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ABSTRACT: In recent years, crude oil has been one of the most important energy sources in the 
world which impacts political stability and economic security in many countries. Furthermore, Crude oil 
price also has a huge influence on the world economic pattern due to being directly utilized in different 
industries in various ways. The purpose of this paper is to improve the ability of existing models in 
forecasting Brent crude oil returns. Hence, we propose two new deep learning-based models. The first 
model is based on the transformer which has been very popular in Natural Language Processing over the 
past few years. Moreover, different widely used deep learning-based methods of time series modeling 
such as SVR, MLP, GPR, and LSTM are implemented. The second model takes the outputs of all 
implemented methods as new features and feeds them to a Multilayer Perceptron network. The obtained 
results by each proposed model have been compared together concerning closeness to the real returns 
according to the predefined metrics. It is demonstrated that the new transformer-based model (the first 
model) has better results than the other four common machine learning-based methods. Consequently, 
the new hybrid model (the second model) provides better price forecasts among all implemented models. 
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1- Introduction
Either crude oil or its by-products are used by almost every 

country in the world. From petroleum for transportation to 
plastic products that are commonly used in various consumer 
products, crude oil is utilized, and its price can directly 
influence economical safety and growth. Other similar 
markets could influence crude oil prices. Brent crude oil, 
which is extracted from the north sea, could be considered as 
the higher part of the quality spectrum of crude oil. Moreover, 
it is the dominant global price benchmark and it sets the 
price of two-thirds of the world’s traded crude oil supplies. 
The importance of Brent crude oil has made modeling and 
forecasting of Brent crude oil prices the subject of recent 
theoretical and empirical studies in recent years (see [1, 2, 
3] for example). Investment and trading decisions in energy 
markets significantly depend on the true forecasts of price. 
Before the popularization of machine learning methods, most 
energy price forecasting methods were based on classical 
regressions. However, with the development of deep learning 
methods, new benchmarks were achieved [4, 5, 6]. These 
methods vary from using time series [1, 7, 8, 9, 10] to Neural 
Networks [11, 12, 13, 14], Genetic algorithms [15, 16, 17] 
and hybrid models [18]. Khashman and Nwulu [19] predicted 
oil prices with the use of Support Vector Regression [20] in 
2011. Salvi et al. [21] used LSTM to predict Brent oil price 

with the input of Brent oil of past days. Gupta and Nigam [22] 
used Neural Networks with different lag times to predict oil 
prices, and compared with other models, and outperformed 
the other ones. Wang et al. [23] proposed a hybrid data-
driven model that outperformed Long Short-Term Memory 
(LSTM) and Support Vector Regression (SVR) models. 
The resemblance of time series problems and text problems 
encourages the use of Natural Language Processing (NLP) 
methods such as Transformers for time series prediction. 
Transformers use Attention [24] to get information from all 
the input training sequences rather than neighboring inputs. 
They are hugely popular in NLP tasks and their popularity is 
due to maintaining context and prediction with that context in 
mind. Wu et al. [25] developed a novel Transformer model for 
time series prediction in influenza-like illness spread. They 
demonstrated that by using Transformers, and forecasting 
for influenza-like illness is possible and it is also the state-
of-the-art method. The proposed method by Wu et al. [25] 
outperformed various conventional models such as LSTM 
in a day ahead forecasting in influenza-like illness spread. 
Cohen et al. [26] used a transformer to optimize the energy 
performance of large buildings. Their model outperformed 
other deep learning-based models suitable for the problem. 
Lim et al. [27] used a temporal fusion transformer for time 
series forecasting on electricity consumption, highway traffic 
load, retail sales prediction, and stock market volatility 
prediction. They proposed an interpretable model for time 
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series forecasting to have explainable predictions. Li et 
al. [28] used a transformer combined with Convolutional 
Neural Networks (CNNs) to improve locality in forecasting 
on synthetic data. Liu et al. [29] proposed a model based on 
a transformer and capsule neural network to predict stock 
movements given social media content. Quintaner et al. 
[30] used transformer networks and augmented information 
to forecast vehicle trajectories in urban scenarios. Their 
model provides useful results and proves to be flexible 
and reliable in different types of urban contexts. Pan et al. 
[31] developed a wind speed forecasting model based on 
spatiotemporal information. Moreover, The transformer with 
graph convolution is proposed to capture wind speed features. 
Sridhar and Sanagavarapu [32] proposed a transformer-based 
model for Dogecoin price prediction. Their model predicts 
dogecoin price hour-by-hour. They used historical price data 
from July 2019 to April 2021. Their experiments showed that 
their method achieved better performance in terms of RMSE 
MSE and MAE errors than previous state-of-the-art methods, 
such as LSTMs. Inspired by the success of Transformers 
in NLP, Ramos-Pérez et. al. [33] proposed a transformer-
based model for S&P volatility forecasting. Additionaaly, 
they proposed hybrid models including transformers and 
previous standard models such as LSTMs. Their best model, 
a combination of transformers and LSTM and GARCH, had 
the best performance in predicting the volatility.

By investigating the literature, there could be a conclusion 
that using Transformers in time series forecasting could be 
beneficial, especially in energy price forecasting as it could 
be considered in Natural Language Processing. Additionally, 
there is a novelty that comes with Transformers that could 
lead to receiving high accuracy based on the literature. 
Despite the Transformer’s popularity in NLP and in time 
series forecasting, no study was done on the energy-assets 
price prediction. Our method is inspired by recent advances 
in Transformer architecture in NLP and in this paper, we 
apply Transformer for time series modeling. To the best of our 
knowledge, This is the first work to apply the Transformers-
based model to this problem. In this paper, two models for 
Brent oil return forecasting, a Transformer-based model 
(the first model) that achieves better results than the other 
four common methods. Moreover, we propose a new hybrid 
model (the second model) that provides better price forecasts 
among all implemented models. Each model architecture 
(e.g. transformer, LSTM, MLP, GPR, …) can capture 
different characteristics of the data so the hybrid model can 
combine different abilities of various models to reach a better 
performance.

Recent advances in NLP, specifically the transformers-
based methods, inspire our approach. We customize the 
original Transformer model and train this model on the 
dataset using the conventional gradient-based optimization 
techniques. Moreover, we examine the proposed model 
with the commonly used approaches, including LSTM, 
SVR, Gaussian Process Regression (GPR), and Multilayer 
Perceptron (MLP) models. Furthermore, to keep the best 
commonly fitted models’ specifications, the output of all 

mentioned models has been considered as new features to 
an ANN model. Hence, our new hybrid model is based on 
different deep learning and non-deep learning methods to 
accumulate the strength of different models. We examine and 
compare the performance of our model on real-world data 
using standard metrics.

The paper follows the following structure. In section 2, four 
commonly used methods of time series forecasting, including 
LSTM, SVR, GPR, MLP methods, and Transformers, are 
elaborated. In section 3, the proposed modification to the 
transformer-based method is illustrated and a novel hybrid 
method is introduced. Evaluation metrics are described in 
section 4, the computational results of the proposed models 
are investigated. In section 5 and 6, a conclusion is made and 
further future works are discussed.

2-  Methodology
2- 1-  Original Transformer

Vaswani et al. [24] introduced the Transformer that is based 
on self-attention, and allows for much more parallelization 
than Recurrent Neural Networks (RNNs). Like previous 
sequence models, Transformer consists of a stack of encoder 
and a stack of decoder layers. Each encoder layer has a Multi-
Head Attention (MHA) layer followed by a fully connected 
feed-forward (FC) layer. Furthermore, there is a residual 
connection after both MHA and FC. The output of the last 
layer of the encoder is passed to the decoder which consists 
of some layers. Each decoder layer is similar to the encoder 
layers except that decoder also does MHA on encoder output 
along with a residual connection. Furthermore, the decoder 
component takes shifted outputs as input. It makes sure that 
position i does not attend to positions with an index larger 
than i so that prediction at each position would be based 
on the previous positions. Attention function takes three 
inputs: query, key, and value, and produces an output that is 
a weighted sum of the values. The weights are determined by 
query and key. In the original Transformer model, a scaled dot 
product is used as a measure to quantify the correspondence 
between query and keys. Q is the matrix of queries packed 
together, K is the matrix of keys packed together and V is the 
matrix of values packed together.
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In MHA, attention is applied to linearly-projected Q, K, 
and V, h times where h is the number of heads, and each head 
has its projection matrices. Next, the result is concatenated 
together and projected once more by matrix Wo (equations 
2 and 3). WQ

i is the projection matrix for queries, WK
i is the 

projection matrix for keys and WV
i is the projection matrix for 

values:
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There are three usages of MHA in the original Transformer 
model. The first one is in self-attention of encoder layers, and 
the second one is encoder-decoder attention that uses the 
previous decoder layer as query and encoder output as key 
and value. Finally, MHA is used in decoder self-attention, 
which is different from encoder self-attention in the way 
that some values are masked to ensure that prediction on 
position i is based on the information of positions before i. 
The model has to contain some information about the order 
in the sequence, so a Positional Embedding (PE) is added to 
input at each time step. In the original Transformer model, 
sine and cosine functions were used as PE, as shown in 4 and 
5, pos is the position of input data in the sequence, dmodel is 
the latent dimension of the model and i is the dimension in 
the PE vector.
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The transformer model has performed well on Machine 
Translation and Constituency Parsing and outperforms 
almost all previous models, such as LSTM [11]. Moreover, 
it exhibits efficient running time versus RNNs since attention 
could be computed in parallel but RNN’s state needs to be 
updated sequentially.

2- 2- Long Short Term Memory
Long Short-Term Memory (LSTM) networks [34] 

are a particular kind of RNNs that could be used to solve 
a special problem of RNNs, including modeling of long-
term dependencies. RNNs are quite capable for tasks where 
the needed previous information is not far from the current 
position, and that information is stored in memory. However, 
RNNs do not work well for tasks that need information with a 
huge gap. LSTMs solve those kinds of tasks by storing specific 
information that is needed for a decision. The architecture of 

LSTMs could be broken into 4 parts. 
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The first part is the forget gate fi (equation 6), which 
determines if the information given to the node is worth 
saving in memory. This is an output of a sigmoid function 
which is between 0 and 1. 0 indicating it shouldn’t be saved 
and 1 meaning that it should. Wf  is the weight of forget gate 
and bf is the bias of forget gate. xt is input at time step t and ht-1 
is the hidden state of LSTM at time step t-1.
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The second part of LSTM chooses which part of the 
information needs to be updated, the input gate (equation 7). 
Wi is the weight of the input gate and bi is the bias of the input 
gate. xt is input at time step t and ht-1. is the hidden state of 
LSTM at time step t-1. This information is usually part of 
the information from a new context, and by changing the old 
information with this, the context is getting changed too.
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In the next step the cell state needs to be updated (equation 
9). Ct is cell state at time step t and Ct-1 is cell state at time step 
t-1, ft and it are forget gate and input gate.
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Finally, the ending part should lead to the output (equation 
10), which results from a tanh function that is between -1 and 
1 (equation 11), and this output is also fed to the next cell. ot 
is the output gate, Wo is the weight of the output gate, and bf  is 
the bias of the output gate. Figure 1 shows the architecture of 
an LSTM cell, showing how the gates are connected.
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2- 3- Multilayer Perceptron
Feedforward neural networks or Multilayer Perceptrons 

approximate a function from m-dimensional space to 
o-dimensional space (in this case for regression o is 1). In this 
model, information flows from input layers through hidden 
layers to an output layer with dimension o. Each hidden layer 
is a projection from hi-1 dimension space to hi dimensional 
space (parametrized by wi) with an hi dimensional bias added 
to it. Where hi-1 is the size of the previous layer and hi is the 
size of the current layer. After that, a non-linear activation 
such as the Sigmoid function or Rectified-Linear-Unit 
(RELU) is applied.
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The objective function for the regression problem is the 
Mean Squared Error between the target value and the value 
predicted by the model, which is the output of the last layer. 
Model parameters are optimized by Stochastic Gradient 
Descent (SGD). This process could be accomplished by 
updating the parameters using the gradient of the loss function 
for each parameter, following the chain rule. Equation 13 
shows the update of SGD, ɳ is the learning rate, n is the 
number of training samples, and is the gradient of the loss 
function with respect to parameter wi .
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2- 4- Support Vector Regression
Support Vector Regression (SVR) Drucker et al. [20] 

fits a regression model by ensuring that errors fall below 
a threshold. The objective function is to minimize the 
coefficient with the constraint that prediction errors fall 
below a threshold. Equation 14 shows the initial formulation 
of the problem, W is the weight vector of this model, X is the 
input and y is the vector of gold labels.
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Additionally, some points may fall outside of epsilon, 
so SVR models their possibility to exit by adding a slack 
variable ξi, and minimizing it. Equations 15 and 16 show 
problem formulation considering slack variables.
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Where: * iy W X ε ξ− ≤ +
Hyper-parameter C defines the model tolerance towards 

data points outside of epsilon. The optimization problem is 
constructed by solving the dual problem and using Lagrange 
multipliers. Full detail about the optimization problem can be 
found in [35].

2- 5- Gaussian Process Regression
Gaussian Process Regression (GPR) [36] is a non-

parametric method that infers a distribution over functions. 
By defining a prior distribution and observing some function 
values, it can model a posterior over functions and be both 
for classification and regression. It can be proved that the 
joint distribution of a finite number of samples denoted by 

( ) ( )( )1 , , np f x f x…  is Gaussian and can be formulated 
as:
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Where f=(f(x1),…,f(xn)) and μ=(m(x1),…,m(xn)) and Kij 
=k(xi,xj), and k is a kernel function and f(.) is the regression 
function. Given the posterior ( )| ,  p f X y from ( )|p f X , 
we can make predictions f* on new data X*:
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By equation 18, posterior predictive distribution is also 
gaussian. Using the joint distribution of [ ]*,y f  it will be 
derived that parameters of posterior predictive distribution 
can be computed using the equations below:
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Where ( )** * *,K k X X= , ( )* *,K k X X= , and 
( ),yK k X X= . In this study, we use a dot-product kernel 

(equation 21) added with a white kernel to model the noise 
(equation 21). σ0 controls the inhomogeneity of data and 
noise level equals the variance of this noise.
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3- Proposed Model
3- 1- Transformer-Based Model

In this study, we use a modified version of the 
Transformer model. Since we only do 1-day ahead or 5-day 
ahead predictions, we do not want to predict a sequence but 
we only want to predict a single output. Therefore, we only 
use the encoder part of the Transformer and tune the hyper-
parameters. Input signals are fed to the model with a window 
size of W, in our case 25, and processed through encoder 
layers to produce the _nal output. Window size and other 
hyper-parameters were chosen by appraising the validation 
set. We will explain our experimental setup in more detail in 
the future section. Each encoder layer is the same as encoder 
layers in the original Transformer model.

It consists of an MHA block and a feed-forward layer, 
and both have a residual connection. Figure 1 shows the 
architecture of the transformer-based model.

3- 2- The Proposed Hybrid Model
Different trained models could model different 

characteristics of the data, therefore we proposed a new 
approach by training a model on top of all models trained 
before and feeding outputs of previous models as the input or 
feature to the hybrid model. Our hybrid model incorporates 
the effectiveness of pattern recognition strength from various 
machine learning families. In this approach, we developed a 
new hybrid model based on the mentioned methods, including 
Transformer, LSTM, MLP, SVR, and GPR, that can predict 
the time-series better than any of the individual mentioned 
methods. For the inputs, each base model, including 
Transformer, LSTM, MLP, SVR, and GPR, is trained on the 
train data separately, then these trained models are used to 
predict each training sample. Afterwards, prediction of each 
model from the training set is concatenated with the outputs 
of the other model, and these new features are fed to the 
final hybrid model. The final hybrid model is a simple MLP 
with a hidden layer of size three. The model is trained on 
train data, and the performance is evaluated on test data. The 
hybrid model is simple since it is an MLP with the hidden 
size of three, and also given the output of the other model, 
it only requires a 1-day-lag of the data and does not rely on 
long historical data samples. Once our models are trained, 
we concatenate their output with value at the current time 
step (the price of crude oil today) and feed it to the hybrid 
model and predict the future value (the price of crude oil for 
tomorrow or 5 days ahead).

4- Evaluation
4- 1- Metrics

We evaluate our models using four measures: Mean 
Forecast Error (MFE), Mean Square Error (MSE), Mean 
Absolute Error (MAE), and Mean Absolute Percentage Error 
(MAPE). Let pred

i i ie y y= − , then these measures will be 
defined as: 
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Fig. 2. The architecture of the proposed model (transformer-based model) 
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4- 2- Dataset
The dataset in this study includes the Brent oil prices from 

November 2013 to September 2020. Moreover, we also used 
natural gas prices, crude oil prices, the Euro over USD ratio, 
and the USD index as features. All these features showed to 
have a high correlation with the target signal such as done 
by Hajizadeh et al. [37]. Moreover, to show the dependence 
between input and target variables, the correlation values ​​
between the variables have been calculated. Table 1 shows 
the correlation values between inputs and target variables 
through the correlation matrix. As the values ​​in this table 
show, according to the high values ​​ of the correlation 
coefficient, it can be found that there is a high correlation 
between the selected input variables and the target variables.

4- 3-  Experimental Setup
We implemented all models in Python1. We used 

SciKit-Learn2 package models for MLP, SVR, and GPR. 
For LSTM, we used Keras3 with the TensorFlow backend. 
For Transformer, we modified the Transformer model 
implemented in time series transformers. All gradient-based 
optimized models were optimized by Adam optimizer [38]. 
The learning rate, the batch size, the hidden size of the 
networks, and the number of iterations were chosen using a 
validation set. We used the last 10% of data as the test set, 

since it’s the scenario that happens in a real application, 
we always have the data for the past and want to predict it 
in the future. We used the last 10% of the remaining as the 
validation set and used the other part as the training set. Table 
2 shows results for 1-day ahead prediction. To have consistent 
and trustful results, we ran each experiment 5 times and 
considered the average of the result of 5 experiments. Table 3 
compares the best model in the previous step with the hybrid 
model.

Table 2 shows results for 1-day ahead prediction. To have 
consistent and trustful results, we ran each experiment 5 times 
and considered the average of the result of 5 experiments. 
Table 3 compares the best model in the previous step with the 
hybrid model.

Similar results were achieved by doing a 5-day ahead 
prediction denoted in tables 4 and 5.

Our results show that using a Transformer model improves 
forecasting in both 1-day ahead and 5-day ahead prediction 
scenarios. Additionally, using the proposed hybrid model 
also achieves better results than any of the models mentioned 
before in both 1-day ahead and 5-day ahead prediction 
scenarios. Sometimes GPR and even LSTM models make 
better estimations than the proposed Transformer model. 
Lower error on the train could be due to overfitting. On 1-day 
ahead of test prediction, GPR works better than the transformer 
only on some metrics (e.g.  MFE and MAE). MSE is the main 
evaluation metric that we focus on.  On 5-days ahead of test 
prediction, GPR has better MSE than the transformer. That’s 
why we propose the hybrid model that is better than all the 
previous ones. In time series forecasting, it is always a good 
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Table 1. the correlation coefficients for different variables
 

Table 1. the correlation coefficients for different variables 

  
1-day lag 

2-days lag 

3-days lag 

4-days lag 

5-days lag 

6-days lag 

7-days lag 

8-days lag 

9-days lag 

10-days lag 

EURO/Dollar 

Natural Gas 

US dollar Index 

Crude Oil 

1-day forecast 

5-day forecast 

1-day lag 
1.000 

0.999 
0.997 

0.996 
0.995 

0.994 
0.992 

0.991 
0.989 

0.988 
0.896 

0.783 
-0.888 

0.972 
0.997 

0.994 

2-days lag 
0.999 

1.000 
0.999 

0.997 
0.996 

0.995 
0.994 

0.992 
0.991 

0.989 
0.896 

0.784 
-0.888 

0.973 
0.996 

0.992 

3-days lag 
0.997 

0.999 
1.000 

0.999 
0.997 

0.996 
0.995 

0.994 
0.992 

0.991 
0.896 

0.785 
-0.887 

0.974 
0.995 

0.991 

4-days lag 
0.996 

0.997 
0.999 

1.000 
0.999 

0.997 
0.996 

0.995 
0.994 

0.992 
0.896 

0.785 
-0.887 

0.974 
0.994 

0.989 

5-days lag 
0.995 

0.996 
0.997 

0.999 
1.000 

0.999 
0.997 

0.996 
0.995 

0.994 
0.895 

0.786 
-0.887 

0.975 
0.992 

0.988 

6-days lag 
0.994 

0.995 
0.996 

0.997 
0.999 

1.000 
0.999 

0.997 
0.996 

0.995 
0.895 

0.786 
-0.886 

0.975 
0.991 

0.986 

7-days lag 
0.992 

0.994 
0.995 

0.996 
0.997 

0.999 
1.000 

0.999 
0.997 

0.996 
0.895 

0.787 
-0.886 

0.975 
0.989 

0.984 

8-days lag 
0.991 

0.992 
0.994 

0.995 
0.996 

0.997 
0.999 

1.000 
0.999 

0.997 
0.895 

0.787 
-0.885 

0.975 
0.988 

0.983 

9-days lag 
0.989 

0.991 
0.992 

0.994 
0.995 

0.996 
0.997 

0.999 
1.000 

0.999 
0.895 

0.787 
-0.885 

0.975 
0.986 

0.981 

10-days lag 
0.988 

0.989 
0.991 

0.992 
0.994 

0.995 
0.996 

0.997 
0.999 

1.000 
0.895 

0.788 
-0.884 

0.975 
0.984 

0.980 

EU
R

O
/D

ollar 
0.896 

0.896 
0.896 

0.896 
0.895 

0.895 
0.895 

0.895 
0.895 

0.895 
1.000 

0.751 
-0.979 

0.895 
0.896 

0.896 

N
atural G

as 
0.783 

0.784 
0.785 

0.785 
0.786 

0.786 
0.787 

0.787 
0.787 

0.788 
0.751 

1.000 
-0.735 

0.781 
0.782 

0.779 

U
S dollar Index 

-0.888 
-0.888 

-0.887 
-0.887 

-0.887 
-0.886 

-0.886 
-0.885 

-0.885 
-0.884 

-0.979 
-0.735 

1.000 
-0.882 

-0.887 
-0.887 

C
rude O

il 
0.972 

0.973 
0.974 

0.974 
0.975 

0.975 
0.975 

0.975 
0.975 

0.975 
0.895 

0.781 
-0.882 

1.000 
0.969 

0.964 

1-day forecast 
0.997 

0.996 
0.995 

0.994 
0.992 

0.991 
0.989 

0.988 
0.986 

0.984 
0.896 

0.782 
-0.887 

0.969 
1.000 

- 

5 day forecast 
0.994 

0.992 
0.991 

0.989 
0.988 

0.986 
0.984 

0.983 
0.981 

0.980 
0.896 

0.779 
-0.887 

0.964 
- 

1.000 
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Table 2. Comparison of the results of Transformer-based model and other used models for 1-day ahead prediction
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Table 3. Comparison of the results of the Transformer-based model and the hybrid model for 1-day ahead prediction
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Table 4. Comparison of the results of Transformer-based model and other used models for 5-day ahead prediction

 

 

 

Table 4. Comparison of the results of Transformer-based model and other used models for 5-day ahead 

prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M. M. Abdollah Pour et al., AUT J. Model. Simul., 54(1) (2022) 19-30, DOI: 10.22060/miscj.2022.20734.5263

27

practice to look at predictions visually and not just rely on the 
metrics. Figures 3 and 4 show visualizations of the predictions 
versus the ground truth on test data for 1-day predictions and 
5-day predictions, respectively. The plots show that the model 
could approximate the data (logarithmic return of Brent oil 
price) well on the test data. The y axis shows the difference in 
price at each point and we are regressing to predict the price 
difference. Although the model captures the trend of the price 
it has shortcomings in correctly predicting the magnitude of 
the sharp peaks because they are very rare in the dataset.

5- Conclusion
In this work, the problem of Brent oil forecasting and 

modeling has been studied. We utilized a customized 
Transformer model for time series forecasting in Brent oil 
returns. To the best of our knowledge, this is the first study 
to apply the Transformer model in energy-assets price 

prediction. Next, its performance has been compared with 
other commonly used time series forecasting methods such 
as LSTM and MLP, GPR, and SVR. The results show that 
the proposed transformer-based model achieves better 
performance. Furthermore, We presented a novel hybrid 
method to take advantage of different models and combine 
them through an MLP to further improve the Transformer 
model. Our hybrid model accomplished better performance 
over all other methods, including the Transformer model 
in both 1-day prediction and 5-day prediction scenarios. 
We conjecture that our method, both Transformer and 
hybrid model can be applied to other time series forecasting 
problems to gain better accuracy since they exhibited good 
performance as a non-linear model for a dynamic system. 

Future work
Although the current method uses 5 different signals as 

Table 5. Comparison of the results of the Transformer-based model and the hybrid model for 5-day 
ahead prediction
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Fig. 4. Hybrid model prediction on test data for 1-day ahead prediction 
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the daily input of the model, we hypothesize that adding 
different signals such as news sentiment and stock prices 
could improve the model. Additionally, twitching and trying 
different customizations of the Transformer and using 
trained models on different tasks might be beneficial to the 
model performance. Finally, we assume experimenting with 
different ensemble methods and different sizes, there could 
be an increase in accuracy in forecasting, and we intend to 
research the ideas mentioned above in the future.

Abbreviations
Convolutional Neural Network: CNN, Natural Language 

Processing: NLP, Long Short Term Memory: LSTM, Support 
Vector Regression: SVR, Gaussian Process Regression: GPR, 
Multilayer Perceptron: MLP, Recurrent Neural Network: 
RNN, Multi-Head Attention: MHA, Feed-forward: FC, 
Positional Embedding: PE, Stochastic Gradient Descent: 
SGD, Mean Forecast Error: MFE, Mean Square Error: MSE, 
Mean Absolute Error: MAE, Mean Absolute Percentage 
Error: MAPE
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