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ABSTRACT

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy 
efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern 
generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal 
system by means of a leg - like mechanical system called stretchable pendulum, and an adaptive frequency nonlinear 
oscillator as a CPG unit. The stretchable pendulum is a simple oscillating mass - spring mechanism that interacts with 
the ground during its oscillations, and this interaction begins with a collision. Interaction with the ground causes the 
model to involve in two dynamic phases that are switched to each other through transition events. This hybrid model 
is very similar to models have been proposed for the legged locomotion mechanisms. Then, it will be simulated in 
coupling with an adaptive frequency Hopf oscillator as a controller placed in feedback loop. The simulation results 
reveal that this scheme is able to excite the mechanical system in an energy efficient pattern by way of exploiting 
resonance phenomenon. Also, adaptation of the system against the environmental changes is examined and it is seen 
that the controller is able to find the resonant mode after the changes were made.
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1- INTRODUCTION

Investigation on bio - inspired systems and specially 
locomotion mechanisms is one of the most interesting 
fields in robotics and bio - engineering. Plenty of 
researches and patents are developed to aim at imitating 
the animal anatomy functions and exploiting these 
models for various purposes such as rehabilitation 
devices, exploration missions, search and rescue, etc.

Any type of locomotion is performed based on 
two main features: “periodic body movements” that 
generate propulsion through “interactions with the 
ground” [1]. According to these facts, many arguments 
about locomotion are issued in robot design and 
control, including: dynamic modeling of locomotion 
mechanism and planning a feedback controller to obtain 
the desired features in motion [2] - [5], adaption ability 
for advancing in various operating conditions [5] - [6], 
having the maximum energy efficiency [7] - [8], etc. 
Among these efforts, attention to the legged locomotion 
and especially bipedal mechanisms seems to have been 
highlighted. Briefly, in legged locomotion mechanisms, 
during a complete step, each leg follows two continuous 
phases called swing and stance phases that are switched 
to each other by an impact event. Thus, walk is formed 
through swapping these phases between the legs that are 
consecutively repeated. Interaction with environment is 
done when a leg relies on the ground during its stance 
phase.

One of the most applied methods to generate the 
trajectories and control the legged robots is inspiration 
of biological procedure. Rhythmic motions in animals’ 
locomotion pattern, such as walking and swimming, are 
produced by a central nervous system that is referred to 
as CPG (central pattern generator). The CPG is often 
modeled as an oscillatory network that translates the 
commands coming from higher centers to periodic 
signals to generate a locomotion pattern [9]. These 
signals are indeed used to drive the muscles and produce 
the cyclic body movements. The sensory feedback from 
the muscles in turn modifies the CPG outputs when 
changes occur in the environment. Thus, the CPG is a 
feedback controller placed within the feedback loop to 
adaptively generate a reference trajectory [10].

Two essential features for CPG model are addressed 

in the literatures that are remarkable: first, the ability 
to adapt with a changing environment, and the second, 
the energy efficiency by exploiting the mechanical 
resonance such that rhythmic activity becomes 
resonant with the oscillation of the limbs. For instance, 
the cycle period of human walking would be related to 
the natural frequency of the leg as a pendulum [1]. Thus 
many researches have been done to model the CPG 
units and networks in neuroscience, and also applying 
those to generate the trajectories in the robotics. It is 
worth to mention that from a dynamical systems point 
of view, locomotion becomes the limit cycle behavior 
that is generated through the interactions among 
the robot dynamics, the oscillator dynamics, and the 
environment [11].

Generally there are two frameworks to model the 
CPG: one item is neuron based CPG models that the most 
famous model of this category is known as Matsuoka 
leaky - integrator model, and the other is nonlinear 
oscillators CPG models. Both models exhibit very 
similar limit cycle behaviors, however using a nonlinear 
oscillator instead of neural model has the benefit of 
reducing the number of state variables and parameters 
in the model, and therefore it would be more suitable 
for the implementation using small microcontrollers, 
which have very small amounts of memory and limited 
computing speeds [12].

In this research, we attend to examine an adaptive 
learning rule that is inspired from biological neurons 
behavior and is modeled by a nonlinear oscillator, 
whose most important function is finding the resonance 
frequency of the mechanical system in order to 
minimize the amount of energy that needs to be applied 
for obtaining an oscillating motion. This idea has 
been implemented in several bio - robot prototypes 
by Ijspeert and his postgraduate students [12] - [14]. 
Thus, we follow a template that addressed by our 
previous research to simulate the legged locomotion. 
This template is a simple oscillating mass - spring 
mechanism that has interaction with the ground during 
its oscillations, while this interaction begins with a 
collision. It has been originated by incorporating the 
spring - mass and pendulum models, both of which are 
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extremely exploited as templates for legged locomotion 
[15]. Here, we are not concerned with the details of 
the legged locomotion and only want to emphasize its 
essential dynamical features until the performance of 
the proposed control procedure is validated through this 
simple template.

According to the above preamble, the contributions 
of the present work are concerned with two objectives: 
(a) modeling and simulating the described stretchable 
pendulum having a hybrid dynamic model as a template 
for the legged locomotion; (b) by placing the Hopf 
nonlinear oscillator in the feedback control loop, it is 
tried to show that the oscillator’s frequency tends to 
track the resonance frequency of the mechanical system 
through entrainment among the nonlinear dynamic 
models of the mechanical system and the Hopf oscillator 
that has possessed the role of a controller. Also, ability of 
the controller to adapt with changes that may suddenly 
happen in characteristics of the mechanical system is 
examined.

The remaining of the paper is organized as follows: 
In section 2, the stretchable pendulum is described and 
its mathematical model is derived. In section 3, the 
dynamics of the Hopf nonlinear oscillator, and also an 
adaptive learning rule to synchronize the mechanical 
system and the nonlinear oscillator are explained. 
The simulation results are reported in section 4. The 
conclusion and suggestions are presented at the end.

2- MATHEMATICAL  MODELLING

Our stretchable pendulum (SP) is consisted of a 
rigid rod that oscillates in vertical plane, in addition to 
a linear spring embedded between the end of the rod and 
a mass ball as a heel. A perfect cycle of the pendulum 
oscillations is performed if it could pass three stages 
during its backward swinging. As it is depicted in Figure 
1(a), from right to left, backward swinging begins by 
free motion over the ground up to collide with it (stage I). 
The collision event causes sudden changes in velocity 
quantities and for the sake of this fact dynamical model 
describing the pendulum motion will be discontinuous. 
Afterwards, the heel of the pendulum is constrained 
to scuffing on and interacting with the ground (stage 

II). It is desired that the heel of the pendulum slides 
continuously on the flat ground until it reaches the 
point where the spring is uncompressed and takes off 
smoothly which is called the separation point (stage III). 
By continuing the motion, when the pendulum attains 
the maximum tilt, after an instantaneous halt, begins its 
onward swinging. In this stage of motion it is considered 
the pendulum is free of collision and interaction with the 
ground. This assumption is nonphysical and has been 
taken for the sake of simulating a step motion of a leg in 
walking; although it can be realized via compressing the 
spring or embedding a folding joint like a knee.

It is mentioned that, in general, the SP mechanism has 
two degrees of freedom (DoFs), which is reduced to one 
when the SP is constrained to slide on the ground during 
stage II. Hence, equations of motion for the SP consist 
of two continuous differential equations, which are 
consecutively switched to each other when a transition 
event takes place, according to the scheme shown in 
Figure 1(b). From mathematical point of view, such a 
mechanical system possesses a hybrid dynamic model.

In order that the SP is able to take off after passing 
stage II, it should retain enough amount of energy extra 
to the amount of loses due to the collision and friction. 
It is obvious that it will ceases before meeting the 
separation point if the energy is used up earlier. If such 
a situation happens during simulation of the oscillations 
the contact between the heel and the ground will be 
neglected afterward, and the pendulum is permitted to 
begin a free swing with initial conditions given by the 
last state values in the previous stage. Consequently, 
transition from scuffing mode to swing mode can 
happen either at the separation point or when the energy 
vanishes. The mentioned conditions are respectively 
detected if either the horizontal position of the heel 
during the backward swinging gets xmax= -  (l0

2 - (l0-e)2  
or the angular velocity of the pendulum becomes zero; 
where l0 and e are defined according to Figure 1(a). 
Recalling that the separation point was regarded as the 
place where the spring reaches to its free length. Thus, 
the distance between the hinge and the heel is generally 
noted by l , whose value at the free length of the spring 
is referred to as l0. These notations can also be related 
by l=l0+ r , where r denotes the displacement of the heel 



Amirkabir International Journal of  Science& Research
 (Modeling, Identification, Simulation & Control)

(AIJ-MISC)

M. R. Sayyed Noorani, A. Ghanbari, M. A. Jafarizadeh

50 Vol. 45, No. 1, Spring 2013

with respect to the free length of the spring.

Figure 1: (a) The stretchable pendulum during its backward 
swinging [15]. (b) The graph of the motion sequences in a perfect 

cycle of the oscillations.

Let us select q = [r,θ]T as generalized coordinates for 
derivation of the equations of motion of the SP; where θ  
denotes the tilt angle of the pendulum. It’s assumed that the 
pendulum rod is massless, and then the total mass, denoted 
by m , is lumped into the heel. As mentioned, the dynamic 
model for such a system is not continuous and collision causes 
a sudden change in velocity values while the displacement 
values remain smooth. Assuming that the collision occurs 
instantaneously without any rebound, it can be modeled 
as a plastic impact with a zero coefficient of restitution. 
This way we can calculate the velocity values just after the 
collision in terms of the state values just before it. Let us use 
the superscripts‘ - ’and ‘+’ to differentiate between the priori 
and posteriori values with respect to the collision moment in 
the notations. Since after the collision the heel is constrained 
to move horizontally, then the vertical component of its 
velocity is vanished, i.e. vy

+= v+∙ j=0 Now, if it is assumed 
due to a frictional collision the horizontal component of the 
heel velocity just after the collision diminishes proportionally 
with the same just before the collision, i.e. vx

+= η vx
-, we can 

establish a vector equation as:
v+ =(r ̇+ sin θ + lθ ̇+ cos θ) i
    + (-r ̇+ cos θ + lθ ̇+ sin θ) j

    = ηvx
- i=η(r ̇- sin θ + lθ ̇- cos θ)i   (1)

where 0<η<1 is a constant coefficient. Solving the 
above vector equation in terms of q̇+ yields a discrete 
transition rule which renders the initial condition 
requested to simulate stage II of the motion in the 
backward swinging, as follows:

r ̇+
θ ̇+{(    )} = 

η
2

 

    1-cos 2θ-      (l0 + r -)(sin 2θ-) 

(sin2θ-)/(l0+r -)  1+cos 2θ -
r ̇-
θ ̇-{    }]]    (2)

Let us consider the stages of the motion that SP 
swings freely with two DoFs. If g and k denote the 
gravity acceleration and stiffness factor of the spring, 
respectively, then the Lagrangian function:
L=T-V

= (
η
2

) m (r ̇2 + l2 θ ̇2) - mg(l0-l cos θ) - 
η
2

 kr2   (3)

where T and V are the kinetic and potential energies, 
respectively. Applying the Euler - Lagrange equation yields 
the equations of motion during free swinging as the below:
d
dt

∂L
∂r ̇

∂L
∂r(     ) (     )-

 = mr ̈-(mlθ ̇2 + mg cos θ - kr) = 0  (4a)

d
dt

∂L
∂θ ̇

∂L
∂θ(     ) (     )-

 = m(l2 θ ̈  + 2lr ̇ θ)̇ - (-mgl sin θ)= u          (4b)

where u is the input control torque imposed to 
the pendulum rod by an actuator. These equations 
can be rewritten so as it is formal in literature, i.e.  
M(q) q̈ + C (q , q̇) q̇ + G (q) = Q, as follows:

1   0
0   l2 ]] 0    lθ ̇  

lθ ̇   lr ̇]]r ̈
θ ̈

r ̇
θ ̇} }} }+

(k ⁄m) r - g cos θ 
gl sin θ

0
u / m} }} }=  (5)

The above equations of motion change as soon as the 
heel collides with the ground and arrives to the stage 
of scuffing with one DoF. Thus, it is forced to take the 
motion constraint given by Φ=(l0 - l cos θ) - e = 0. To 
consider this constraint into the equations of motion 
given in (5), we use the Lagrange multiplier method in 
which the Lagrange multiplier λ, renders the constraint 
force, that is the ground reaction force with the 
normal and tangential components denoted N and Ff , 
respectively. Decomposition of these force components 
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in the polar coordinate yields the polar force components 
Rr=-N cos θ + Ff sin θ and Rθ=N sin θ+Ff cos θ. 
Furthermore, let us apply the Coulomb’s friction model 
for the tangential component Ff , and relate it to the 
normal component N via Ff= - μ sgn (ẋh) N , where μ 
denotes the kinetic friction coefficient and sgn (ẋh) is 
the sign function of the heel horizontal velocity. Thus, 
the components Rr and Rθ are expressed in terms of 
the normal component N, and then can be explicitly 
added to the pervious equations of motion, so as those 
are consistent with the virtual work contributions of the 
ground reaction force in the polar coordinate. This way 
we have:

N
m

1   0
0   l2 ]] 0   -lθ ̇  

lθ ̇   lr ̇]]r ̈
θ ̈

r ̇
θ ̇} }} }+

(k⁄m) r - g cos θ 
gl sin θ }}+

-cos θ-μ sin θ 
l (sin θ-μ cosθ)}}+0

u/m}}=
 (6)

where μ ̅=μ sign(x ̇ ), and the N plays the role of the 
Lagrange multiplier. It’s worth noting that the derivative of 
the constraint equation Φ, i.e. = [-cos θ l sin θ] T

∂Φ
∂(r, θ)[          ]T  that 

multiplies by λ, does not include the frictional effect if we 
follow the formal way in the Lagrange multiplier method. 
By applying the constraint equation Φ, and eliminating the 
variable r and its derivative in the second equation in (6) 
yields the equation of motion during stage II, as below:

(θ ̈+2θ ̇2 tan θ)+(g
l

) sin θ

= 1
ml2  (u+l (sin θ - μ̅ cos θ) N)   (7)

where l=(l0-e) sec θ, and N can also be calculated via 
combining the equations in (6) as:

N = mg - k(l0 (1-cos θ ) - e) - (u sin θ)/l  (8)

Now, we’ve completed the dynamic modeling of 
our stretchable pendulum by regarding the equations of 
motion given in (5) and (7), associated with the free and 
constraint swing of the SP, respectively, which switched 
to each other as soon as detecting a transition condition. 
Moreover, the collision occurs with sudden change of 
velocity variables as given in (2), while the separation 
takes place without jumping the variables in any condition.

3 - ADAPTIVE FREQUENCY OSCILLATOR

In this contribution, we employ the adaptive frequency 

Hopf oscillator to establish a CPG unit. It is named as 
‘adaptive frequency’ because of the fact that the oscillator 
can dynamically alter its intrinsic frequency to learn the 
frequency of any periodic input signal [14]. It means 
that the frequency of such an oscillator is considered as 
a state variable and it is varied so as to have an intrinsic 
frequency that corresponds to the frequency of the input 
signal. In particular, when the oscillator is coupled with a 
mechanical system and fed by sensory information from 
it as input, the oscillator is able to adapt its frequency 
to the resonant frequency of that mechanical system. 
It is noted that the phrase of ‘learn the frequency of’ is 
almost equivalent to ‘synchronize with’.

Let’s consider an oscillator as a limit cycle in the 
phase space representation and indicate any perturbation 
on the phase point as a horizontal vector p = px (t)i. Then, 
our Hopf oscillator is described with the Cartesian state 
variables xh and yh, and intrinsic frequency ωh, as below:

x ̇h = γ(r0
2- rh

2) xh- ωh yh + εpx (t)

y ̇h = γ(r0
2- rh

2 ) yh+ωh xh )   (9)

where rh
2 = xh

2 + yh
2, γ and ε are controlling parameters 

associated with the rate of convergence to the limit cycle 
and the strength of the coupling between the oscillator and 
perturbing input, respectively, and r0 is radius of harmonic 
limit cycle that the oscillator shows when parameters are set 
on γ=1 and ε=0. In order to propel the intrinsic frequency, ωh, 
toward the frequency of the input, an adaptive learning rule 
has been proposed by the authors of Ref. [14], as follows:

ω ̇h= f(ωh, xh, yh, t) = -τpφ (t) 

  = -τpx (t) sin φ = - τpx (t) (yh / rh)  (10)

where τ denotes the adaptation time constant, pφ and 
represents the tangential component of the perturbing vector 
p to the limit cycle of the oscillator in the phase portrait.

Motivation of the choice of such a learning rule 
returns to a geometric interpretation about the effects of 
a perturbation on the stable limit cycle emerged from a 
nonlinear oscillator. It is expected that the perturbation 
tries to change the amplitude as well as the phase of the 
oscillation. However, the stability of the phase point 
on the limit cycle demands that the perturbation of the 
amplitude decays while the phase of the oscillation on 
the limit cycle is free. Thus, depending on the state of 
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the oscillator (the position of the phase point on the 
limit cycle) the perturbation accelerates the phase point 
or slows it down in the direction tangential to the limit 
cycle. This concept has been implicitly considered in the 
above learning rule so that is in average able to propel 
the intrinsic frequency of the oscillator toward the 
frequency of the perturbing input; however, the adaption 
is done on a timescale slower than the convergence to 
the limit cycle [14].

4- SIMULATION AND RESULTS

Now, we have two nonlinear dynamic systems, i.e. 
the mechanical stretchable pendulum and the adaptive 
frequency Hopf oscillator, and wish to earn an energy 
efficient motion pattern by exploiting the resonance mode 
of the mechanical system that should be found through 
coupling these nonlinear dynamic systems, according 
to the proposed learning rule, as shown in Figure 2. 
This coupling is established by sensory data measured 
from the angular velocity of the pendulum and sending 
it as the perturbation to the Hopf oscillator dynamics. 
Instead, the oscillator produces the command signals to 
drive the actuator. This scheme has been simulated by 
MATLAB/Simulink® software package, and the results 
are exhibited in the following. Moreover, the physical 
and controlling parameters used in simulation are listed 
in Table 1.

Solving a hybrid model, like the SP model, entails 
choosing a step size that satisfies both the precision 
constraint on the continuous state integration and the 
sample time hit constraint on the discrete states. The 
Simulink software meets this requirement by passing 
the next sample time hit, as determined by the discrete 
solver, as an additional constraint on the continuous 
solver. The continuous solver must choose a step size 
that advances the simulation up to but not beyond the 
time of the next sample time hit. The continuous solver 
can take a time step shorter than of the next sample time 
hit to meet its accuracy constraint but it cannot take a 
step beyond the next sample time hit even if its accuracy 
constraint allows it to.

Time evolutions of the state variables of the SP have 
been shown in Figure 3. We see that the steady cycles 
of motion appear after almost 10 seconds, which means 

the controller has been able to synchronize itself with 
resonant mode of the mechanical system at the same 
duration. Approaching of the intrinsic frequency of the 
Hopf oscillator to a margin of the resonance frequency 
of the mechanical system can also be seen in the time 
evolution shown in Figure 4. Moreover, it is observable 
that the collision events have caused discontinuities 
(jumps) in the velocity states. The output of the Hopf 
oscillator that serves as the input to the actuator has also 
been shown in Figure 5. It is clear that after learning 
the resonance frequency amount of the energy required 
for performing the pendulum oscillations is remarkably 
reduced. The path emerged during the motion of the heel 
in X - Y plane is depicted in Figure 6. Especially, it has 
been marked the path is followed in the steady state.

Other contribution that it is expected from the 
proposed controller is adaptation with probable 
environment changes. In order to verify this ability we 
re-ran our simulation code, while a sudden variation in 
a physical parameter considered to occur at a certain 
moment after the primary learning. For example, 
influence of changing the heel mass is seen in Figure 7. 
It is known that a change in the mass causes a change 
in the resonance frequency inversely; thus the controller 
tries to synchronize its intrinsic frequency with the new 
resonance frequency of the mechanical system, which 
leads to form a new pattern for motion.

Figure 2: Coupling between the mechanical system and the 
adaptive frequency Hopf oscillator

Table 1
 The physical and controlling parameters used in 

simulation.
parameters m l0 k e μ ε τ γ u

values 1 kg 1m 121N/m 3cm 0.15 0.093 0.615 1 0.177
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Figure 3: Time evolutions of the state variables of the SP, in which the steady cycles appear after almost 10 sec

Figure 4: Time evolution of the intrinsic frequency of the Hopf oscillator

Figure 5: The output of the Hopf oscillator that serves as the input to the actuator

Figure 6: Motion path of the heel in X - Y plane

Figure 7: Adaptation ability of the controller in against to change the heel mass whose value is sudden changed at the moment 
considered 20 sec. past of the beginning.
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5- CONCLUSION

In this paper we presented results of coupling a 
nonlinear oscillator with a stretchable pendulum having 
a hybrid dynamic model so as to obtain energy efficient 
motion pattern via finding the resonance frequency 
given by the dynamics of the mechanical system. 
This idea had been originated from biological neuro - 
musculoskeletal system that is abundantly exploited in 
bio - inspired robot prototypes. Here, we employed the 
stretchable pendulum and the Hopf nonlinear oscillator 
in the role of musculoskeletal system and central pattern 
generator neural network, respectively. Firstly, the 
hybrid model of the stretchable pendulum was derived. 
Then, we addressed an adaptive learning rule to make 
a proper coupling between the mechanical system and 
Hopf oscillator so as to earn the energy efficient pattern. 
By simulating we could show that our scheme can be 
useful to reduce the consumed energy via adaptive 
pattern generating so that the mechanical system is 
derived near its resonant mode.

6- REFERENCES

[1] Y. Futakata, T. Iwasaki, “Entrainment to Natural 
Oscillations via Uncoupled Central Pattern 
Generators”, IEEE Trans. on Automatic Control, 
56(5), pp. 1075 - 1089, 2011.

[2] S.V. Shah, S.K. Saha, J.K. Dutt, “Modular 
Framework for Dynamic Modeling and Analyses 
of Legged Robots”, Mechanism and Machine 
Theory, 49, pp. 234 - 255, 2012.

[3] Ph. Holmes, R. J. Full, D. Koditschek, J. 
Guckenheimer, “The Dynamics of Legged 
Locomotion: Models, Analyses, and Challenges”, 
SIAM Review, 48(2), pp. 207 - 304, 2006.

[4] Y. Hurmuzlu, F. Geno t, B. Brogliato, “Modeling, 
Stability and Control of Biped Robots — A 
General Framework”, Automatica, 40, pp. 1647 
- 1664, 2004. 

[5] I. R. Manchester, U. Mettin, F. Iida, R. Tedrake, 
“Stable dynamic walking over uneven terrain”, 
The Int. J. of Robotics Research, 30(3), pp. 265 - 
279, 2011. 

[6] Ch. Liu, Q. Chen, D. Wang, “CPG - Inspired 
Workspace Trajectory Generation and Adaptive 
Locomotion Control for Quadruped Robots”, 
IEEE Trans. on Systems, Man, and Cybernetics  -  
Part B (Cybernetics), 41(3), pp. 867 - 880, 2011. 

[7] J. Rummel, Y. Blum, A. Seyfarth. “Robust and 
Efficient Walking with Spring - like Legs” 
Bioinspiration & Biomimetics, 5(4), 046004 - 
046016, 2010. 

[8] J. Li, W. Chen, “Energy - Efficient Gait 
Generation for Biped Robot Based on the Passive 
Inverted Pendulum Model”, Robotica, 29(4), pp. 
595 - 605, 2011. 

[9] J. Nishii, T. Hioki, “Basic Concepts of the Control 
and Learning Mechanism of Locomotion by the 
Central Pattern Generator”, in: M. K. Habib 
(Eds.), Bioinspiration and Robotics: Walking and 
Climbing Robots, I - Tech Publishers, Vienna, 
Austria, pp. 247 - 260, 2007. 

[10] Y. Futakata, T. Iwasaki, “Formal analysis 
of resonance entrainment by central pattern 
generator”, J. Mathematical Biology, 57, pp. 183 
- 207, 2008. 

[11] Sh. Aoi, K. Tsuchiya, “Generation of Bipedal 
Walking through Interactions among the Robot 
Dynamics, the Oscillator Dynamics, and the 
Environment: Stability Characteristics of a Five - 
Link Planar Biped Robot”, Autonomous Robots, 
30, pp. 123 - 141, 2011. 

[12] A. Crespi, A. Badertscher, A. Guignard, A. J. 
Ijspeert, “AmphiBot I: An Amphibious Snake - 
like Robot”, Robotics and Autonomous Systems, 
50, pp. 163 - 175, 2005. 

[13] J. Buchli, F. Iida, A. J. Ijspeert, “Finding 
Resonance: Adaptive Frequency Oscillators for 
Dynamic Legged Locomotion”, Proc. of IEEE/
RSJ Int. Conf. on Intelligent Robots and Systems, 
Beijing, China, pp. 3903 - 3909, 2006. 

[14] L. Righetti, J. Buchli, A. J. Ijspeert, “Dynamic 
Hebbian Learning in Adaptive Frequency 
Oscillators” , Physica D, 216, pp. 269 - 281, 2006.

[15] SMRS. Noorani, A. Ghanbari, M. A. Jafarizadeh, 
“Efficiency on Legged Locomotion Pattern using 
Adaptive Frequency Hopf Oscillator” IEEE Proc. 
of the first RSI/ISM Int. Conf. on Robotics and 
Mechatronics, Tehran, Iran, pp. 307 - 312, 2013.


