitch error increasing respect to INS-only and including 
dynamic pressure in proposed approach can improve the 
result. In the simulation, the position values of sensor 1 and 
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2 are [ ]1 1 1 1.4 0 0.25
T T

b b bx y z  = − −   (meter) and 
[ ]2 2 2 1.4 0 0.25

T T
b b bx y z  = −   (meter), respectively 

and A = 1 (meter), ( )31000 kg mρ = , k = 1 (1/meter) and 
( )29.8 meter sg = . Also, 

13 130.1nav ×= ×Q I , 
10 100.1nav ×= ×R I  

(used in UUV navigation), 
2 20.1P ×= ×Q I , 

2 20.1P ×= ×R I  
(used in tilt estimation) and the diameter of UUV is 0.5 
(meter). Furthermore, the estimation initial values of state 
vectors and the estimation covariance matrices considered as 

[ ] ( ) ( ) ( )1 3 1 31 0 0 0 2 meter 10 10 1 meter deg s
T

nav × ×
  = ×   

 X I 0
, 13 130.1nav ×= ×P I  and 

2 1P ×=X 0 , 
2 20.1P ×= ×P I  for UUV 

navigation (using KF) and tilt estimation (using EKF), 
respectively. The model values of gyroscope bias are 
considered 0.05, 0.03 and 0.04 (deg/s) along x-axis, y-axis 
and z-axis, respectively. The trajectory simulation of UUV 
is shown in Fig. 5 for 10 seconds. The red point in Fig. 5 is 
the start point of trajectory. The depth changes of trajectory 
have been considered from -4 to -2.5 meter due to variety of 
pressure measurement.

Simulation results of UUV tilt and yaw angle estimation 
are illustrated in Fig. 6 to Fig. 8. It can be seen from Fig. 
6 which the measured roll angle by INS only (the red line) 
are diverged from the model values and finally has 40 degree 

errors. Although, the estimation roll angle using conventional 
static pressure (the green line) cannot track the model values 
and has 3 degree errors from the model values at the end of 
simulation. The estimated roll angle using proposed approach 
(the blue line) can track the model values. Similarly, Fig. 6 
shows which the measured pitch angle by INS is diverged from 
the model values and has 20 degree errors after 10 seconds. The 
estimated pitch angle using conventional approach is diverged 
from the model values and almost has 1 degree error after 
10 seconds. The estimated pitch angle by proposed approach 
can track the model values, correctly. As referred, the yaw 
angle has been estimated using magnetometer measurement. 
Considering Fig. 8 the yaw angle measured by the INS has 
almost 30 degree errors at the end of simulation, but the 
estimated values are converged to the model values. Therefore, 
the simulation results of orientation estimation are satisfied.

Due to using quaternion method in UUV navigation 
[14], the three times of standard deviation ( 3σ ) and the 
quaternions estimation error ( 1q to 4q ) are illustrated in Fig. 
9. All of the estimation errors and 3σ  bounds are converged. 
So, the performance of proposed approach is satisfying.

Simulation results of the UUV gyroscope bias around x, 

 
Fig. 4. UUV navigation simulation loop 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. UUV navigation simulation loop
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Fig. 5. UUV trajectory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. UUV trajectory

 
Fig. 6. Simulation results of roll angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Simulation results of roll angle
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Fig. 7. Simulation results of pitch angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Simulation results of pitch angle

 

 
Fig. 8. Simulation results of yaw angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Simulation results of yaw angle
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y and z-axis are illustrated in Fig. 10 to Fig. 12. It can be 
seen from the results which the value of estimation errors 
and 3σ  bounds have been converged. Also, there is no 
noise in gyroscope bias estimation, because the modeling of 
gyroscope bias is constant during the time and the uncertainty 
of gyroscope measurement simulation is low.

A Monte-Carlo simulation is applied for 200 consecutive 
runs and the RMS error of estimation is gathered in Table 1. 
According to Table 1, by using conventional static pressure 
approach the estimated RMSE of roll angle is much less than 
the measured RMSE by INS. But, the estimated RMSE of roll 
angle by proposed approach is converged to zero. Also, The 

RMSE of pitch angle which only measures by INS is more 
than the estimated RMSE of conventional approach and the 
estimated RMSE of pitch angle using proposed approach is 
converged to zero. The RMSE of yaw angle which measures 
by INS is more than conventional approach and the RMSE of 
conventional approach is more than the RMSE of proposed 
approach. As referred, we used quaternion method for UUV 
navigation. Then, the KF uses quaternion observation and 
we must convert the orientation observation to quaternion 
observation. Accordingly, in the conventional approach, 
tilt observation effect on the yaw angle observation and the 
estimation error increases.

 
Fig. 9. The quaternions estimation error with 3𝜎𝜎 bound 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The quaternions estimation error with 3σ bound

 

 
Fig. 10. Simulation results of gyroscope bias in x direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Simulation results of gyroscope bias in x direction
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Fig. 11. Simulation results of gyroscope bias in y direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Simulation results of gyroscope bias in y direction

 
Fig. 12. Simulation results of gyroscope bias in z direction 

 

 

 

 

Fig. 12. Simulation results of gyroscope bias in z direction
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Table 1. RMSE of 200 runs Monte-Carlo simulationTable 1. RMSE of 200 runs Monte-Carlo simulation 

State (unit) 
RMSE 

INS only Conventional approach Proposed approach 

Roll angle (deg) 21.6847 1.6223 0.0808 

Pitch angle (deg) 11.4442 5.6186 0.0503 

Yaw angle (deg) 16.5894 1.1129 0.0636 
Gyroscope bias in x 

direction (deg/s) ----- 0.0119 0.0072 

Gyroscope bias in y 
direction (deg/s) ----- 0.0303 0.0043 

Gyroscope bias in z 
direction (deg/s) ----- 0.0072 0.0058 

 

7- Conclusion
This paper deals with estimation of tilt based on pressure 

sensors for UUV navigation. The proposed approach considers 
the relation between the static and the dynamic pressure caused 
by the sea waves and the tilt angle as the measurement model. 
This causes high accuracy in pressure sensor simulation 
especially when the dynamic of environment increases. Tilt 
was estimated using pressure measurements and EKF. These 
estimations with magnetometer and GNSS data were used 
as measurements in an UUV navigation simulation loop and 
orientation and gyroscope bias was estimated. Tilt simulation 
results show that the proposed approach is effective to 
estimate tilt. However, conventional approach had error and 
INS measurements diverged from the model values. Also, the 
simulation results of gyroscope bias were satisfied and the 
estimations error value was converged. Moreover, a Monte-
Carlo simulation developed based on the 200 consecutive 
runs and the RMSE of the estimations presented. The tilt 
estimation using conventional approach had RMSE but, using 
proposed approach the RMSE converged to zero. Although, 
we used GNSS to measure velocity measurements, but the 
velocity of UUV can be estimated using pressure sensors and 
this is proposed for related future research.
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