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ABSTRACT: In this paper, to solve the output tracking problem of a single-link flexible joint
manipulator, Polytopic Linear Models (PLMs) of the dynamics are made to take advantage of this
method. Although linear control methods are very useful due to their powerful theories and simplicity,
they can only be used in a neighborhood of the equilibrium point. One way to solve this problem is a
PLMs-based method that linearizes the dynamics around several operating points. Therefore, in this
paper, after calculating the PLMs of the manipulator, a state feedback control is applied to the derived
linear dynamics that are augmented with the dynamics of the output tracking error. An extended method
is used to decompose the scheduling space to construct PLMs, which is the segregation method improved
with an extra aggregation. In order to avoid creating a large number of local models, an axis-oblique
decomposition strategy is used instead of an axis-orthogonal decomposition. In addition, the scheduling
functions of the PLMs are determined such that overlaps between the regions are avoided. By this
selection, the output tracking problem becomes as a Linear Matrix Inequality (LMI) problem instead
of a bilinear matrix inequality problem, which is more difficult to solve and may not lead to an optimal
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global solution.

1- Introduction

In modern manipulators, flexibility is unavoidable due to
the requirements of industrial automation. Flexible links and
flexible joints are found in many applications, such as servic-
ing sector, building and maintenance various space stations,
gantry cranes, atomic force microscopes, and medical and
defense industries [1-3].

Generally, flexibility is an undesirable feature in manipu-
lators since significant control problems like vibrations and
deflections are accrued [1, 4-6]. Therefore, the development
of control methods for flexible structures has received special
attention from researchers [7, 8].

Different control approaches have been discussed to con-
trol flexible joint manipulators in literature. The methods such
as LQR [9, 10], PID [3, 11], and state feedback [3, 12] are
linear model dynamics based control methods. Additionally,
adaptive control [13, 14], fuzzy model-based control [15, 16],
sliding mode control methods [17-19], and neuro controllers
[20, 21] are nonlinear model dynamics-based methods which
have been used to control the flexible joint manipulator. Lin-
ear systems-based analysis and design methods including
controllability, observability, stability analysis, and controller
design are well understood and well developed compared to
nonlinear systems analysis and design methods. However, the
drawback is that the results are just locally valid. Therefore,
describing nonlinear dynamical systems by combinations of
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linear sub-systems has received significant attention to have
a more accurate model. For example, Linear Parameter Vary-
ing (LPV) model is used for control purposes, including ma-
nipulator control problems [22-24]. However, in this paper
we use a simpler method (Polytopic Linear Models (PLMs))
for a flexible joint robot, since in this model the existence of
the time-varying parameters complicates the system analysis
and controller design. PLMs are built upon a number of linear
models introduced by [25]. These linear models describe the
system locally within a so-called scheduling regime. Further-
more, even with the existence of uncertainties, the stability
of the nonlinear system is guaranteed if its approximated dy-
namics PLMs is stable [25].

In this paper, PLMs are used to model and control a sin-
gle-link flexible joint manipulator. In PLMs approximation,
scheduling functions determine forms of scheduling regimes.
We select them to avoid interference between regions, lead-
ing to the tracking control problem becoming an LMI prob-
lem rather than a bilinear matrix inequality problem. In ad-
dition, to avoid creating many local models, an axis oblique
decomposition strategy is used instead of an axis-orthogonal
decomposition strategy.

The rest of the paper is organized as follows. Section 2
presents the dynamical model of a single-link flexible ma-
nipulator. In section 3, approximation by the PLMs method,
including determination of the scheduling regimes and calcu-
lating the PLMs parameters, are discussed. Section 4 presents
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Fig. 1. A single-link flexible joint manipulator [3].

the stability analysis and the method of output tracking con-
trol for the flexible joint manipulator. The simulation results
demonstrate the effectiveness of the method. Finally, the con-
clusion of the paper is provided in section 5.

2- Dynamical Model of the Single-Link Flexible Joint
Manipulator

Consider the single joint flexible manipulator shown in
Fig. 1. The joint mounted on the shaft moves according to
the rotation direction of the motor, where & is the rotation
angle of the joint and « , is the oscillation angle of the end
effectors.

A mathematical model for this manipulator is obtained
from Lagrange equations, as follows [3]:

X =X
X, =X,
K K.K: KK,
Xy =—=X, 5+ u
‘]h JhRm ‘]hRm (1)
K. K WK h . WK
X, =—(—+—)x, + gx3+mg sin(x, +x,) — £u
Jh J[ JhRm JI JhRm
y=x +Xx,.

The dynamics consist of four state variables. The first
two are x, =6, and x, = «, the others are their derivations
X, = 0, and x . =a. u is the system input which is the input
voltage. The output is the angle of the end effector, which is
the sum of the two angles of the rotation angle of the joint
@ and the oscillation angle of the link «. The values of the
parameters are given in Table 1 [3].

To use the dynamics (1) in a simple form, it is rewritten
as follows:
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x=f(x)+bu
2
y=cx, @)
where
K, KIK: K. K, K:K:  mgh i
fx)=|x,, x,, J—’xz—JR X5, —(T+—)xZ+JR X, + sin(x, +x,) | ,
h Bt m h i Bt m 1
and

3- Approximation by PLMs

In this section, an & —accurate PLMs for the flexible joint
manipulator dynamics (1) is derived. The PLMs have the fol-
lowing form [25]:

x:iw,(Zi)(4x+ai)+bu,

(€)

y=cx,

where 4, s and g, s are the parameters of the PLMs with
the size of 4x4, and 4x1, respectively. w,(Z')s are the
scaler scheduling functions, Z' is the i” scheduling re-
gime, and N is the number of linear models or scheduling
regimes. The approximated model has to be close to the non-
linear dynamical model in the sense that they show the same
behaviors. One criterion for measuring the accuracy is the
Euclidean distance between these two models. The criterion
is defined as follows:

<ég

— C»

diff ;, (x) =sup

F) =2 w(Z)(4x+a)

“4)

2

where ¢ denotes the approximation accuracy.

3- 1- Scheduling Regimes

According to the degree of nonlinearity of the system
model, the number of local linear models and their regions
forming result in the desired accuracy, should be determined.

In order to reduce the number of linear models or schedul-
ing regimes (denoted by N ), the dimension of the scheduling
space (denoted by Z ) compared to the operating space should
be reduced as much as possible since N grows exponentially
with Z.The main factor for reducing the dimension of the
scheduling space is the existence of some state variables that
the dynamical equations are linear with respect to them. In
this case, these variables do not participate in the partition-
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Table 1. Parameters of the flexible joint manipulator.

Symbol Description Value
J, Inertia of flexible manipulator 0.003882 Kgm”>
R, Motor resistance 155Q
K ¢ Gear ratio of redactor 1/36
K, Motor constant 0.0089 Ns.rad ™'
K, Flexibility coefficient of joint 5.468 Nm™
m Mass of the flexible joint 0.03235Kg
g Gravitational acceleration -9.81 NKg™
N Distance to center of gravity of rotational platform 0.06 m
of flexible manipulator
J, Inertia of rotational platform 0.00035 Kgm 2

ing, since the approximation of the relevant terms becomes
themselves by any partitioning. For the flexible joint manipu-
lator dynamics (1), all terms of the first, second, and third
equations are linear with respect to the state variables and the
input. For the fourth equation, the term sin(x, +x,) is non-
linear, and therefore it is enough to partition only this term
for partitioning the scheduling space of the system (1). After-
wards, parameters of the following approximation should be
calculated for every region:

Sinx, +3,) = Y w(Z) (@, + fx, +4,) (5)

where o, and S are the entries of the fourth row, the
columns one and two in the matrix A4,, respectively. A is
the fourth element of the vector a, .

To decompose the scheduling space Z in N disjoint re-
gions Z's, various procedures like uniform decomposition,
aggregation, segregation, and extended method that is segre-
gation with an extra aggregation are used [25]. The methods
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should be applied such that e-accuracy is achieved. In addi-
tion, there are two major strategies for partitioning the sched-
uling space: an axis-orthogonal partitioning strategy [25] and
an axis-oblique partitioning strategy [26]. The advantages of
the first strategy include efficient structure and using param-
eters learning schemes such as LOLIMOT (local linear model
tree). However, the axis-orthogonal partitioning restricts the
model flexibility. The second strategy, an axis oblique decom-
position strategy, grasps the character of the nonlinearity and
therefore requires significantly less number of linear models.
This paper reduces the number of models N, using the ex-
tended method with an axis-oblique decomposition strategy
instead of the axis-orthogonal decomposition strategy.

To approximate sin(x,+x,), we define a variable as
follows for simplicity and to avoid creating a large number
of hyper cubes and then partition sin(y) with respect to this
new variable:

vEX+X,,

(6)
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sin(yr)

Fig. 2. Partitioning

Fig. 3. Segregation regions of sin(y) versus the corresponding values x, and x,.

Due to the scheduling space of the flexible joint manipulator,
x,|<2, and |r,[|<0.5 are considered, which result in
l//| <2.5. To partition sin() by the extended method for

the segregation step, first we start with the most simple PLMs

that consist of a single linear model that covers the entire
scheduling space, |l//| <2.5. Obviously, this linear model
is not an accurate description of sin(y) unless around the
origin. Therefore, we split two sides of the scheduling space
into two scheduling regimes, |l// +1 .25| <1.25. We once again
observe that this segregation is not an accurate description
of the function, and it needs more regions. Fig. 2 is obtained

48

by continuing this approach until having the accuracy of
£=0.1,. By an axis-oblique decomposition strategy and
using equation (6), the obtained regions according to x, and
x, would be as Fig. 3. The upper and lower bounds of each
region are given in Table 2.

In addition, for simplicity and having less number of re-
gions with the desired accuracy, the scheduling regions can
be reduced to seven regions using extra aggregation. For this
purpose, the aggregation of neighboring regions was exam-
ined, and were aggregated for the cases with maintained de-
sired accuracy. Therefore, Fig. 4 partitioning is obtained for
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Table 2. The upper and lower bounds of ¥ after partitioning by segregation method.

Region No. Bounds Region No.  Bounds

1 [-2.5000,-1.8750] 6 [+0.0000,+0.6250]
2 [-1.8750,-1.5625] 7 [+0.6250,+1.2500]
3 [-1.5625,-1.2500] 8 [+1.2500,+1.5625]
4 [-1.2500,-0.6250] 9 [+1.5625,+1.8750]
5 [-0.6250,-0.0000 ] 10 [+1.8750,+2.5000]

Fig. 4. Partitioning sin(y) by segregation with extra aggregation.

sin(y). The corresponding regions are shown in Fig. 5. The of )
upper and lower bounds of each region are given in Table 3. 4, = o |26» a, = f(x) |26 —Ax; i=1,2,...,N. @)
3- 2- Scheduling Parameters

After decomposing the scheduling space Z in N disjoint For every region of Table 3, the calculated parameters are
regions Z's, the value of the PLMs parameters (3) consisting given in Table 4.
of two categories (the set of linear models { A,,aq, }s and the For the second category, the scheduling functions should
scheduling functions w,(Z")s ) should be determined. For be determined such that the following properties are satisfied
a flexible joint manipulator, the number of these parameters [25]:

reduce as mentioned in (5). They are calculated by lineariza-
tion of the nonlinear system (2) at the centers of the schedul- . il .
ing regimes z ; s for the first category {A. a, } s , as follows: w,(27)20, Z_lwf (Z°)=1 (®)

27
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0.5
0.4
0.3
0.2

0.1

Fig. 5. The segregation with extra aggregation regions of sin(y) versus the corresponding x, and x,.

Table 3. The upper and lower bounds of ¥ after extra aggregation.

Region No. Bounds Region No.  Bounds

1 [-2.5,-2.35] 5 [0.79,1.57 ]
2 [-2.35,-1.57] 6 [1.57,2.35]
3 [-1.57,-0.79] 7 [2.35,2.5]
4 [-0.79,0.79]

Different selections of w, (Z")s result in different PLMs.
If the scheduling functions are selected such that there are
overlaps between the regions, the controller design needs
to solve a bilinear matrix inequality. Therefore, solving the
problem will be much more complex and time-consuming,
in addition to the fact that existing methods for solving bilin-
ear matrix inequalities will not necessarily lead to a globally
optimal solution. In this paper, to avoid overlaps between the
regions, the scheduling functions are defined as follows:

1 (xl,xz)eZi

0 (v.x)eZ' 2

Wi(Z")={
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Using (9) and the parameters given in Table 4 in (5), an
approximation of the function sin(x, +x,) is obtained, as
shown in Fig. 6. The difference between these two functions
is shown in Fig. 7. It is observed that the maximum value of
the differences in the scheduling space is less than 0.1. Using
the approximation of this nonlinear term, the PLMs approxi-
mation of the whole system (1) is determined easily.

4- Output Tracking Control
In this section, we design a controller for the output track-
ing problem of the flexible joint manipulator. To this end, we
use the results of a theorem that is given as follows.
Consider a nonlinear dynamical system and its approxi-
mation PLMs as follows:
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Table 4. The first category of the parameters for every scheduling regime.

x=f(x),

X =iwi(Zi)(147,x+ai).

i (¥is %) @, B A

1 (-1.940,-0.485) -0.7540 -0.7540 -2.4854
2 (-1.568,-0.392) -0.3795 -0.3795 -1.6689
3 (-0.944,-0.236) +0.3809 +0.3809 -0.4751
4 (0,0) +1 +1 0

5 (+0.944,+0.236) +0.3809 +0.3809 +0.4751
6 (+1.568,+0.392) -0.3795 -0.3795 +1.6689
7 (+1.940,10.485) -0.7540 -0.7540 +2.4854

Fig. 6. sin(x, +x,) (left-side) and its approximation PLMs (right-side).

(10) It is assumed that, f (.) is a sufficiently smooth func-
tion. It has been proved that the mismatch between the sys-
tem and PLMs is bounded by ||E (x )||2 <L, "x —xé”2 , and
L, ”x -x, " <¢&”, where, L, is a finite positive number and

(11) F(x) is the Taylor expansion remainder of f (x) at the
center point x,. For stability of both systems, the following
theorem holds:

51
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Fig. 7. Difference between

ATP+PA, +L,7,]
P

. iT i 2
if Lxjx,<¢,

P
<0
7,0

(12)

P Pai +fo(;(7i2_7f1)
-7 1 0 <0;

il

AJP+PA, +L,(z;,—7.,)I
P
aiTP +Lix(’)T (T, = 7))

i

0 Lix(;Txé(Til_TiZ)_'—ngiZ
if Lxixi>é&.
Theorem 1 [25]: The nonlinear dynamics (10) and its
g-accuracy approximation PLMs (11) are asymptotically
stable, if there exist a matrix P = P” >0, and scalars 7,20
with i €{l,-~-, N} and j {1, 2}, such that the following
inequalities hold:

We define a new dynamic for output tracking control of
the flexible joint manipulator, as follows:

GgEr@)-y@). (13)

where 7(¢) is the reference signal. Therefore, using (2)
and (13), the augmented state space equations of the flexible
joint manipulator will be as follows:

X = im(Zi){Aix+bu+ai},
=l (14)

g=r—cx.

Now, using the state feedback control as:
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sin(x, + x,) and its approximation PLMs.

u@)=w, (Zw,(); u, ()=

i=l

[k, —mi][ﬂ—% (15)

where k,, m,, and o, are the controller parameters, the
closed-loop system becomes:

N N
X=) w(Z)Ax+bY w(Z)~kx—mqg-0c,)+ a,.(}16)
i=1 J=1

qg=r—cx.

Using XW (2= from (8), equation (16) is rewritten as
follows:

j=1

X = 3 W‘(Z'){IZV:W](Zj)A,.x-%—biW].(Z”)(—ij—qu—O'j)+iwj(zi)ai}
:iim(Zi)w](Zj){(A, —bk,)x—bm,q +(a,—bo )}, (17)
q:rféx.
It is simplified to:
N .
x= D w(Z)(4, ~bk)x—bmq+(a,~ba,)}
i1 (18)

qg=r-—cx,

By selecting the scheduling functions as (9), results in:
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w(Z) i=j

w(Z)w,(Z)) :{ o i

(19)

Therefore, (18) can be written as:

DS (l P SR WS s M e

which is rewritten as:

[":}iw[(zw{@ —171?,-{’6}@ —b5)y, @D
q =1 q

By defining following vectors and matrices, we have:

Equation (21) is described by:

N
¥=Yw, (Z)G . +n}, (23)
i=1
using the following definitions:
— A X A 7 A — T
x={ } G, =4, -bk,, n =a -bo,. (24)
q

It is seen that (23) has the same form as the dynamical
equation (11). Therefore, from Theorem 1, asymptotic stabil-
ity of the closed-loop system (21) is guaranteed if the follow-
ing conditions hold:

G/P+PG +L,r,] P
<0
P -7,

: —iT —i 2
if L x;x,<¢g,

(25)
G/P+PG, +L, (r,,-7,)] P Pn +L, x3(z,,—17,))
P —7,,1 0 <0
77iTP+Li )?(;T(riz_fil) 0 Li férf(;(fil_ 12)+527f2
if Lx)x,>¢,
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or equivalently:

[(; b kY P+P(1-bk)+Lz0 P j<0’
P -7,[
VL X% <é,
(26)
(4,-bk,) P+P(d,-bk,)+L (z,-7 ) P P(a-bs)+L ¥ (,-1,)
P -7, 0 <0;
(@-b5) P+L, 7 (7,-1,) 0 L XI5, —7,)+ 6T,
VL /%) >é
Defining new variables as follows:
PbG, =y, Pbk,=Y,, (27)

The conditions (26) become as linear matrix inequalities:

ATP+PA (Y, +Y])+Lz I P
<0;
P -z,
VL x5, <e,
(28)
A'P+PA, -(Y,+Y])+Lz I-Lz] P PG -y +L %i7,-L %i1,)
P I 0

—r T —iT —ir
a P—p +Lx,7,-L X1,

<0;

—iT —i —iT —i 2
0 Loxyx,e, —L ¥ X,7,+¢67,

=il —i 2
VL Xx,x,>¢".

Solving (28) for P, 4, ,and Y, and substituting them
into (27), the controller parameters, k, =[k,,m,] and
o, =0, are obtained. These parameters were obtained for

the flexible joint manipulator, as given in Table 5.

Applying the controller to the nonlinear system (1), it is
seen that the output y =6+«, tracks the reference signal
well, which is shown in Fig. 8. The reference signal has been
considered as a combination of functions such as step, ramp,
and sinusoidal in all operating spaces of the system, to test
the performance of the controller in the various regions. As
a comparison, we also used state feedback control in a single
linear model that the tracking result of which is also shown
in Figure 8. It is observed that better tracking is achieved us-
ing PLMs due to linearization around several operating points
that lead to a better approximation of the model compared to
the linearized model around only one operating point. In a
single linear model, the greater the distance from the operat-
ing point, the greater the error. Furthermore, Fig. 9 shows the
control signal for the PLMs method. As seen in Fig. 10, a
good approximation is achieved for the state variables of the
nonlinear system and its approximated system PLMs using
the same control signal.
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Table 5. Controller parameters.

k,; k,, ks, k., m, o,
-0.0055 +3.1230  +13.4750  -13.9163  -10.5281 0
+0.0006 +3.1235  +13.4819  -13.9244 -13.1601 0
+0.0117 +3.1251  +13.4952  -13.9403 -10.9050 0
+0.0196 +3.1288  +13.5077  -13.9557 -11.1588 0
+0.0117 +3.1251  +13.4952  -13.9403 -10.9050 0
+0.0006 +3.1235  +13.4819  -13.9244 -13.1601 0
-0.0055 +3.1230  +13.4750  -13.9163 -10.5281 0

] |
s g linear model
[ - - - - PLMs B
Reference Signal

ik i i

H i

H H

H

{

i

i
| ]
]

i
i ]
i
i

| |
- 100 150

50

Fig. 9. Control signal.
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Fig. 10. State variables of the nonlinear system and its PLMs approximation.
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5- Conclusion

This study has investigated the output tracking control
problem of a single-link flexible joint manipulator. Due to the
existence of powerful tools in linear control theory, the PLMs
based methods were applied for modeling and controlling the
flexible joint manipulator. In order to decrease the number of
local models and to avoid the curse of dimensionality, an axis
oblique decomposition was used for the partitioning purpose.
To determine the parameters of each region, the scheduling
functions were selected such that the interference between
the regions and therefore requiring to solve bilinear matrix
inequality were avoided. Hence, by solving an LMI, the con-
troller was designed and applied to the flexible dynamics.
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