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ABSTRACT: Channel is one of the most important parts of a communication system as the medium of 
the propagation of electromagnetic waves. Being aware of how the channel affects the propagation waves 
is essential for the design, optimization, and performance analysis of a communication system. Along 
with conventional modeling schemes, in this paper, we present a novel propagation channel model. 
The proposed modeling strategy considers the 2-dimensional time-frequency response of the channel 
as an image. It models the distribution of these channel images using Deep Convolutional Generative 
Adversarial Networks (DCGANs). In addition, for the measurements with different user speeds, the user 
speed is considered as an auxiliary parameter for the model. StarGAN is used as an image-to-image 
translation technique to change the generated channel images with respect to the desired user speed. The 
performance of the proposed model is evaluated using a few existing evaluation metrics. Furthermore, as 
modeling the 2D time- frequency response is more general than the modeling of the channel only in time, 
the conventional metrics for evaluation of the channel models are not sufficient; therefore, a new metric 
is introduced in this paper. This metric is based on the Cepstral Distance Measure (CDM) between the 
mean autocorrelation of the generated samples and measurement data. Using this metric, the generated 
channels show significant statistical similarity to the measurement data.
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1- Introduction
Propagation channel modeling is one of the most essen-

tial parts of the communication system design and simula-
tion. When the channel state information is available, trans-
fer characteristics such as signal constellation and allocated 
power can be adjusted in order to increase the system per-
formance. A proper propagation model is needed for perfor-
mance analysis of the system as well. Several methods have 
been developed for propagation modeling, which can be 
divided into deterministic and stochastic approaches [1]. In 
the first class of approaches, the propagation process is re-
constructed by solving Maxwell equations in a particular me-
dium with the given boundary conditions. Ray Tracing (RT) 
models are the most commonly employed models of this type 
[2], which are based on the geometrical optics. Deterministic 
approaches are accurate, but they need complex calculations 
and are heavily dependent on the exact description of the me-
dium. On the other hand, stochastic approaches try to provide 
a statistical description of channel characteristics (e.g., Power 
Delay Profile (PDP)). They can be divided into two catego-
ries: Geometry-Based Stochastic Models (GBSMs) and Non-
Geometry Based Stochastic Models (NGBSMs).

GBSM approaches use probability distributions to de-
scribe the properties of the effective scatterers, and the fun-

damental laws of wave propagation are then applied to model 
the propagation process. The 3rd Generation Partnership Proj-
ect (3GPP) has introduced the Spatial Channel Model (SCM) 
as a geometry-based model [3]. Later it was extended to the 
Spatial Channel Model Extended (SCME) [4], where SCME 
supports wider bandwidth. In the Wireless World Initiative 
New Radio (WINNER) projects, the model was adapted to 15 
different scenarios. Additionally, 3GPP has produced a 3-di-
mensional channel model 3D SCM for Long Term Evaluation 
advanced (LTE-advanced) [5].

NGSM approaches focus on paths between the transmit-
ter and the receiver, and scatterers are not modeled explicitly. 
Tapped Delay Line (TDL) based models are the most known 
models of this type, where the propagation channel is consid-
ered as a number of delay taps. Each tap has a few character-
istics, such as the average power, excess delay, and amplitude 
distribution function.

All the aforementioned traditional models have limita-
tions. As mentioned before, other than the need for a large 
number of measurements for fitting the stochastic model, 
stochastic approaches are parametric and are based on math-
ematical expressions. Therefore, they impose some prior as-
sumptions on the model, which are not necessarily correct. 
In addition, some complicated mediums such as underwater 
acoustic channels or in-body channels may introduce some 
complex distortion effects, which are impossible to be ex-*Corresponding author’s email: v.pourahmadi@aut.ac.ir.
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pressed analytically. These observations signifies the need for 
a framework with the capability of learning complex models, 
without any presumption on the model parameters.

Recently, deep learning approaches have shown great per-
formance in many areas. One of the most important advan-
tages of deep learning over traditional statistical models is 
that Deep Neural Networks are able to learn some valuable 
features from the data, without the need for costly and time-
consuming human effort for feature engineering. Moreover, 
when it comes to probabilistic distribution prediction from 
data, traditional statistical methods assume an analytical para-
metric formulation for the distribution and try to predict the 
parameters. These analytical formulations induce limitations 
to the model, while Deep Neural Networks are able to learn 
the statistical distributions, regardless of such limitations. 
Hence, they have proved astonishing performance in many 
areas at the cost of the need for a huge amount of data. There-
fore, in case that data is available, it seems reasonable to take 
advantage of Deep Neural Networks.

Deep Neural Networks have been exploited largely in 
communications as well. Some examples are CSI (Channel 
State Information) feedback compression and reconstruction 
[6], joint source-channel coding [7], channel estimation and 
signal detection [8] and many other applications.

As far as the channel modeling is concerned, there are 
some research on employing Machine Learning (ML) and 
Deep Learning algorithms in this area. In the majority of cas-
es, ML or Deep Learning frameworks have been exploited for 
channel estimation. For example, in [9] the authors have pre-
sented a model for estimating conditionally Gaussian random 
vectors with random covariance matrices, based on Convolu-
tional Neural Networks (CNN). In [10], an online CSI predic-
tion scheme is proposed that consists of a CNN for frequency 
representative vector extraction, a CNN for state representa-
tive vector extraction, and an LSTM (Long Short-Term with 
Memory) for state vector prediction.

ML algorithms and Deep Neural Networks (DNNs) have 
also been used in path loss models and prediction of the 
model parameters. However, to name a few, in [11] two ML 
algorithms, Random Forest and K Nearest Neighbor (KNN) 
are exploited to build a path loss model for the Unmanned 
Areal Vehicle (UAV) Air-to-Air (AA) scenario, based on the 
training data. In [12], Machine Learning methods are applied 
to high-speed channel modeling for signal integrity analysis. 
Linear, support vector, and Deep Neural Network (DNN) 
regressions are adopted to predict the eye- diagram metrics, 
taking advantage of the massive amounts of simulation data 
gathered from prior designs. In [13], the authors propose a 
Machine Learning based channel modeling technique for 
molecular MIMO communications, which consists of two 
processes: fitting the channel model parameters and learning 
the patterns in the input-output dataset by Artificial Neural 
Networks (ANNs). In [14], the authors have exploited Neu-
ral Networks to predict the AoD of the dominant propagation 
paths in the user channels. They use AoA dependent propa-
gation-channel features for this purpose. In [15], Recurrent 
Neural Networks have been used to extract some unexplored 

structures (beyond linear correlations) from the Channel 
State Information (CSI). In [16], conditional GAN is used as 
a channel generator inside an end-to-end learning-based com-
munication system. Similarly, a model which takes advantage 
of Generative Adversarial Networks (GAN) to model the dis-
tribution of one-dimensional channel responses is proposed 
in [17]. In addition, in [18], the authors have employed Con-
ditional GANs to learn channel models at each beam-forming 
direction from the Air-to-Ground (A2G) channel in forma-
tion. In [19], the channel estimation problem is considered as 
modeling a conditional distribution of the received channel 
value, given the transmitted channel value and Variational 
Generative Adversarial Network are utilized to model this 
conditional distribution. It should be noted that these stud-
ies still consider the channel-response of the system (i.e., in 
time). An environment, however, may have different effects 
on the propagated signals in different frequencies. For a more 
complete modeling of the channel, we need to model the sta-
tistical behavior of the channel in both time and frequency.

In this paper, in the context of deep learning approaches 
for communication applications, a novel channel modeling 
technique is introduced. This model overcomes some of the 
limitations of the traditional methods and introduces a com-
pletely intelligent framework for modeling the statistics of 
the channel. The idea is based on using generative models as 
intelligent frameworks for modeling the statistical distribu-
tion of channel measurements. Generative models are able 
to learn the distribution of the training data and generate new 
samples having the same statistical properties as the training 
data. Generative Adversarial Networks (GANs), as one of the 
most important types of generative models, have shown very 
good performances in modeling the distribution of the im-
ages. If somehow the propagation channel can be considered 
as an image, GANs can be applied to model the distribution 
of channels as well. For this purpose and to have a more com-
plete model of the channel, the 2D time-frequency responses 
of the channel are considered as images in this work, called 
channel images. The main idea of this paper is to model the 
distribution of these channel images using GANs. Further-
more, it is assumed that the user carrying the receiver is mov-
ing at various speeds. The effect of user speeds on channels 
is considered. We aim to propose a model that considers the 
user speed as an auxiliary parameter to generate channels 
matching the properties of a particular environment.

A two-phase procedure is followed for the modeling ap-
proach. First, the distribution of channel images having a 
reference user speed is modeled using Deep Convolutional 
GANs. In the second phase, we take advantage of StarGAN 
as an image-to-image translation technique to change the 
generated channel images with respect to the desired user 
speed. The model is applied to three different simulated 
channel types and real measurement data. We first evaluate 
the performance of the model using common metrics, such 
as Level Crossing Rate (LCR) and Average Fade Duration 
(AFD). These metrics have some shortcomings in evaluating 
the dissimilarity between different channel types (i.e., with 
these metrics, some channels of different types might show 
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high similarity). To obtain a more reliable criterion, a new 
metric based on the Cepstral Distance Measure (CDM) of the 
mean of the autocorrelation of the data is introduced. This 
metric captures the specific frequency patterns of the time-
frequency response for each channel type. It is used to evalu-
ate the statistical similarity between measurement and gener-
ated data of each type.

The main contributions of this paper can be summarized 
as follows:

1) Proposing a channel modeling technique which can 
generate channels with the desired user speed, having a simi-
lar distribution to the measurement data.

2) Introducing a metric for statistical evaluation of the 
proposed model (checking the statistical analogy between the 
generated channels and the measurement data.)

This paper is organized as follows: section 2 provides 
background on the propagation channel, GANs, and image-
to-image translation techniques. In Section 3, problem defini-
tion is provided, in Section 4 the channel modeling procedure 
is described, in Section 5 experimental results are provided, 
and finally Section 6 concludes the paper.

2- Background
2- 1- Propagation Channel

Propagation channel is the medium between the transmit-
ter and the receiver, which affects the amplitude and the phase 
of the transmitted signal. The complex channel gain of multi-
path fading channels can be modeled as a stochastic process 
as: 
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where N is the number of paths, nc , nf  and nθ  are the 
gain, Doppler frequency and phase of the n th path, respec-
tively. The Short-Time Fourier Transform (STFT) of (1), is 
used for a time-frequency representation of the channel re-
sponse. 

2- 2- Generative Adversarial Networks
Machine Learning models can be divided into two gener-

al categories: discriminative models and generative models. 
Discriminative models try to find a relation between inputs 
and outputs and usually are used in regression, prediction, 
and classification applications. Generative models, on the 
other hand, have the ability to learn the distribution of the 
data and can generate samples having a similar distribution to 
the training data. One of the most popular generative models 
is GAN [20].

The idea behind GAN is to train two networks simulta-
neously. A generator network has to learn the distribution of 
training data and generate samples having the same statistical 
distribution as the training data from the input noise. On the 
other hand, a discriminator network has to find the probabil-
ity that a sample comes from the training data.

At the first stages of training, nor the generator or the dis-
criminator know the correct distribution (pattern) of the real 
data. The generator generates some samples from an input 
noise vector. The generated samples allocated with a ‘fake’ 
label and is fed to the discriminator along with the real data 
allocated with a ‘real’ label. The discriminator is actually a 
classifier between real and fake samples which examines the 
input sample and tries to determine whether they are real or 
fake. As the training goes on, the generator becomes stronger 
and generates samples more similar to the real data. Simulta-
neously, the discriminator evolves as well to detect the fake 
samples. During the training, both the generator and the dis-
criminator evolve so much that it becomes difficult for the 
discriminator to distinguish real and fake samples. At this 
point, we say that the generator has learned the distribution of 
the real data and the network has converged.

GANs have been widely used in various applications and 
are extended for example to Deep Convolutional GANs (DC-
GANs) [21], Conditional GANs [22], Boundary Equilibrium 
GANs (BEGANs) [23], and Wasserstein GANs (WGANs) 
[24].

3- Problem Definition
3- 1- Channel as an Image

In Multiple-Input Multiple-Output (MIMO) systems, the 
transmitter/receiver antenna space is considered as the chan-
nel matrix H . Each element 

ijH  in the channel matrix rep-
resents the channel between the thi  transmitter antenna and 
the  thj  receiver antenna. In the MIMO settings, ijH  usually 
is considered as a single complex value, and so H  will be an 
r t×  matrix (number of receive antennas×number of trans-
mit antennas), and in some previous studies such as [25], 

ijH  
is treated as an image.

For a more detailed look at the channel, the single value 
of 

ijH  can be substituted by a matrix that has m n×  com-
plex values, each value representing the effect of channel on 
a particular frequency and particular time ( m  represents the 
number of frequency sub-carriers, and n  is the number of 
time slots).

In this work, we focus on the channel between one pair 
of transmitter and receiver antennas. The grid of the channel 
time-frequency response, which is actually the Short-Time 
Fourier Transform (STFT) of the channel transfer function, 
is translated into a 2m n× ×  image by placing the real values 
in the first channel of image and the imaginary values in the 
second channel. Figure 1 shows how this translation is done 
for a grid of size m n× . As mentioned in Section I, we denote 
these images by channel image. 

3- 2- Channel Modeling
In data-driven channel modeling, which is followed in 

this paper, one has a set of collected channel measurements 
and is looking for a model that can find out the main statistics 
or features of the measurement data. With this model, new 
samples can be generated with the same statistics of the chan-
nel. In addition, there are a few parameters such as the user 
speed, which in some-form affect the statistics of the channel. 
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We intend to build a model that can incorporate such param-
eter (here we focus on user speed) when it generates a sample 
for that environment.

As for a formal problem definition, assume that many 
measurements of one particular channel type such as a spe-
cific environment (like an urban area) are given. Each chan-
nel measurement is performed at a particular user speed. For 
each user speed, a large number of samples must be collected 
so that there can be enough samples to be used as the dataset 
for training a network. Therefore, we have a set of channel 
measurements { }1 2 , , ..., Urban nX X X X=  containing n  samples of 
the channel measurements and a set of possible user speeds 

{ }1 2, , ..., mV v v v= , where m  is the number of distinct user 
speeds. Each iX  is collected at a certain speed of the user. 
Note that when the environment changes (channel type 
changes), another set of measurements like 

RuralW  is obtained, 
where its elements are drawn from different statistics, and 
thus another model needs to be built for that environment. 
More accurately, the major effect of different environments is 
on the multi-path delay profiles of the channel. This is due to 
some physical characteristics of different environments. We 
note that the proposed network does not concern about the 
environment that the samples are representing, and just tries 
to capture the statistics of whatever samples provided to it.

The aim is to propose a model that can learn the statisti-
cal distribution of the measurement data of different chan-
nel types, and generate new samples for that environment. 
The set of generated samples ( X̂ ) should have the same dis-
tribution as the measurement data ( X ). The model should 
also capture the effects of different user speeds on channel 
measurements and generate channels concerning a specific 
desired user speed.  

To evaluate the performance of such a model, a metric is 
needed to evaluate how the samples in  X̂  emulate the statis-
tics of the samples in X . Since we are talking about statis-
tics of two sets, measures like Euclidean distance of samples 
do not work, instead, one should employ metrics that: 1) can 
demonstrate that the samples of the model trained using data-
set X  are statistically similar to the samples in X  (the actual 
measured data), 2) can evaluate the dissimilarity between the 

statistical distribution of the samples of the model trained us-
ing dataset X  and the samples of another set like Y , mea-
sured for another channel type/user-speed.

For this purpose, there are a few of such metrics in litera-
ture, but as will be discussed later, they fail to simultaneously 
possess the two properties, especially because we are dealing 
with two-dimensional samples (like channel images). Thus, 
in this study, we have to introduce a proper comparison met-
ric as well.

4- Data Driven Channel Modeling Procedure
4- 1- GAN-Based Channel Modeling 

As discussed in Section 3.1, we can consider the channel 
measurements as channel images. With this idea, the problem 
of generating samples with the same distribution of channel 
measured samples can be posed as a problem, in which one is 
trying to generate images that have a similar shape to the im-
ages that are already in the training dataset. This view of the 
problem inspired us to try to use generative models (briefly 
discussed in Section 2.2) as a tool for propagation channel 
modeling.

The problem we are actually facing is that we have some 
channel images, each having a corresponding user-speed, and 
we aim to model the statistics of the images conditioned on 
their user-speeds. To do so, we first considered some condi-
tional generative models such as Conditional GAN (cGAN). 
cGAN is a type of GAN that is used for a labeled categorical 
dataset. It considers the labels as the condition parameter and 
generates samples conditioned on this parameter. In our case, 
the dataset would be the channel images, and the labels would 
be their corresponding user-speeds.

We tried to train a cGAN with our channel images, but un-
fortunately, the network did not converge and the generated 
samples did not have similar desired statistics, probably due 
to the complexity of the dataset.

To manage the problem, we have proposed a two-phase 
solution. Especially, instead of trying to train a model that can 
directly give us a channel sample for a particular channel type 
and desired user-speed, we generate the desired sample us-
ing two networks. The first one models the distribution of the 

 

Fig. 1: Converting the channel time-frequency response into a channel image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Converting the channel time-frequency response into a channel image.
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channel images all having a reference user-speed. The second 
one adds the effect of the different user-speeds. For the sec-
ond stage, we convert a generated channel with the reference 
user-speed to the desired target user-speed by changing the 
channel image with an image-to-image translation technique, 
namely STARGAN. This procedure is shown in Figure 2 pic-
torially, where:

● Channel sample generator: In this network, the gen-
erator does not need to deal with different user speeds. The 
goal of the first network is to generate samples that have the 
same distribution as the measured data, assuming that all are 
collected at a nominal speed, refv . 

● Speed adaptation network: In the second step, the 
network modifies the generated sample such that its statistics 
match the statistics of the channel at the desired user speed, 
v .  

In the following two sections, the structures of the Chan-
nel sample generator and Speed adaptation network are de-
scribed. Afterwards, in Section IV-C, the metrics employed 
to evaluate the similarity between the generated and actual 
channel samples are discussed.

4- 2- Channel Sample Generator
As for the first step, we need to train a network that learns 

the distribution of channel images (collected at refv ) and 
generates similar samples. In this study, a DCGAN (briefly 
reviewed in Section 2.2) operates as the channel sample gen-
erator. 

The training procedure is shown in Figure 3. For each en-
vironment, the set of collected channel measurements (e.g., 

RuralX  or UrbanX ) is considered as the training data. The gen-
erator tries to generate channel images having the same dis-
tribution as the training data (i.e., it tries to find a mapping 
( ); gG z θ  from the noise space to the data space, where gθ  

is the set of parameters for G ). The input noise is sampled 
from a prior distribution ( )ZP z  that is usually considered 
a uniform distribution on [-1,1]. The discriminator network, 
denoted by ( ); DD X θ , tries to distinguish real channel im-
ages from the ones generated by the generator network. 

Both the generator and the discriminator are deep con-

volutional networks. In the training of the networks, labels 
0  (representing fake images) are allocated to the generated 
channel images and labels 1 are allocated to the real channel 
images. The discriminator performs a classification between 
real and generated channel images. The loss function is:
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where the discriminator’s output ( )D x  is a single scalar 
representing the probability of x  coming from the measured 
dataset. During the training, the discriminator tries to maxi-
mize the loss function and classify its input images as real or 
fake (generated by the generator). On the other hand, the gen-
erator aims to fool the discriminator by minimizing ( ),V G D . 

Obviously, in the first iterations of training, the generated 
images are almost noise and it is easy for the discriminator 
to distinguish them from real channel images. As the train-
ing goes on, the generator improves in competition with the 
discriminator until the channel images generated by the gen-
erator are so similar to the training data that the discriminator 
cannot distinguish them. At this point, the generator learns the 
distribution of channel images and the network converges.

4- 3- Speed Adaptation Network
User speed mainly affects the Doppler frequency, and its 

impact is seen in the time domain of the time-frequency re-
sponse of the channel. Figure 4 shows a sample Extended 
Typical Urban (ETU) channel with four different user speeds: 
25, 25, 75,  and 100  km/h. As can be seen, when the user speed 
increases, the variations in time axis are increased. 

In the second step of the network, we aim to adjust the 
channel images such that the network learns how different 
user speeds affect the channel image and incorporates the ef-
fect of the user speed on the generated sample images. 

 

Fig. 2: The generation procedure of channel images with desired user speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The generation procedure of channel images with desired user speed.
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One immediate idea to build such a model is to train a su-
pervised image-to-image translation network, in which corre-
sponding pairs of images in two domains are available. Such 
network would get channel images of refv  as input, and the 
corresponding channel image of the same sample when the 
user speed is, for example, 

1v  as output. Having trained the 
network with many of these samples, one can hope that it 
will do the correct modification on the generated sample to 
convert them from refv  to the desired speed. 

The main challenge for this method is that it is not pos-
sible to gather such dataset. We can definitely measure the 
channel when the user is moving with speed refv  and 1v
, but it is very hard to keep all the elements of the environ-
ment the same between the two experiments. In other words, 
it is possible to have two sets of training data, one collected 
at refv and the other collected at 1v , but it is impossible to 
determine which element of the first set is associated with 
which element of the second set.

 

Fig. 3: Training procedure of DCGAN for learning the distribution of the channel images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Training procedure of DCGAN for learning the distribution of the channel images.

 

Fig. 4: A sample of ETU channel with four different User Speeds: (a) 25 km/h, (b) 50 km/h, (c) 75 km/h, (d) 

100 km/h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A sample of ETU channel with four different User Speeds: (a) 25 km/h, (b) 50 km/h, (c) 75 km/h, (d) 100 km/h.
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In essence, we are dealing with two datasets, and we in-
tend to learn how to translate from the first domain to the sec-
ond domain (without knowing the exact match between the 
dataset members). Therefore, we must take advantage of an 
unsupervised image-to-image translation technique, in which 
there are two sets of images, one consisting of the input im-
ages and the other consisting of the target images. No paired 
images are available to know how one image is translated to 
its corresponding output.

StarGAN is a structure that has been suggested for such 
settings to translate between multiple domains. StarGAN ac-
cepts as inputs a reference channel image and a label (of the 
desired target domain), and generates an image associated 
with the reference domain but in the target domain. The train-
ing procedure, which is basically similar to the adversarial 
training of GANs, is shown in Figure 5.

For our goal, starGAN is trained by feeding the genera-
tor with reference channel images with user speed refv , and 
labels of the target user speeds 1 2 mv ,  v ,  ...,  v . The generator 
tries to generate channel images of target user speeds. The 
generated channel images, along with real target channel im-
ages, are fed into the discriminator. The discriminator has two 
tasks: first, to distinguish fake channel images from the real 
ones, and second to classify the channel images based on their 
labels (user speeds). To make sure the procedure preserves 
the correspondence between the reference and the target im-
ages, StarGAN should also train the generator to reconstruct 
the reference channel image. This time, the generated channel 
image (at the target speed) and the reference speed are given 
to the generator as inputs, and it has to generate an image that 
should be as close as possible to the original reference chan-
nel images (at refv ).

When training is complete, we use the generator of the 
StarGAN; the reference channel image with user speed refv  
and the desired user speed are given to the generator. After-
wards, it generates a channel with adjusted user speed based 
on the desired speed. 

4- 4- Evaluation Metric
As we mentioned in section 3.2, commonly used metrics 

for evaluation of the performance of the channel models are 
looking at the 1D channel response (either in frequency or in 
time).

In this work, we have also utilized these measures. Since 
the emphasis in this work is on generating 2-dimensional 
time-frequency responses of the channel, we have addition-
ally presented a new metric to evaluate the pattern of the gen-
erated 2D images. The 2-dimensional ( m n× ) time-frequen-
cy response provides frequency responses in consecutive 
time-slots. By putting along all the n  frequency responses 
horizontally, we actually obtain a 1-dimensional quasi-pe-
riodic signal. Its first m  elements are corresponding to the 
first time-slot, its second m  elements are corresponding to the 
second time slot, and so on. This operation is repeated for all 
of the time-frequency responses. The resulting 1D sequences 
are denoted as [ ]ix n  ( i 1, 2,..., N= ), where N  is the number 
of samples (time-frequency responses). We take the autocor-
relation of this quasi-periodic signal( [ ]ix n ) as:
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Fig. 5: Training procedure of StarGAN for converting channel images with user speed 𝑣𝑣_𝑟𝑟𝑟𝑟𝑟𝑟 to channel images 

with user speeds 𝑣𝑣1, 𝑣𝑣2,… , 𝑣𝑣𝑛𝑛. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Training procedure of StarGAN for converting channel images with user speed v_ref to channel images 
with user speeds v_1,v_2,…,v_n.
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To evaluate the similarity of the generated samples to the 
real measurements, one can consider the mean of the result-
ing autocorrelation functions over the samples. In Section 
4.1, few of these mean autocorrelation functions are depicted, 
where we can verify a good match between the generated and 
measured samples. 

Next we would like to obtain a quantitative comparison of 
the autocorrelation function results. To achieve this goal, we 
employ the real Cepstrom ( [ ]c n ) of the mean autocorrelation 
functions as:
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The reason we choose Cepstrum is that we are looking for 
repeated features. Moreover, Cepstrum does two operations 
on [ ]c n : 1) compression, which makes the comparison trac-
table, and 2) spectral smoothing. Autocorrelation holds spec-
tral information with respect to the Wiener-Kinchin theorem 
[26] that provides the relation between the power spectrum 
and the autocorrelation function. By taking Cepstrom of the 
autocorrelation, we smooth the spectrum, skip the redundant 
information, and keep the envelope which plays the main role 

for our comparison.
The similarity measure now can be defined as the Mean 

Squared Error (MSE) between the lower Cepstral coefficients 
for generated and measurement data.

5- Experimental Results
In this section, we describe the exact structure of the deep 

networks used for Channel Sample Generator and Speed 
Adaptation Network. We also discuss the training procedure 
and the results obtained from each network. The quality of 
the generated samples is then compared based on commonly 
used criteria as well as the introduced metric based on the 
Cepstrum of the mean autocorrelations.

5- 1- Channel Sample Generator
1) Network Structure: The Channel Sample Generator 

uses deep convolutional networks for both the discriminator 
and the generator of DCGAN. The structure of the generator 
and the discriminator networks are depicted in Figure 6 and 
Figure 7, respectively. The network is trained for 10 epochs 
for the total of 40000 channel images with bach size of 64. 
The size of the noise vector is 100, the learning rate is 0.0002
, and Adam optimizer with 1 0.5β =  is used for optimization. 
The training parameters are listed in Table 1.

Table 1. Parameters Used During Training

1)  

Table 1. Parameters Used During Training 

(a) DCGAN network 

Parameters Value 

Batch Size 64 

Learning Rate 0.0002 

Number of Epochs 10 

Noise Vector Size 100 

Optimizer Adam (𝛽𝛽1 = 0.5) 
 

(b) Parameters of Vienna LTE link simulator 

Parameters Value 

Channel Type ETU/EVA/PedA 

Band Width 1.4 MHz 

Simulation Type SUMIMO 

Carrier Frequency 2.1 GHz 

Filtering Fast fading 

User Speed ETU:50,EVA:80,PedA: 3 

km/h 
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1)  
Fig. 6: Structure of DCGAN's generator network for channel modeling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Structure of DCGAN’s generator network for channel modeling.

 

Fig. 7: Structure of DCGAN's discriminator network for channel modeling. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Structure of DCGAN’s discriminator network for channel modeling.

2) Training Data: To train the model, we should col-
lect some channel measurements from the environment. The 
model should provide us samples which have similar statis-
tics. 

To evaluate the performance of our method, we have col-
lected the training data in two different experiments. 

● In the first experiment (which is mainly for verifica-
tion purposes), instead of the actual channel measurements, 
we employ a simulator to generate channel samples. The 
samples generated by this simulator are then considered as 
the actual channel measurements, and our model aims to gen-
erate samples similar to these (virtually) measured samples. 
As we do not have the burden of actual channel measure-
ments, we can easily simulate different environments and 
evaluate the performance of our model with this method.

● In the second experiment, and for a realistic scenar-
io, we collect some channel samples from the environment 
and then model our environment using the proposed scheme. 

For the first experiment, we use the Vienna link simulator 
[27] to generate our training data (time-frequency responses) 
for three types of channels: Extended Typical Urban model 
(ETU), Extended Vehicular A model (EVA), and Pedestrian 
A model (PedA) as the representatives of environments with 
low, medium, and high delay spread, respectively. In terms 

of channel complexity, as shown in Figure 8, ETU provides 
a more complex channel than EVA, and EVA is more compli-
cated than PedA (i.e., the variations in the frequency axis are 
more significant). We trained our channel sample generator to 
model each of these distributions separately.  

For each channel type,  40000 time-frequency responses 
of size 72 1 4×  are sampled as the training data. The simula-
tion parameters are listed in Table 1b.

For the second experiment, we use a commercially avail-
able Wi-Fi card equipped with Atheros AR9380 chip-set [28] 
to collect data. Atheros AR9380 is able to report back the 
Channel State Information (CSI), so it can be used as a cheap 
spectrum analyzer. 

For this experiment, the transmitter and the receiver are 
placed about 3m apart. We walked between them, moved the 
transmitter and the receiver to change the channel between 
them, and generate distinct measurements so that they can be 
used as training data. The channel bandwidth was 20 MHz. 
With this bandwidth, Atheros chip-set reports the channel 
state for 56 sub-carriers. Thus, we will obtain 56 complex 
numbers in one CSI measurement for each transmission pair. 
We measured the CSI for a long time and selected 40000 
time-frequency grids of size 56 14×  from it.
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3) Performance Analysis: In this section, we first present a 
few samples of the generated time-frequency responses, and 
then verify the statistical similarity of them to the measure-
ment data. We train a model for each of the datasets (i.e., 
ETU, EVA, PedA) and real experimental data. Afterwards, 
the model is used to generate channel images from the learned 
distribution of the training data. The generated channel im-

ages are then used to obtain the complex time-frequency re-
sponses of the channel. The absolute value of one sample of 
generated time-frequency responses for each case is shown in 
Figure 9. By comparing Figure 9 with Figure 8, visually, we 
can observe high analogy between the measured and gener-
ated data which verifies that they both come from a common 
distribution.

 

Fig. 8: A random sample of training data for (a) ETU, (b) EVA, (c) PedA simulated channels, and (d) 

experimental data. 

   

 

 

 

 

 

 

 

 

  

Fig. 8. A random sample of training data for (a) ETU, (b) EVA, (c) PedA simulated channels, and (d) experimental data.

 

Fig. 9: A random sample of generated channels for (a) ETU, (b) EVA, (c) PedA, and (d) experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. A random sample of generated channels for (a) ETU, (b) EVA, (c) PedA, and (d) experimental data.
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First, we evaluate our model with the metrics of the Level 
Crossing Rate (LCR) and Average Fade Duration (AFD). 
LCR measures the number of times a signal exceeds a certain 
level, and it shows how fast the fading is for that channel. 
AFD measures the average time in which a signal is below 
a specific power. These metrics are used for 1-dimensional 
temporal data while the time-frequency responses are two-
dimensional. Therefore, our two-dimensional time-frequency 
responses have to be converted into 1-dimensional temporal 
data. For this purpose, we take the inverse fast Fourier trans-
form from each column of time slots and put along all the n  
columns horizontally to have a 1D sequence. 

The charts of LCR and AFD for three different channel 
types are illustrated in Figure 10 and Figure 11, respectively. 
The LCR for ETU and EVA channels demonstrate a good 
match in the location and amplitude of the pick. For the PedA 
channel, the location of picks is the same, but the amplitudes 
do not match. AFD for all channel types shows high similar-

ity between measurement and generated channels. 
Despite this pictorial similarity, which to some extend 

shows the performance of the proposed scheme, it is hard to 
prove the statistical similarity this way, especially because 
these metrics are 1-dimensional metrics. The 1-dimension-
al metrics are not capable of capturing and comparing the 
variations in the frequency domain of the channel responses, 
which are the main distinguishing feature between the differ-
ent channel types that are represented as 2-dimensional time-
frequency responses. It is one of the reasons that we did not 
base our performance evaluation on them and we have used 
the CDM metric. More importantly, although the LCR and 
AFD metrics show a good match between the generated and 
the actual samples, they are not able to discriminate between 
different environments, even for the actual samples. For ex-
ample, in Figure 11, the AFD of the actual ETU and EVA 
samples are similar. 

 

 

Fig. 10: Level Crossing Rate (LCR) of measurement and generated channels for three channel types:(a) ETU, 

(b) EVA, and (c) PedA. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Level Crossing Rate (LCR) of measurement and generated channels for three channel types:(a) ETU, (b) 
EVA, and (c) PedA.

 

Fig. 11: Average Fade Duration (AFD) of measurement and generated channels for three channel types:(a) ETU, 

(b) EVA, and (c) PedA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Average Fade Duration (AFD) of measurement and generated channels for three channel types:(a) ETU, (b) 
EVA, and (c) PedA.
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To show the good statistical closeness between the gener-
ated and actual samples, we use some commonly used metrics 
as well as the metric we introduced in Section IV-C. 

The CDM in Section 4.3, is able to differentiate be-
tween different environments. As discussed before, we first 
compute the mean autocorrelation function of the actual 
and generated channel samples for this metric. Figure 12 
shows the results for ETU, EVA, and PedA actual channel 
samples. In Figure 13 on the other hand, the mean autocor-
relation of the generated channels is depicted. By compar-
ing the two figures, it can be visually verified that the auto-
correlation function of the generated channels of each type 
demonstrates a very high similarity to their corresponding 
autocorrelation function of the measured data. It can also 
be observed that different channel types resulted in different 
autocorrelation functions.

As mentioned in Section 4.3, to analyze beyond the visual 

comparison, we have used CDM for comparing the autocor-
relation functions. The CDM for different channel types is 
listed in Table 2a. It is clear from the table that the distance 
between generated channels and their corresponding mea-
surement is an order of magnitude less than the distance be-
tween generated channels of one type and measurements of 
different types.

We note that it would be interesting to compare the per-
formance of the proposed scheme with the results of the pre-
vious studies. However, to the best of our knowledge, the 
2-dimensional modeling approach which learns the statistical 
distribution of channel measurements in various frequencies 
is not studied before this work. In fact, other generative meth-
ods including [17], [18], [19] apply GANs to model 1-dimen-
sional channel repossess. Due to this restriction, previous re-
sults cannot be used for 2D channel response modeling; thus, 
we are not able to compare our results with them.

 

  

 

Fig. 12: The mean autocorrelation of the training data for three different channel types: (a) ETU, (b) EVA, and 

(c) PedA. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The mean autocorrelation of the training data for three different channel types: (a) ETU, (b) EVA, and (c) PedA.

 

Fig. 13: The mean autocorrelation of the generated channels for three different channel types: (a) ETU, (b) 

EVA, and (c) PedA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.The mean autocorrelation of the generated channels for three different channel types: (a) ETU, (b) EVA, 
and (c) PedA.
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5- 2- Speed Adaptation Network
Having the generated channel samples at the reference 

speed, the speed adaptation network will generate an equiva-
lent sample for the desired user speed. The structure of the 
generator, discriminator, and loss functions are selected the 
same as the architecture of StarGAN [29]. 

To train and evaluate the results of the Speed Adapta-
tion Network, we consider the ETU channel model. More 
specifically, StarGAN is trained considering ETU channel 
samples with the user speed of 50 km / h  as the reference 
input, and ETU channel samples with the user speeds of 
25, 75,1 00 /km h  as the target channel images. The desired 
user speed is fed to the network as a One-hot vector. 

Figure 14 illustrates the results of the Speed Adaptation 
Network when it got the channel image of 50 km/s as the 
input, and was instructed to generate samples with different 
user speeds. Figure 14(a) shows the input channel image for 
user speed of 50 km/s. Figure 14(b) is the resulting channel 
with the User Speed of 25 km/h. As can be seen from the 
figure, the variations in the time-axis have been reduced. Fig-
ures 14(c) and 14(d) are the resulting channels with the User 
Speeds of 75 km/h and 100 km/h, respectively. The increase 
in the variations of the time-axis is obvious. All the time-fre-
quency responses are plotted for only 10  consecutive fre-
quency sub-carriers so that the changes in the time axis can 
be seen more clearly.

We also note that the samples presented in Figure 14 are 
provided just for visual verification. The more accurate and 
precise evaluation which statistically evaluates the perfor-
mance of the speed adaptation network based on the CDM 
metric, is presented in Table 2b.

To test the statistical similarity of the resulting 2D chan-
nel images, after obtaining the complex time-frequency re-
sponses of the channel from the channel images, first the 2D 
time-frequency responses are converted to one-dimensional 
sequences. Since the main effect of the different user speeds 
is on the time axis, this time we put along all the time slots of 
the subcarriers for this purpose (note that for evaluation of the 
Channel Sample Generator, all sub-carriers of the time-slots 
are put along). Afterwards, we use the mean autocorrelation 
and CDM. The mean autocorrelation of the actual and gener-
ated ETU channels for three different user speeds are shown 
in Figure 15 and Figure 16, respectively. By comparing these 
two figures, the similarity between the mean autocorrelation 
function of the generated channels of each speed with its cor-
responding mean, autocorrelation function of the actual chan-
nel samples can be verified. This shows the ability of the net-
work in modeling the channels with different user speeds. We 
have also computed the CDM between the resulting mean au-
tocorrelation functions. The results are listed in Table 2b. It is 
clear that the distance between generated channels and their 
corresponding measurement is on average an order of magni-

 

Fig. 14: A random resulting sample of the Speed Adaptation Network. (a) The input ETU channel with User 

Speed of 50 km/h. (b) The adapted ETU channel to the speed of 25 km/h. (c) The adapted ETU channel to the 

speed of 75 km/h. (d) The adapted ETU channel to the speed of 100 km/h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. A random resulting sample of the Speed Adaptation Network. (a) The input ETU channel with User 
Speed of 50 km/h. (b) The adapted ETU channel to the speed of 25 km/h. (c) The adapted ETU channel to the 

speed of 75 km/h. (d) The adapted ETU channel to the speed of 100 km/h.
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tude less than the distance between generated channels of one 
speed and measurements of different speeds. Note that for the 
speed of 100 km / h , the CDM shows the best match between 
the generated and actual samples of 100 km / h , however, the 
value is only 0.4 times the value for the speed of 75 km / h . 
This might show that the channel statistics are not very differ-
ent at high speeds. 

6- Multiple-Input Multiple-Output (MIMO) 
Configuration

As mentioned earlier, the focus of this work is on model-
ing the statistics of the channel time-frequency grid between 
one transmit-receive antenna pair. In MIMO configurations, 

based on the assumption that the distance between antennas is 
large enough, they are considered independent so they do not 
affect each other. In addition, since all the antennas are in the 
same environment, the statistics of the channel between any 
two antennas are the same. Therefore, our model can be used 
for the MIMO setting and generate channels between any two 
pairs of antennas. For example, consider a 2  2×  MIMO con-
figuration, in which the channel matrix in antenna space is as:
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Table 2. Similarity ResultsTable 2. Similarity Results 

(a) Cepstral Distance Measure for different channel types. 

 ETU 

Generated 

EVA 

Generated 

PedA 

Generated 

ETU 4.12 × 10−5 3.64 × 10−4 1.00 × 10−3 

EVA 5.95 × 10−4 7.98 × 10−6 6.52 × 10−4 

PedA 13.00 × 10−3 8.36 × 10−4 5.37 × 10−7 
 

(b) Cepstral Distance Measure for different User Speeds. 

 ETU 

Generated 

25 km/h 

EVA 

Generated 

75 km/h 

PedA 

Generated 

100 km/h 

ETU-25 1.56
× 10−5 

4.08
× 10−4 

8.89
× 10−4 

ETU-75 1.20
× 10−4 

2.98
× 10−5 

2.28
× 10−4 

ETU-100 4.99
× 10−4 

3.79
× 10−5 

1.43
× 10−5 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: The mean autocorrelation of the actual ETU channels with three User Speeds: (a) 25 km/h, (b) 75 km/h, 

(c) 100 km/h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. The mean autocorrelation of the actual ETU channels with three User Speeds: (a) 25 km/h, (b) 75 km/h, 
(c) 100 km/h.
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Fig. 16: The mean autocorrelation of the generated ETU channels with three User Speeds: (a) 25 km/h, (b) 75 

km/h, (c) 100 km/h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The mean autocorrelation of the generated ETU channels with three User Speeds: (a) 25 km/h, (b) 75 km/h, 
(c) 100 km/h.

 

Fig. 17: One sample of generated channels for a 2 ×  2 MIMO setting for an ETU environment. (a) the channel 

between the first receiver and the first transmitter, (b) the channel between the first receiver and the second 

transmitter, (c) the channel between the second receiver and the first transmitter, (d) the channel between the 

second receiver and the second transmitter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. One sample of generated channels for a 2 × 2 MIMO setting for an ETU environment. (a) the channel be-
tween the first receiver and the first transmitter, (b) the channel between the first receiver and the second trans-
mitter, (c) the channel between the second receiver and the first transmitter, (d) the channel between the second 

receiver and the second transmitter.

where 11H  is the channel between the first receiver and 
the first transmitter,  12H  is the channel between the first re-
ceiver and the second transmitter,  

21H  is the channel between 
the second receiver and the first transmitter, and  

22H  is the 
channel between the second receiver and the second trans-

mitter. As these channels are independent, a sample of the 
MIMO channel matrix can be generated by sampling from 
the proposed model four times independently. One sample of 
generated channels for such a MIMO setting for an ETU en-
vironment is illustrated in Figure 17.
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Note that if the distance between the antennas is small that 
the antennas cannot be considered independent, the model 
has to be trained with the measurement data of channels be-
tween every antenna pair (i.e. a higher dimensional channel 
image as the training data); although, this case is not studied 
in this paper.

7- Conclusion
In this paper, a novel propagation channel modeling 

method based on Deep Learning techniques is presented. The 
time-frequency response of the propagation channel is con-
sidered as an image, and the distribution of channel images 
is modeled using DCGANs. Moreover, the model is extended 
for measurements having different user speeds. A speed ad-
aptation network is trained to learn the effect of different user 
speeds on channel images. We take advantage of StarGAN 
as an image-to-image translation technique for this purpose. 
The statistical similarity between the generated and the ac-
tual samples are examined with some commonly used metrics 
such as LCR and AFD, as well as a newly introduced metric 
based on the Cepstral distance between the mean of the auto-
correlation functions. 
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